Filter convergence and decompositions for vector lattice-valued measures

Domenico Candeloro, Anna Rita Sambucini

Department of Mathematics and Computer Science - University of Perugia

Integration, Vector Measures and Related Topics VI, Będlewo, June 15-21, 2014

Outline

- Some background
 - Vector lattices
 - Filter convergence
 - Decompositions
- Convergence theorems
 - The σ -additive case
 - The finitely additive case
- The (SCP) property

Let $(\mathbf{X},+,\cdot,\leq)$ be a real vector space, endowed with a compatible ordering <. If \mathbf{X} is stable under finite suprema (and infima) then it is called a **vector lattice**.

Usually we shall assume that:

Let $(\mathbf{X},+,\cdot,\leq)$ be a real vector space, endowed with a compatible ordering <. If \mathbf{X} is stable under finite suprema (and infima) then it is called a **vector lattice**.

Usually we shall assume that:

X is super-Dedekind complete

(i.e. every non-empty upper-bounded subset $A \subset X$ has supremum in X and contains a countable subset N such that $\sup N = \sup A$).

Let $(\mathbf{X},+,\cdot,\leq)$ be a real vector space, endowed with a compatible ordering <. If \mathbf{X} is stable under finite suprema (and infima) then it is called a **vector lattice**.

Usually we shall assume that:

X is super-Dedekind complete

(i.e. every non-empty upper-bounded subset $A\subset X$ has supremum in X and contains a countable subset N such that $\sup N=\sup A$).

X is weakly σ-distributive

(i.e. $0 = \bigwedge_{\phi} \bigvee_{i} a_{i,\phi(i)}$ holds true, for each double sequence $(a_{i,j})$ such that $a_{i,j} \downarrow_{j} 0$ for every integer i (regulator), and ϕ runs among all mappings from $\mathbb N$ to $\mathbb N$)

Let $(\mathbf{X},+,\cdot,\leq)$ be a real vector space, endowed with a compatible ordering <. If \mathbf{X} is stable under finite suprema (and infima) then it is called a **vector lattice**.

Usually we shall assume that:

X is super-Dedekind complete

(i.e. every non-empty upper-bounded subset $A\subset X$ has supremum in X and contains a countable subset N such that $\sup N=\sup A$).

X is weakly σ-distributive

(i.e. $0 = \bigwedge_{\phi} \bigvee_i a_{i,\phi(i)}$ holds true, for each double sequence $(a_{i,j})$ such that $a_{i,j} \downarrow_j 0$ for every integer i (regulator), and ϕ runs among all mappings from $\mathbb N$ to $\mathbb N$)

(o)-sequence

Any decreasing sequence $(p_n)_n$ in X, such that $\inf_n p_n = 0$.

4 D > 4 B > 4 B > 4 B >

(o)-convergence

A sequence $(a_n)_n$ in **X** is said to be (o)-convergent to $a \in \mathbf{X}$ whenever an (o)-sequence $(p_n)_n$ exists, such that

$$|a_n-a|\leq p_n$$

for all n. If this happens, $(p_n)_n$ will be called a *regulating* (o)-sequence for $(a_n)_n$.

(o)-convergence

A sequence $(a_n)_n$ in **X** is said to be (o)-convergent to $a \in \mathbf{X}$ whenever an (o)-sequence $(p_n)_n$ exists, such that

$$|a_n-a|\leq p_n$$

for all n. If this happens, $(p_n)_n$ will be called a *regulating* (o)-sequence for $(a_n)_n$.

Lemma

(see ^a) Let $(r_n)_n$ be any (o)-sequence in a super-Dedekind complete vector lattice X. For every positive element $u \in X^+$ there exists an increasing mapping $\omega : \mathbb{N} \to \mathbb{N}$ such that

$$N\mapsto u\wedge (\sum_{n=N}^{\infty}r_{\omega(n)})$$

defines an (o)-sequence in X.

^aA. BOCCUTO, D. C., A survey of decomposition and convergence theorems for I-group-valued measures, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia, **53**, (2005), 243-260.

Filter convergence

Let Z be any fixed set.

A family \mathcal{F} of subsets of Z is called a **filter** of Z iff

- \bullet $\emptyset \not\in \mathcal{F}$
- $A \cap B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$
- $\bullet \ A \in \mathcal{F}, B \supset A \Rightarrow B \in \mathcal{F}.$

Filter convergence

Let Z be any fixed set.

A family \mathcal{F} of subsets of Z is called a **filter** of Z iff

- \bullet $\emptyset \not\in \mathcal{F}$
- $A \cap B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$
- $A \in \mathcal{F}, B \supset A \Rightarrow B \in \mathcal{F}$.

Given any filter \mathcal{F} of subsets of Z, the **dual ideal** of \mathcal{F} is

$$\mathcal{I}_{\mathcal{F}}:=\{\textbf{\textit{F}}^{\text{\textit{c}}}:\textbf{\textit{F}}\in\mathcal{F}\}.$$

If $\{z\} \in \mathcal{I}_{\mathcal{F}}$ for all $z \in Z$, \mathcal{F} is a **free** filter.

Filter convergence

Let Z be any fixed set.

A family \mathcal{F} of subsets of Z is called a **filter** of Z iff

- \bullet $\emptyset \not\in \mathcal{F}$
- $A \cap B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$
- $A \in \mathcal{F}, B \supset A \Rightarrow B \in \mathcal{F}$.

Given any filter \mathcal{F} of subsets of Z, the **dual ideal** of \mathcal{F} is

$$\mathcal{I}_{\mathcal{F}}:=\{\textbf{\textit{F}}^{\textit{c}}:\textbf{\textit{F}}\in\mathcal{F}\}.$$

If $\{z\} \in \mathcal{I}_{\mathcal{F}}$ for all $z \in Z$, \mathcal{F} is a **free** filter.

Examples: $Z = \mathbb{N}$

- Statistical filter: $\mathcal{F} := \{J \subset \mathbb{N} : \lim_n \frac{|J \cap [0,n]|}{n} = 1\}$
- Countably generated filters: $\mathcal{I}_{\mathcal{F}}$ is generated by a countable partition of \mathbb{N} .
- (free) Ultrafilters

Definition

A sequence $(x_k)_{k \in \mathbb{N}}$ in **X** $(o_{\mathcal{F}})$ -converges to $x \in \mathbf{X}$ $(x_k \overset{o_{\mathcal{F}}}{\to} x)$ iff there exists an (o)-sequence $(\sigma_p)_p$ in **X** such that the set

$$\{k \in \mathbb{N} : |x_k - x| \leq \sigma_p\}$$

is an element of \mathcal{F} for each $p \in \mathbb{N}$.

If this is the case, then $(\sigma_p)_p$ is said to be a **regulator** for (o_F) -convergence of $(x_k)_k$.

Definition

A sequence $(x_k)_{k\in\mathbb{N}}$ in **X** $(o_{\mathcal{F}})$ -converges to $x\in \mathbf{X}$ $(x_k\overset{o_{\mathcal{F}}}{\to}x)$ iff there exists an (o)-sequence $(\sigma_p)_p$ in **X** such that the set

$$\{k \in \mathbb{N} : |x_k - x| \le \sigma_p\}$$

is an element of \mathcal{F} for each $p \in \mathbb{N}$.

If this is the case, then $(\sigma_p)_p$ is said to be a **regulator** for (o_F) -convergence of $(x_k)_k$.

Lemma

(see ^a) Let $(\sigma_p^j)_p$ be an (o)-sequence for all $j \in \mathbb{N}$, and assume that the set $\{\sigma_p^j : p \in \mathbb{N}, j \in \mathbb{N}\}$ is bounded in **X**. Then there exists an (o)-sequence $(r_n)_n$ such that, for every j and every n there exists p satisfying $\sigma_p^j \leq r_n$.

^aB. Riecan-T.Neubrunn *Integral, Measure and Ordering*, Kluwer, Ister Science, Dordrecht/Bratislava (1997).

• \forall filter \mathcal{F} in Z, a subset $H \subset Z$ is **stationary** if $Z \notin \mathcal{I}_{\mathcal{F}}$, i.e. if and only if $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.

¹ A. AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, The Schur I₁-theorem for filters, J. Math. Phys. Anal. Geom. **3** (2009), 383-398.

- \forall filter \mathcal{F} in Z, a subset $H \subset Z$ is **stationary** if $Z \notin \mathcal{I}_{\mathcal{F}}$, i.e. if and only if $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.
- The filter \mathcal{F} is **block-respecting** if, for every stationary set H and every block $\{D_k : k \in \mathbb{N}\}$ of H there exists a stationary set $J \subset H$ such that $card(J \cap D_k) \le 1$ for all k. $(\forall \text{ infinite } I \subset Z \text{ a block of } I \text{ is any partition } \{D_k, k \in \mathbb{N}\} \text{ of } I, \text{ obtained with } finite \text{ sets } D_k \text{ in } Z).$

¹ A. AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, The Schur I₁-theorem for filters, J. Math. Phys. Anal. Geom. **3** (2009), 383-398.

- \forall filter \mathcal{F} in Z, a subset $H \subset Z$ is **stationary** if $Z \notin \mathcal{I}_{\mathcal{F}}$, i.e. if and only if $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.
- The filter \mathcal{F} is **block-respecting** if, for every stationary set H and every block $\{D_k : k \in \mathbb{N}\}$ of H there exists a stationary set $J \subset H$ such that $card(J \cap D_k) \le 1$ for all k. $(\forall \text{ infinite } I \subset Z \text{ a block of } I \text{ is any partition } \{D_k, k \in \mathbb{N}\} \text{ of } I$, obtained with *finite* sets D_k in Z).
- The filter \mathcal{F} is said to be **diagonal** if for every sequence $(A_n)_n$ in $\mathcal{I}_{\mathcal{F}}$ and every stationary set $I \subset Z$, there exists a stationary set $J \subset I$ such that $J \cap A_n$ is finite for all $n \in \mathbb{N}$.

¹ A. AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, *The Schur I*₁-theorem for filters, J. Math. Phys. Anal. Geom. **3** (2009), 383-398.

- \forall filter \mathcal{F} in Z, a subset $H \subset Z$ is **stationary** if $Z \notin \mathcal{I}_{\mathcal{F}}$, i.e. if and only if $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.
- The filter \mathcal{F} is **block-respecting** if, for every stationary set H and every block $\{D_k : k \in \mathbb{N}\}$ of H there exists a stationary set $J \subset H$ such that $card(J \cap D_k) \le 1$ for all k. $(\forall \text{ infinite } I \subset Z \text{ a block of } I \text{ is any partition } \{D_k, k \in \mathbb{N}\} \text{ of } I$, obtained with *finite* sets D_k in Z).
- The filter \mathcal{F} is said to be **diagonal** if for every sequence $(A_n)_n$ in $\mathcal{I}_{\mathcal{F}}$ and every stationary set $I \subset Z$, there exists a stationary set $J \subset I$ such that $J \cap A_n$ is finite for all $n \in \mathbb{N}$.
- In the paper ¹ the simplified Schur property has been proved to be equivalent to the block-respecting property.

¹ A. AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, *The Schur I₁-theorem for filters*, J. Math. Phys. Anal. Geom. **3** (2009), 383-398.

- \forall filter \mathcal{F} in Z, a subset $H \subset Z$ is **stationary** if $Z \notin \mathcal{I}_{\mathcal{F}}$, i.e. if and only if $H \cap F \neq \emptyset$ for all $F \in \mathcal{F}$.
- The filter \mathcal{F} is **block-respecting** if, for every stationary set H and every block $\{D_k : k \in \mathbb{N}\}$ of H there exists a stationary set $J \subset H$ such that $card(J \cap D_k) \le 1$ for all k. $(\forall \text{ infinite } I \subset Z \text{ a block of } I \text{ is any partition } \{D_k, k \in \mathbb{N}\} \text{ of } I, \text{ obtained with } finite \text{ sets } D_k \text{ in } Z).$
- The filter \mathcal{F} is said to be **diagonal** if for every sequence $(A_n)_n$ in $\mathcal{I}_{\mathcal{F}}$ and every stationary set $I \subset Z$, there exists a stationary set $J \subset I$ such that $J \cap A_n$ is finite for all $n \in \mathbb{N}$.
- In the paper ¹ the simplified Schur property has been proved to be equivalent to the block-respecting property.

Examples

- The statistical filter is diagonal but not block-respecting.
- Any countably generated filter has both properties.

¹ A. AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, The Schur I₁ -theorem for filters, J. Math. Physical Research (1998) 100 (1998)

Notations and Definitions:

- $\Omega \equiv$ any abstract space.
- $\mathcal{H} \equiv$ any algebra of subsets of Ω .
- $A \equiv \text{any } \sigma\text{-algebra in } \Omega$.
- $m: \mathcal{H} \to \mathbf{X} \equiv$ any bounded f.a. measure.

Notations and Definitions:

- $\Omega \equiv$ any abstract space.
- $\mathcal{H} \equiv$ any algebra of subsets of Ω .
- $A \equiv \text{any } \sigma\text{-algebra in } \Omega$.
- $m: \mathcal{H} \to \mathbf{X} \equiv$ any bounded f.a. measure.
- m is s-bounded if \exists an (o)-sequence (p_n) in X such that, for every pairwise disjoint sequence $(F_k)_k$ from \mathcal{H} and every integer n, it is possible to find an index k(n) satisfying

$$\bigvee_{k \ge k(n)} |m(F_k)| \le p_n. \tag{1}$$

In this case we say that (p_n) **regulates** *s*-boundedness of *m*.

Notations and Definitions:

- $\Omega \equiv$ any abstract space.
- $\mathcal{H} \equiv$ any algebra of subsets of Ω .
- $A \equiv \text{any } \sigma\text{-algebra in } \Omega$.
- $m: \mathcal{H} \to \mathbf{X} \equiv$ any bounded f.a. measure.
- m is s-bounded if \exists an (o)-sequence (p_n) in X such that, for every pairwise disjoint sequence $(F_k)_k$ from \mathcal{H} and every integer n, it is possible to find an index k(n) satisfying

$$\bigvee_{k \ge k(n)} |m(F_k)| \le p_n. \tag{1}$$

In this case we say that (p_n) **regulates** *s*-boundedness of *m*.

Variations:

$$v^+(m)(H) = \sup_{A \in \mathcal{H}} m(A \cap H), \ v^-(m) := v^+(-m), \ v(m) = v^+ + v^-(-m)$$

• $m: \mathcal{H} \to \mathbf{X}$ is σ -additive if \exists an (o)-sequence (p_n) in \mathbf{X} such that, for every decreasing sequence $(F_k)_k$ from \mathcal{H} with empty intersection, and every integer n it is possible to find an index k(n) satisfying

$$\bigvee_{A\in\mathcal{H}}|m(A\cap F_{k(n)})|\leq p_n. \tag{2}$$

Also in this case, (p_n) regulates σ -additivity of m.

m: H → X is σ-additive if ∃ an (o)-sequence (p_n) in X such that, for every decreasing sequence (F_k)_k from H with empty intersection, and every integer n it is possible to find an index k(n) satisfying

$$\bigvee_{A\in\mathcal{H}}|m(A\cap F_{k(n)})|\leq p_n. \tag{2}$$

Also in this case, (p_n) regulates σ -additivity of m.

Theorem

(see ^a) Let $m: \mathcal{A} \to \mathbf{X}$ be any s-bounded finitely additive measure, defined on a σ -algebra \mathcal{A} , and let $(H_n)_n$ be any pairwise disjoint family from \mathcal{A} . Then there exists a sub-sequence $(H_{n_k})_k$ such that m is σ -additive in the σ -algebra generated by the sets H_{n_k} (Same regulating (o)-sequence).

^aA. BOCCUTO, D. C., *Convergence and decompositions for I-group-valued set functions*, Commentationes Matematicae, **44**, (1) (2004), 11-37.

Lebesgue decompositions

Let $m:\mathcal{H}\to \mathbf{X}$ and $\nu:\mathcal{H}\to\mathbb{R}_0^+$ be bounded finitely additive measures.

• (absolute continuity): $m \ll \nu$ when the following setting defines an (o)-sequence in **X**:

$$p_n := \sup\{|m(A)| : A \in \mathcal{H}, \nu(A) \leq \frac{1}{n}\}, \quad n \in \mathbb{N}.$$

• (singularity): $m \perp \nu$ if \exists $(A_k)_k$ in \mathcal{H} and an (o)-sequence $(q_k)_k$ in \mathbf{X} such that $\lim_k \nu(A_k) = 0$ and, for every k

$$\sup\{|\textit{m}(\textit{E} \setminus \textit{A}_{\textit{k}})| : \textit{E} \in \mathcal{H}\} \leq \textit{q}_{\textit{k}}.$$

Lebesgue decompositions

Let $m: \mathcal{H} \to X$ and $\nu: \mathcal{H} \to \mathbb{R}_n^+$ be bounded finitely additive measures.

• (absolute continuity): $m \ll \nu$ when the following setting defines an (o)-sequence in X:

$$p_n := \sup\{|m(A)| : A \in \mathcal{H}, \nu(A) \le \frac{1}{n}\}, \qquad n \in \mathbb{N}.$$

• (singularity): $m \perp \nu$ if $\exists (A_k)_k$ in \mathcal{H} and an (o)-sequence $(q_k)_k$ in **X** such that $\lim_k \nu(A_k) = 0$ and, for every k

$$\sup\{|m(E\setminus A_k)|: E\in\mathcal{H}\}\leq q_k.$$

Theorem

(see ^a) Let $m: \mathcal{H} \to X$ and $\nu: \mathcal{H} \to \mathbb{R}_0^+$ be two s-bounded finitely additive measures on an algebra H. Then there exist (unique) X-valued measures m[<] and m^{\perp} , mutually singular, such that

$$m^{<} \ll \nu$$
, $m^{\perp} \perp \nu$, $m^{<} + m^{\perp} = m$

^aA. BOCCUTO, D. C., A survey of decomposition and convergence theorems for I-group-valued measures, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia, 53, (2005).

Sobczyk-Hammer decompositions

Definition

Let $m:\mathcal{H}\to \mathbf{X}_0^+$ be any finitely additive measure. We say that m is **continuous** if there exists an (o)-sequence $(p_n)_n$ in \mathbf{X} and a sequence $(\pi_n)_n$ of finite partitions of Ω , $\pi_n=\{J_1,...,J_{k_n}\}$ such that for each n we have

$$\sup_{i=1...,k_n} m(J_i) \leq p_n.$$

We also say that m is **atomic** if there exist no nonzero continuous finitely additive measure $\mu: \mathcal{H} \to \mathbf{X}_0^+$ such that $\mu \leq m$. In case m is not a positive measure, but is bounded, then it will be said to be

In case m is not a positive measure, but is bounded, then it will be said to be **continuous** if v(m) is.

Sobczyk-Hammer decompositions

Definition

Let $m: \mathcal{H} \to \mathbf{X}_0^+$ be any finitely additive measure. We say that m is **continuous** if there exists an (o)-sequence $(p_n)_n$ in \mathbf{X} and a sequence $(\pi_n)_n$ of finite partitions of Ω , $\pi_n = \{J_1, ..., J_{k_n}\}$ such that for each n we have

$$\sup_{i=1...,k_n} m(J_i) \leq p_n.$$

We also say that m is **atomic** if there exist no nonzero continuous finitely additive measure $\mu: \mathcal{H} \to \mathbf{X}_0^+$ such that $\mu \leq m$. In case m is not a positive measure, but is bounded, then it will be said to be **continuous** if v(m) is.

Theorem

(see ^a) Let $m:\mathcal{H}\to \mathbf{X}_0^+$ be s-bounded and finitely additive. Then \exists mutually singular finitely additive measures m^s and m^a , both $\ll m$, such that

 m^s is continuous m^a is atomic, $m^s + m^a = m$.

Convergence: countably additive case

Let **any** (free) filter \mathcal{F} be fixed in \mathbb{N} .

Theorem

Let $(m_n)_n$ be any sequence of bounded X-valued σ -additive measures defined on a measure space $(\Omega, \mathcal{A}, \nu)$ such that the sequence $(m_n)_n$ is pointwise $(o_{\mathcal{F}})$ -convergent to a σ -additive measure m. Then the sequences $(m_n^<)_n$, $(m_n^a)_n$, $(m_n^a)_n$, $(m_n^s)_n$ converge in the same way to $m^<$, m^\perp , m^a , m^s respectively.

Convergence: countably additive case

Let **any** (free) filter \mathcal{F} be fixed in \mathbb{N} .

Theorem

Let $(m_n)_n$ be any sequence of bounded X-valued σ -additive measures defined on a measure space $(\Omega, \mathcal{A}, \nu)$ such that the sequence $(m_n)_n$ is pointwise $(o_{\mathcal{F}})$ -convergent to a σ -additive measure m. Then the sequences $(m_n^<)_n$, $(m_n^\perp)_n$, $(m_n^a)_n$, $(m_n^s)_n$ converge in the same way to $m^<$, m^\perp , m^a , m^s respectively.

If $\mathcal F$ is block-respecting and diagonal, we have (Schur):

Theorem

(see ^a) Assuming that the measures m_n are defined on $\mathcal{P}(\mathbb{N})$, are uniformly bounded and $(o_{\mathcal{F}})$ -convergent to 0, then the sequence $n \mapsto \sum_{k \in \mathbb{N}} |m_n(\{k\})|$ is $(o_{\mathcal{F}})$ -convergent to 0.

^aA. BOCCUTO, X.DIMITRIOU, N. PAPANASTASSIOU, Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca **62** (6) (2012), 1145-1166.

No particular conditions on the filter \mathcal{F} .

No particular conditions on the filter \mathcal{F} .

Definition

We say that a sequence $(m_n)_n$ of **X**-valued finitely additive measures, defined on a algebra \mathcal{H} , is **uniformly** *s*-**bounded** if \exists an (o)-sequence $(r_k)_k$ in **X** such that, for every disjoint sequence (H_j) from \mathcal{H} and for every $k \in \mathbb{N}$ an index j(k) can be found, such that

$$\sup_{n\in\mathbb{N}}\sup_{j\geq j(k)}|m_n(H_j)|\leq r_k.$$

No particular conditions on the filter \mathcal{F} .

Definition

We say that a sequence $(m_n)_n$ of **X**-valued finitely additive measures, defined on a algebra \mathcal{H} , is **uniformly** *s*-**bounded** if \exists an (o)-sequence $(r_k)_k$ in **X** such that, for every disjoint sequence (H_j) from \mathcal{H} and for every $k \in \mathbb{N}$ an index j(k) can be found, such that

$$\sup_{n\in\mathbb{N}}\sup_{j\geq j(k)}|m_n(H_j)|\leq r_k.$$

Theorem

Assume that the f.a. measures $(m_n)_n$, defined on \mathcal{H} , are uniformly s-bounded and pointwise $(o_{\mathcal{F}})$ -convergent to some finitely additive measure m. Assume also that $\nu:\mathcal{H}\to\mathbb{R}^+_0$ is a fixed finitely additive measure. Then the sequences

$$(m_n^<)_n, \ (m_n^\perp)_n, \ (m_n^a)_n, \ (m_n^s)_n$$

converge in the same way to $m^{<}$, m^{\perp} , m^{a} , m^{s} respectively.

Ideal s-boundedness

Uniform *s*-boundedness can be relaxed, as follows.

Definition

Given a sequence $\{m_j: j \in \mathbb{N}\}$ of *s*-bounded finitely additive measures on \mathcal{H} , and a filter \mathcal{F} in $\mathcal{P}(\mathbb{N})$, we say that the measures $\{m_j: j \in \mathbb{N}\}$ are **ideally uniformly** *s*-bounded if there exists an (o)-sequence $(r_k)_k$ such that, for any family $(H_l)_l$ of pairwise disjoint sets in \mathcal{H} , any integer k and any element l of the dual ideal of \mathcal{F} , there exists an integer l(k) such that

$$\sup_{j\in I}\sup_{l\geq I(k)}|m_j(H_l)|\leq r_k.$$

Ideal s-boundedness

Uniform *s*-boundedness can be relaxed, as follows.

Definition

Given a sequence $\{m_j: j \in \mathbb{N}\}$ of *s*-bounded finitely additive measures on \mathcal{H} , and a filter \mathcal{F} in $\mathcal{P}(\mathbb{N})$, we say that the measures $\{m_j: j \in \mathbb{N}\}$ are **ideally uniformly** *s*-bounded if there exists an (o)-sequence $(r_k)_k$ such that, for any family $(H_l)_l$ of pairwise disjoint sets in \mathcal{H} , any integer k and any element l of the dual ideal of \mathcal{F} , there exists an integer l(k) such that

$$\sup_{j\in I}\sup_{l\geq I(k)}|m_j(H_l)|\leq r_k.$$

Assume now that the filter \mathcal{F} is **block-respecting and diagonal**.

Ideal s-boundedness

Uniform *s*-boundedness can be relaxed, as follows.

Definition

Given a sequence $\{m_j: j\in\mathbb{N}\}$ of *s*-bounded finitely additive measures on \mathcal{H} , and a filter \mathcal{F} in $\mathcal{P}(\mathbb{N})$, we say that the measures $\{m_j: j\in\mathbb{N}\}$ are **ideally uniformly** *s*-bounded if there exists an (o)-sequence $(r_k)_k$ such that, for any family $(H_l)_l$ of pairwise disjoint sets in \mathcal{H} , any integer k and any element l of the dual ideal of \mathcal{F} , there exists an integer l(k) such that

$$\sup_{j\in I}\sup_{l\geq I(k)}|m_j(H_l)|\leq r_k.$$

Assume now that the filter \mathcal{F} is **block-respecting and diagonal**.

Theorem

Let $(m_n)_n$ be an equibounded sequence of **ideally uniformly** s-bounded finitely additive measures, defined on a σ -algebra \mathcal{A} , and taking values in \mathbf{X} . If the measures m_n are $(o_{\mathcal{F}})$ -convergent to an s-bounded finitely additive measure m, then the measures are uniformly s-bounded.

Filter convergence ...

The (SCP) Property

Definition

Let \mathcal{H} be an algebra of subsets of an abstract set Ω . We say that \mathcal{H} enjoys the *property (SCP)* if, for every sequence $(H_k)_k$ of pairwise elements from \mathcal{H} , there exists a subsequence $(H_{k_r})_r$ whose union belongs to \mathcal{H} .

The (SCP) Property

Definition

Let \mathcal{H} be an algebra of subsets of an abstract set Ω . We say that \mathcal{H} enjoys the *property (SCP)* if, for every sequence $(H_k)_k$ of pairwise elements from \mathcal{H} , there exists a subsequence $(H_{k_r})_r$ whose union belongs to \mathcal{H} .

Theorem

(see ^a) Assume that $(m_n)_n$ is an equibounded sequence of ideally uniformly s-bounded finitely additive measures, defined on an algebra $\mathcal H$ enjoying (SCP), and taking values in $\mathbf X$. Assume that the filter $\mathcal F$ is countably generated, and that the measures m_n are $(o_{\mathcal F})$ -convergent to an s-bounded finitely additive measure m. Moreover, let $\nu:\mathcal H\to\mathbb R^+_0$ be any positive finitely additive measure. Then the measures $(m_n)_n$ are uniformly s-bounded and the sequences $(m_n^<)_n$, $(m_n^a)_n$, $(m_n^a)_n$, $(m_n^a)_n$ converge in the same way to $m^<$, m^\perp , m^a , m^s respectively, where absolute continuity and singularity are meant w.r.t. ν .

^aD. C., A.R. SAMBUCINI *Filter convergence and decompositions for vetcor lattice-valued measures*, in press in Mediterranean J. Math. (2014)

THANK YOU!!!

- A. AVALLONE -G. BARBIERI P. VITOLO H. WEBER, *Decomposition of effect algebras and the Hammer-Sobczyk theorem*, Algebra Universalis **60**, (2009) 1-18. DOI 10.1007/s00012-008-2083-z.
- A. AVALLONE P. VITOLO, *Lyapunov decomposition of measures on effect algebras*, Sci. Math. Japonicae **69**, No. 1, (2009) 79-87.
- A.AVILES LOPEZ, B. CASCALES SALINAS, V. KADETS, A. LEONOV, The Schur *I*₁-theorem for filters, J. Math. Phys. Anal. Geom. **3** (2009), 383-398.
- A. BOCCUTO, D. CANDELORO, *Uniform s-boundedness and convergence results for measures with values in complete I-groups*, J. Math. Anal. Appl. **265**, (2002), 170-194.
- A. BOCCUTO, D. CANDELORO, *Convergence and decompositions for I-group-valued set functions*, Commentationes Matematicae, **44**, (1) (2004), 11-37.
 - A. BOCCUTO, D. CANDELORO, A survey of decomposition and convergence theorems for I-group-valued measures, Atti Sem. Mat. Univ. Modena e Reggio Emilia, **53**, (2005).

- A. BOCCUTO, X. DIMITRIOU, *Modular convergence theorems for integral operators in the context of filter exhaustiveness and applications*, Mediterranean J. Math. (2012), doi:10.1007/s00009-012-0199-z
- A. BOCCUTO, X.DIMITRIOU, N. PAPANASTASSIOU, Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca 62 (6) (2012), 1145-1166.
- A. BOCCUTO, X. DIMITRIU, Some new types of filter limit theorems for topological group-valued measures, Real Anal. Exchange **37** (2), (2011/2012), 249-278.
- A. BOCCUTO, D. CANDELORO, A.R. SAMBUCINI, Vitali-type theorems for filter convergence related to vector lattice-valued modulars and applications to stochastic processes, preprint (2013).
- B. BONGIORNO, L. DI PIAZZA, K. MUSIAL, A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets and Systems **200**, (2012), 36âÅS47
- D. CANDELORO Sui teoremi di Vitali-Hahn-Saks, Dieudonné, e Nikodya. Rend. Circ. Mat. Palermo, ser. VII, **8**, (1985), 439-445.

- D. CANDELORO Convergence theorems for measures taking values in Riesz spaces, Kybernetika **32**, (2002), 287-295.
- D. CANDELORO, A.R. SAMBUCINI, Filter convergence and decompositions for vector lattice-valued measures, in press in Med. J. Math. (2014).
- P. CAVALIERE, P. de LUCIA, On Brooks-Jewett, Vitali-Hahn-Saks and Nikodým convergence theorems for quasi-triangular functions, Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Natur. Rend. Lincei (9) Mat. Appl. **20** (2009), 387-396.
- F.J. FRENICHE, The Vitali-Hahn-Saks Theorem for Boolean Algebras with the Subsequential Interpolation Property, Proc. Amer. Math. Soc. **92** (13), (1984), 362-366.
- R. HAYDON, A non-reflexive Grothendieck space that does not contain I_{∞} , Israel I. Math. **40**, (1981), 65-73.
- P. KOSTYRKO, T. ŠALÁT, W. WILCZYŃSKY, *I-convergence*, Real Anal. Exchange **26** (2), (2000/2001), 669-685.
- F. NURAY, W.H. RUCKLE, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. **245**, (2000), 513-527

H. WEBER, *Boolean algebras of lattice uniformities and decompositions of modular functions*, Ricerche di Matematica **58**, (2009) 15-32 . DOI 10.1007/s11587-009-0043-3

