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Aim of this talk is to introduce modular function spaces as
defined by Kozlowoski, to present some examples and prove
admissibility of the spaces.
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Introduction

Orlicz spaces generalize Lebesgue spaces by considering
spaces of functions with some growth properties different from
the power type growth control provided by the L,-norms.
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Introduction

Orlicz spaces generalize Lebesgue spaces by considering
spaces of functions with some growth properties different from
the power type growth control provided by the L,-norms.

Further development:

o The theory of Banach function spaces [Luxemburg, Zaanen].

o The theory of modular spaces [Nakano] [Orlicz, Luxemburg]
obtained by replacing the given integral form of the nonlinear
functional which controls the growth of the functions, by an
abstract functional, the modular p.
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Introduction

Orlicz spaces generalize Lebesgue spaces by considering
spaces of functions with some growth properties different from
the power type growth control provided by the L,-norms.

Further development:

o The theory of Banach function spaces [Luxemburg, Zaanen].

o The theory of modular spaces [Nakano] [Orlicz, Luxemburg]
obtained by replacing the given integral form of the nonlinear
functional which controls the growth of the functions, by an
abstract functional, the modular p.

Here we consider a class of modular spaces given by modulars
not of a particular form but having much more convenient
properties than the abstract modulars can possess.
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Definitions and notations

[W.M. Kozlowski, Modular function spaces, 1988 |

X nonempty set - P nontrivial §-ring of subsets of X

- X the smallest o-algebra of subsets of X s.t. P C X.
Assume ENAePfor E€Pand Ac X, and X = U2 X,
where X, C Xp41 and X, € P for any n € N.
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Definitions and notations

[W.M. Kozlowski, Modular function spaces, 1988 |

X nonempty set - P nontrivial §-ring of subsets of X

- X the smallest o-algebra of subsets of X s.t. P C X.
Assume ENAePfor E€Pand Ac X, and X = U2 X,
where X, C Xp41 and X, € P for any n € N.

(W, || - ||) Banach space.

e & the linear space of all P-simple functions.

o M(X, W) the set of all measurable functions. f: X — W
measurable if s,(x) — f(x) for any x € X, with {s,} P-simple
functions
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A functional p : € x ¥ — [0, +0o0] is called a function modular
if it satisfies the following properties:
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A functional p : € x ¥ — [0, +0o0] is called a function modular

if it satisfies the following properties:

(1) p(0,E) =0 for every E € ¥,

(2) p(f,E) < p(g, E) whenever ||f(x)|| < |lg(x)|| for all x € E and
any f,g € £ (E€X),

(3) p(f,-) : £ —[0,400] is a o-subadditive measure for every

feé&
(4) p(a,A) — 0 as a € R, decreases to 0 for every A € P, where

pla, A) = sup{p(rxa,A) : re W,|r|| <a};

(5) there is ag > 0 such that supg.q p(3, A) = 0 whenever
SUPG > g pla,A) =0;

(6) p(a,-) is order continuous on P for every o > 0, that is
pla, Ap) — 0 for any sequence {A,} C P decreasing to 0.
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A functional p : € x ¥ — [0, +0o0] is called a function modular

if it satisfies the following properties:

(1) p(0,E) =0 for every E € ¥,

(2) p(f,E) < p(g, E) whenever ||f(x)|| < |lg(x)|| for all x € E and
any f,g € £ (E€X),

(3) p(f,-) : £ —[0,400] is a o-subadditive measure for every

feé&
(4) p(a,A) — 0 as a € R, decreases to 0 for every A € P, where

pla, A) = sup{p(rxa,A) : re W,|r|| <a};

(5) there is ag > 0 such that supg.q p(3, A) = 0 whenever
SUPG > g pla,A) =0;

(6) p(a,-) is order continuous on P for every o > 0, that is
pla, Ap) — 0 for any sequence {A,} C P decreasing to 0.

For f € M(X, W)

p(f, E) =sup{p(g, E) - g € €, [lg(x)|| < [[F(x)]| x € E}.
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A set E € ¥ is said to be p-null if and only if p(a, E) = 0 for
every a > 0.
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A set E € ¥ is said to be p-null if and only if p(a, E) = 0 for
every a > 0.

Then the functional p : M(X, W) — [0, +oc] defined by
p(f) = p(f, X) is a semimodular, that is

p(AF) =0 for any A > 0 iff f = 0 p-a.e.;

plaf) = p(f) if |a| =1 and f € M(X, W),
(af

+ Bg) < p(f) + p(g) if a+ 3 =1 (a,3 > 0) and
,g € M(X, W).

‘Nb
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Given the semimodular p we consider the modular space

L, ={f € M(X,W): (Af) = 0},

lim
A—0t p

and we endowed it by the F-norm

.
Hf|]p:inf{)\>0: p<)\> §)\}.
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Given the semimodular p we consider the modular space

L, ={f € M(X,W): (Af) = 0},

lim
A—0t p

and we endowed it by the F-norm

.
Hf|]p:inf{)\>0: p<)\> §)\}.

Let E, the closed subspace of L, defined by
E, = {f € M(X, W) : p(af,-) is order continuous for every o > 0}.

For any set S in E, we denote by c/S the closure of S with
respect to || - ||,. We recall that E, = c/€.
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E, = L, if and only if the function modular p satisfies the
As-condition:
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E, = L, if and only if the function modular p satisfies the
As-condition:

sup p(2fp, Ax) — 0 k — oo,
n

whenever {f,}, C M(X, W), Ax € X, Ax — () and
sup,, p(fn, Ax) — 0 as k — oc.
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Musielak-Orlicz spaces.
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Musielak-Orlicz spaces.

(X, X, 1) measure space. Let ¢ : X x Rt — R* be a
¢1-function

1. ¢(x, ) is continuous for every x € X

2. ¢(x,0) =0 for every x € X

3. ¢(x,u) — o0 as u — 0

4. ¢(-,u) is locally integrable for every u >0

5. There exists up > 0 such that ¢(-, u) > 0 for u > ug
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Musielak-Orlicz spaces.

(X, X, 1) measure space. Let ¢ : X x Rt — R* be a
¢1-function

1. ¢(x, ) is continuous for every x € X

2. ¢(x,0) =0 for every x € X

3. ¢(x,u) — o0 as u — 0

4. ¢(-,u) is locally integrable for every u >0

5. There exists up > 0 such that ¢(-, u) > 0 for u > ug

o(F,E) = /E o(x, [F(x)])d
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The function modular p satisfies the Ajx-condition iff
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The function modular p satisfies the Ajx-condition iff

Orlicz As-condition holds:
There exists K > 0 and an integrable g : X — R™ such that
for every u >0

o(x,2u) < Ko(x,u)+ g(x) p-a.e.
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A generalization of Musielak-Orlicz spaces.

M family of measures on (X, X).

p(f,E) = sup/¢ ()] du

neM
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A generalization of Musielak-Orlicz spaces.

M family of measures on (X, X).

p(f,E) = sup/¢ | (x

neM
Orlicz A5 condition + the set function

SUP/ g du
neM J(-)

is order continuous.
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Admissibility

The notion of admissibility, introduced by Klee, allows one to

approximate the identity on compact sets by finite dimensional
maps. Locally convex spaces are admissible. Not all nonlocally
convex spaces are admissible [Cauty has provided an example

of a metric linear space in which the admissibility fails].
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Admissibility

The notion of admissibility, introduced by Klee, allows one to

approximate the identity on compact sets by finite dimensional
maps. Locally convex spaces are admissible. Not all nonlocally
convex spaces are admissible [Cauty has provided an example

of a metric linear space in which the admissibility fails].

Definition

Let E be a Haudorff topological vector space. The space E is
said to be admissible if for every compact subset K of E and for
every neighborhood V of zero in E there exists a continuous
mapping H : K — E such that dim(span [H(K)]) < +o0 and

f — Hf € V for every f € K.
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Main result

The space E, is admissible.
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Main result

The space E, is admissible.

K a compact set in E, and € > 0. We consider H: K — E,
H=H.oPyoT,0F,.

1.
Set Fpf = fxx,, where X = J72; X,. Find n € N such that

sup{||Fnf — fll,: f € K} <e.

2.
Find a > 0 satisfying

sup{|| TaFnf — Faf|l,: f € K} <e.
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3. Let My = {El,...E/} N, = {Fl,..., Fm} and I, < T1,.
Define Py : Sn, — Sn,

/ m; .
Zj:’l Wi
Pk’,,s = E ——— XE;-
mj

i=1

where s = >, wixF, and E; = ijz’l Fij, with Fjj € M, for
j: 1,...,m,~.
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3. Let My = {El,...E/} N, = {Fl,..., Fm} and I, < T1,.
Define Py : Sn, — Sn,

/ m; i
Zj:l wj
Pups = 2L

m
i=1 !

where s = ijzl wixF;, and E; = ijz’l Fij, with Fjj € M, for
j: 1,...,m,~.

Q@ = {MN,} sequence of partitions of X with M, = {X} and
M <My <..M,<... Then for any k € N, define
Pr:S(Q) =U;Z; Sn; — Sn,

s if sel) Sn.
PkS = { ) Ujool !
Pins if s € U;Zki1 S0y
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For f € cl(S(Q)) such that sup{||f(x)| : x € X} < a < o0,
for any k € N, define

Pkf = lim PkSn,

{sn} € S(Q), |If — snll, — 0, the limit in the || - || ,-norm.
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For f € cl(S(Q)) such that sup{||f(x)| : x € X} < a < o0,
for any k € N, define

Pkf = lim PkSn,

{sn} € S(Q), |If — snll, — 0, the limit in the || - || ,-norm.

Let {f,} be a sequence in cl(S(Q)) and f € cl(S(Q)).
If sup{||fa(x)|| : x € X,n e N} < a < o0,
sup{[|[f(x)]| : x € X} < a< o0 and ||f — |, — O, then

Ii,r1n(sup{HPkf,, — Pif|l, : k € N}) = 0.
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Theorem

Let K, be a compact subset of E, such that
sup{[|[f(X)|| : x € X, f € K53} < a < 0.

Then there exists a sequence I, < T, < ..., < ..., which will be
denoted by Q, of partitions of X such that Ny = {X} and

K, C c(S5(Q)).

Moreover, for any € > 0 there exists k € N such that

sup{||Pxf — fll,: f € K5}) <e,

being {Px} be the sequence of operators corresponding to the
sequence of partitions Q.
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4. The space of P-simple functions generated by a given
partition of X is admissible.
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4. The space of P-simple functions generated by a given
partition of X is admissible.

Let M= {A1,---,An,} be a partition of X. Then the subspace

Sn = {se EpZS:ZW,'XAI., w; € W}
i=1

of E, is admissible.
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Proof. K a compact set in E, and ¢ > 0.
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Proof. K a compact set in E, and ¢ > 0.

1.
sup{||F.f —fl|,: f € K} <e.

sup{|| ToFaf — Fof||, : f € K} <e.
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Proof. K a compact set in E, and ¢ > 0.

1.
sup{||F.f —fl|,: f € K} <e.

sup{|| ToFaf — Fof||, : f € K} <e.

3. Considering (T, o F,)(K) we have
Sup{”PkTaan - Taan”p - fe K} <e.

4. V = (Pxo T,0Fp)(K) is a compact subset of Sp, . Let
H. : V — E, such that span[H.(V)] is finite-dimensional and

sup{||He Pk TaFof — Pk ToF,fll, : f € K} <e.
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Now we consider
H=H.oP,oT,0F,.

We have dim[span[H(K)] < co. Moreover, by the above
facts, forany f € K

|f — Hf||, <e.

and the admissibility of E, is proved.
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Let T : L, — E, be a compact and continuous mapping. Then
there exists f € E, such that Tf = f.
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