Absolute continuity of non-additive measures and applications to function spaces

Paola Cavaliere

University of Salerno

6th Conference on IVMRT

Quasi-triangular functions

- \[
 \mathcal{R}\] is a Boolean ring,
- $\mathcal{S} = (S, \tau)$ is a **Hausdorff topological space**

Definition

Let $\eta: \mathcal{R} \to \mathcal{S}$.

Quasi-triangular functions

- R is a Boolean ring,
- $\mathcal{S} = (S, \tau)$ is a **Hausdorff topological space**

Definition

Let $\eta: \mathcal{R} \to \mathcal{S}$.

$$\eta \text{ is quasi-triangular IFF} \begin{cases} \forall U \in \tau[\eta(0)] \;\; \exists V = V(U) \in \tau[\eta(0)] \;\; s.t. \\ \forall a,b \in \mathcal{R}, \;\; a \wedge b = 0 : \\ \eta(a),\, \eta(b) \in V \implies \eta(a \vee b) \in U; \\ \eta(a),\, \eta(a \vee b) \in V \implies \eta(b) \in U. \end{cases}$$

[Klimkin-Sribnaya, 1997]

Quasi-triangular functions

- R is a Boolean ring,
- $\mathcal{S} = (S, \tau)$ is a **Hausdorff topological space**

Definition

Let $\eta: \mathcal{R} \to \mathcal{S}$.

$$\eta \text{ is quasi-triangular IFF} \begin{cases} \forall U \in \tau[\eta(0)] \ \exists V = V(U) \in \tau[\eta(0)] \ s.t. \\ \forall a,b \in \mathcal{R}, \ a \land b = 0: \\ \eta(a),\, \eta(b) \in V \implies \eta(a \lor b) \in U; \\ \eta(a),\, \eta(a \lor b) \in V \implies \eta(b) \in U. \end{cases}$$

[Klimkin-Sribnaya, 1997]

Clearly

classical measures on σ -algebras are quasi-triangular

2 / 18

The class of quasi-triangular functions also encompasses

1 k-triangular functions, $k \ge 1$, i.e. each $\eta: \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and

(
$$T_k$$
) $\eta(a) - k\eta(b) \le \eta(a \lor b) \le \eta(a) + k\eta(b)$
for all $a, b \in \mathcal{R}$, $a \land b = 0$.

[Guselńikov, H.Weber, Saeki, Pap ,.....]

The class of quasi-triangular functions also encompasses

1 k-triangular functions, $k \ge 1$, i.e. each $\eta : \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and

(
$$\mathcal{T}_k$$
) $\eta(a) - k\eta(b) \le \eta(a \lor b) \le \eta(a) + k\eta(b)$
for all $a, b \in \mathcal{R}$, $a \land b = 0$.

[Guselńikov, H.Weber, Saeki, Pap ,.....]

2 \oplus -decomposable functions, *i.e.* each $\eta: \mathcal{R} \to [0,1]$ fulfilling $\eta(0) = 0$ and

(wA)
$$\eta(a \lor b) = \eta(a) \oplus \eta(b)$$
 for all $a, b \in \mathcal{R}$, $a \land b = 0$,

where \oplus is a **t-conorm** on [0,1] **continuous at** 0.

A **t-conorm** \oplus on [0,1] is an internal composition law on [0,1], commutative, associative and increasing at each place with 0 as neutral element.

T-conorms continuous at 0 are, for instance, $\bigoplus_{\infty} (x, y) := \max\{x, y\}$, $\bigoplus_{x} (x, y) := \{x^p + y^p\}^{\frac{1}{p}} \text{ for } p > 0 \text{ and } \bigoplus_{x} (x, y) := x + y - xy.$

3 quasi-sub-measures, i.e. each $\eta: \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and for some $C_1, C_2 > 1$

(qM)
$$\eta(a) \leq C_1 \eta(b)$$
 for all $a, b \in \mathcal{R}$, $a \leq b$,

(qSA)
$$\eta(a \vee b) \leq C_2(\eta(a) + \eta(b))$$
 for all $a, b \in \mathcal{R}$, $a \wedge b = 0$.

3 quasi-sub-measures, i.e. each $\eta: \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and for some $C_1, C_2 > 1$

(qM)
$$\eta(a) \leq C_1 \eta(b)$$
 for all $a, b \in \mathcal{R}$, $a \leq b$,

(qSA)
$$\eta(a \lor b) \le C_2(\eta(a) + \eta(b))$$
 for all $a, b \in \mathcal{R}$, $a \land b = 0$.

Examples:

 $\mathcal{L}:=\sigma$ -algebra of the Lebesgue measurable subsets of \mathbb{R}^n

 $\lambda :=$ Lebesgue measure on \mathcal{L}

3 quasi-sub-measures, *i.e.* each $\eta:\mathcal{R}\to [0,\infty]$ fulfilling $\eta(0)=0$ and for some $\mathcal{C}_1,\mathcal{C}_2\geq 1$

(qM)
$$\eta(a) \leq C_1 \eta(b)$$
 for all $a, b \in \mathcal{R}$, $a \leq b$,

(qSA)
$$\eta(a \vee b) \leq C_2(\eta(a) + \eta(b))$$
 for all $a, b \in \mathcal{R}$, $a \wedge b = 0$.

Examples:

 $\mathcal{L}:=\sigma$ -algebra of the Lebesgue measurable subsets of \mathbb{R}^n

 $\lambda :=$ Lebesgue measure on \mathcal{L}

$$\blacktriangleright \ \eta : A \in \mathcal{L} \to \left\{ \begin{aligned} \lambda(A) & \text{if} \quad \lambda(A) \leq 1, \\ \lambda(A) - \frac{1}{2} & \text{if} \quad \lambda(A) > 1. \end{aligned} \right.$$

3 quasi-sub-measures, i.e. each $\eta: \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and for some $C_1, C_2 > 1$

(qM)
$$\eta(a) \leq C_1 \eta(b)$$
 for all $a, b \in \mathcal{R}$, $a \leq b$,

(qSA)
$$\eta(a \lor b) \le C_2(\eta(a) + \eta(b))$$
 for all $a, b \in \mathcal{R}$, $a \land b = 0$.

Examples:

 $\mathcal{L}:=\sigma$ -algebra of the Lebesgue measurable subsets of \mathbb{R}^n

 $\lambda :=$ Lebesgue measure on \mathcal{L}

$$\blacktriangleright \eta: A \in \mathcal{L} \to \begin{cases} \lambda(A) & \text{if} \quad \lambda(A) \leq 1, \\ \lambda(A) - \frac{1}{2} & \text{if} \quad \lambda(A) > 1. \end{cases}$$

It fails to be monotone, sub-additive and even k-triangular

3 quasi-sub-measures, i.e. each $\eta: \mathcal{R} \to [0, \infty]$ fulfilling $\eta(0) = 0$ and for some $C_1, C_2 > 1$

$$(qM) \quad \eta(a) \leq C_1 \ \eta(b) \text{ for all } a, b \in \mathcal{R}, \ a \leq b,$$

$$(qSA) \quad \eta(a \lor b) \leq C_2(\eta(a) + \eta(b)) \text{ for all } a, b \in \mathcal{R}, \ a \land b = 0.$$

Examples:

 $\mathcal{L}:=\sigma$ -algebra of the Lebesgue measurable subsets of \mathbb{R}^n

 $\lambda :=$ Lebesgue measure on \mathcal{L}

$$\blacktriangleright \eta: A \in \mathcal{L} \to \begin{cases} \lambda(A) & \text{if} \quad \lambda(A) \leq 1, \\ \lambda(A) - \frac{1}{2} & \text{if} \quad \lambda(A) > 1. \end{cases}$$

It fails to be monotone, sub-additive and even k-triangular

$$ho$$
 $\eta=\lambda^p$ and $\eta=(1+\lambda)^p\left(\log(1+\lambda)\right)^{lpha}$ for all $p>0$, $lpha\geq 0$

- $ightharpoonup \mathcal{A}$ is a σ -complete Boolean algebra,
- ν , $\eta: \mathcal{A} \to [0, +\infty]$ are σ -additive functions s.t. $\nu(0) = \eta(0) = 0$.

- $ightharpoonup \mathcal{A}$ is a σ -complete Boolean algebra.
- ν , $\eta: \mathcal{A} \to [0, +\infty]$ are σ -additive functions s.t. $\nu(0) = \eta(0) = 0$.

Notions of Absolute Continuity of ν with respect to η

(1) 0-continuity of
$$\nu$$
 with respect to η
$$\eta(a) = 0 \text{ for } a \in \mathcal{A} \implies \nu(a) = 0;$$

- $ightharpoonup \mathcal{A}$ is a σ -complete Boolean algebra.
- ν , $\eta: \mathcal{A} \to [0, +\infty]$ are σ -additive functions s.t. $\nu(0) = \eta(0) = 0$.

Notions of Absolute Continuity of ν with respect to η

- (1) **0**-continuity of ν with respect to η n(a) = 0 for $a \in \mathcal{A} \implies \nu(a) = 0$;
- (II) (ε, δ) -continuity of ν with respect to η $\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad \eta(a) < \delta \text{ for } a \in \mathcal{A} \implies \nu(a) < \varepsilon.$

Convention: $\nu \ll \eta$ for (1), ν [AC] η for (II)

- \triangleright \mathcal{A} is a σ -complete Boolean algebra,
- ν , $\eta: \mathcal{A} \to [0, +\infty]$ are σ -additive functions s.t. $\nu(0) = \eta(0) = 0$.

Notions of Absolute Continuity of ν with respect to η

- (1) **0**-continuity of ν with respect to η $\eta(a) = 0$ for $a \in \mathcal{A} \implies \nu(a) = 0$;
- (II) (ε, δ) -continuity of ν with respect to η $\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad \eta(a) < \delta \text{ for } a \in \mathcal{A} \implies \nu(a) < \varepsilon.$

Convention:
$$\nu \ll \eta$$
 for (/), ν [AC] η for (//)

Theorem (Relationship between « and [AC])

- $\triangleright \quad \nu \ [AC] \ \eta \implies \nu \ll \eta \ .$
- For finite $\nu: \nu$ [AC] $\eta \leftarrow \nu \ll \eta$.

For notions

(/)
$$\nu \ll \eta$$
 i.e. $\eta(a) = 0$ for $a \in \mathcal{A} \implies \nu(a) = 0$;

(//)
$$\nu[AC] \ \eta$$
 i.e. $\forall \varepsilon > 0 \ \exists \delta > 0: \ \eta(a) < \delta \Longrightarrow \nu(a) < \varepsilon;$

IT SUFFICES that

(*) $\nu, \eta: \mathcal{A} \to [0, +\infty]$ are non-decreasing, and σ -completeness for \mathcal{A} is unimportant.

For notions

(1)
$$\nu \ll \eta$$
 i.e. $\eta(a) = 0$ for $a \in \mathcal{A} \implies \nu(a) = 0$;

(//)
$$\nu[AC] \eta$$
 i.e. $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \eta(a) < \delta \Longrightarrow \nu(a) < \varepsilon;$

IT SUFFICES that

(*) $\nu, \eta: \mathcal{A} \to [0, +\infty]$ are non-decreasing, and σ -completeness for \mathcal{A} is unimportant.

On defining the kernel of ν as

$$\mathcal{N}(\nu) := \left\{ a \in \mathcal{A} : \nu(a) = 0 \right\},$$

clearly

(1)
$$\iff$$
 $\mathcal{N}(\eta) \subseteq \mathcal{N}(\nu)$

Finitely additive functions having values in topological groups

- \triangleright \mathcal{R} is a Boolean ring, $\mathcal{G} = (G, \tau)$ is a topological group
- $\nu: \mathcal{R} \to \mathcal{G}$ is finitely additive

Finitely additive functions having values in topological groups

- \triangleright \mathcal{R} is a Boolean ring, $\mathcal{G} = (G, \tau)$ is a topological group
- $\nu: \mathcal{R} \to \mathcal{G}$ is finitely additive

The kernel of ν is now defined by

$$\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) \subseteq \overline{\{0\}}^{\tau} \right\}$$

where $[0, a] = \{x \in \mathcal{R} : 0 \le x \le a\}.$

Finitely additive functions having values in topological groups

- \triangleright \mathcal{R} is a Boolean ring, $\mathcal{G} = (G, \tau)$ is a **topological group**
- $u : \mathcal{R} \to \mathcal{G}$ is finitely additive

The kernel of u is now defined by

$$\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) \subseteq \overline{\{0\}}^{\tau} \right\}$$

where $[0, a] = \{x \in \mathcal{R} : 0 \le x \le a\}.$

When
$$\mathcal G$$
 is **Hausdorff**, $\mathcal N(\nu) = \left\{ a \in \mathcal R : \nu([0,a]) = \{0\} \right\}.$

Finitely additive functions having values in topological groups

- \triangleright \mathcal{R} is a Boolean ring, $\mathcal{G} = (G, \tau)$ is a topological group
- $\nu: \mathcal{R} \to \mathcal{G}$ is finitely additive

The kernel of ν is now defined by

$$\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) \subseteq \overline{\{0\}}^{\tau} \right\}$$

where $[0, a] = \{x \in \mathcal{R} : 0 \le x \le a\}.$

 $\mathcal{N}(\nu) = \Big\{ a \in \mathcal{R} : \nu([0,a]) = \{0\} \Big\}.$ \triangleright When $\mathcal G$ is **Hausdorff**,

For finitely additive $\eta: \mathcal{R} \to \mathcal{G}'$, where $\mathcal{G}' = (\mathcal{G}', \tau')$ is a top. group

$$(I) \qquad \stackrel{\textit{def}}{\Longleftrightarrow} \qquad \mathcal{N}(\eta) \subseteq \mathcal{N}(\nu)$$

- \mathcal{R} is a Boolean **ring**
- $\nu:\mathcal{R} o\mathcal{S}$ and $\eta:\mathcal{R} o\mathcal{S}'$ are quasi-triangular where $S = (S, \tau)$ and $S' = (S', \tau')$ are Haus. topol. spaces

- \mathcal{R} is a Boolean **ring**
- $\nu:\mathcal{R} o\mathcal{S}$ and $\eta:\mathcal{R} o\mathcal{S}'$ are quasi-triangular where $S = (S, \tau)$ and $S' = (S', \tau')$ are Haus. topol. spaces

The kernel of
$$\nu$$
 is defined by $\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) = \{\nu(0)\} \right\}$.

- \triangleright \mathcal{R} is a Boolean **ring**
- $m{
 u}:\mathcal{R}
 ightarrow\mathcal{S}$ and $\eta:\mathcal{R}
 ightarrow\mathcal{S}'$ are quasi-triangular where $S = (S, \tau)$ and $S' = (S', \tau')$ are Haus. topol. spaces

The kernel of ν is defined by $\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) = \{\nu(0)\} \right\}$.

Notions of Absolute Continuity of ν with respect to η

(1)
$$\nu \ll \eta \qquad \stackrel{\textit{def}}{\Longleftrightarrow} \qquad \mathcal{N}(\eta) \subseteq \mathcal{N}(\nu)$$

(//)
$$\nu$$
 [AC] η $\stackrel{\text{def}}{\Longleftrightarrow}$ $\begin{cases} \forall U \in \tau[\nu(0)] \ \exists V \in \tau'[\eta(0)] \ s.t. \\ \eta([0,a]) \subseteq V \implies \nu([0,a]) \subseteq U \end{cases}$

- \triangleright \mathcal{R} is a Boolean **ring**
- $\nu: \mathcal{R} \to \mathcal{S}$ and $\eta: \mathcal{R} \to \mathcal{S}'$ are quasi-triangular where $S = (S, \tau)$ and $S' = (S', \tau')$ are Haus. topol. spaces

The kernel of
$$\nu$$
 is defined by $\mathcal{N}(\nu) := \left\{ a \in \mathcal{R} : \nu([0, a]) = \{\nu(0)\} \right\}$.

Notions of Absolute Continuity of ν with respect to η

(1)
$$u \ll \eta \qquad \stackrel{\textit{def}}{\Longleftrightarrow} \qquad \mathcal{N}(\eta) \subseteq \mathcal{N}(\nu)$$

(//)
$$\nu$$
 [AC] η $\stackrel{\text{def}}{\Longleftrightarrow}$ $\begin{cases} \forall U \in \tau[\nu(0)] \ \exists V \in \tau'[\eta(0)] \ s.t. \\ \eta([0,a]) \subseteq V \implies \nu([0,a]) \subseteq U \end{cases}$

Clearly

$$\nu$$
 [AC] $\eta \implies \nu \ll \eta$

Conditions for $\nu \ll \eta \implies \nu$ [AC] η

An improvement of the quoted classical result

Theorem (D.Mitrea-I.Mitrea-M.Mitrea-Ziade, J. Funct. Anal. 2012)

$$\nu \ll \eta$$

for

- ightharpoonup dom $(\nu)=$ dom $(\eta)=:\mathcal{A}$ σ -algebra
- $\triangleright \nu: \mathcal{A} \to [0, +\infty[$, s.t. $\nu(0) = 0$, σ -additive

Conditions for $\nu \ll n \implies$

An improvement of the quoted classical result

Theorem (D.Mitrea-I.Mitrea-M.Mitrea-Ziade, J. Funct. Anal. 2012)

$$\nu \ll \eta$$

for

- $ightharpoonup dom(\nu) = dom(\eta) =: \mathcal{A} \quad \sigma$ -algebra
- $\triangleright \nu: \mathcal{A} \to [0, +\infty[$, s.t. $\nu(0) = 0$, σ -additive
- $\mathbf{n}: \mathcal{A} \to [0, +\infty], \text{ s.t. } \eta(0) = 0, \text{ quasi-monotone } \& \text{ quasi-subadditive}$

Conditions for $\nu \ll n \implies \nu$ [AC]

An improvement of the quoted classical result

Theorem (D.Mitrea-I.Mitrea-M.Mitrea-Ziade, J. Funct. Anal. 2012)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$

for

- $ightharpoonup dom(\nu) = dom(\eta) =: \mathcal{A} \quad \sigma$ -algebra
- $\triangleright \nu$: $\mathcal{A} \to [0, +\infty[$, s.t. $\nu(0) = 0$, σ -additive
- $\mathbf{n}: \mathcal{A} \to [0, +\infty], \text{ s.t. } \eta(0) = 0, \text{ quasi-monotone } \& \text{ quasi-subadditive}$

Conditions for $\nu \ll \eta \implies \nu$ [AC] η

An improvement of the quoted classical result

Theorem (D.Mitrea-I.Mitrea-M.Mitrea-Ziade, J. Funct. Anal. 2012)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

for

- $ightharpoonup dom(\nu) = dom(\eta) =: \mathcal{A} \quad \sigma$ -algebra
- $\triangleright \nu: \mathcal{A} \to [0, +\infty[$, s.t. $\nu(0) = 0$, σ -additive
- $\mathbf{n}: \mathcal{A} \to [0, +\infty], \text{ s.t. } \eta(0) = 0, \text{ quasi-monotone } \& \text{ quasi-subadditive}$

Main ingredients of 3M+Z's proof

Capacitary estimates on 'semigroupoids' in order to prove

• "some $C \geq 1$ and $\beta \in [0, (\log_2 C)^{-1}]$ exist such that

$$\frac{\eta(\vee_{i=1}^n d_i)}{2} \leq C^2 \left(\sum_{i=1}^n \frac{\eta^{\beta}(d_i)}{2}\right)^{1/\beta}$$
(1)

for every disjoint $\{d_i: i=1,\cdots,n\}\subset\mathcal{A}^n$

Note that in

Theorem (3M+Z)

$$u \ll {\color{red} \eta} \qquad \Longrightarrow \qquad \nu \ [{\sf AC}] \ {\color{red} \eta} \ ,$$

for

- $dom(\nu) = dom(\eta) =: \mathcal{A} \quad \sigma$ -algebra
- $\nu: \mathcal{A} \to [0, +\infty[$, s.t. $\nu(0) = 0$, σ -additive
- $\eta: \mathcal{A} \to [0, +\infty]$, s.t. $\eta(0) = 0$, quasi-monotone & quasi-subadditive

for $\eta: A \to [0, +\infty]$ finitely additive, the crucial estimate

$$\eta(\vee_{i=1}^n d_i) \leq C^2 \left(\sum_{i=1}^n \eta^{\beta}(d_i)\right)^{1/\beta}$$
 for disjoint $\{d_i : i=1,\cdots,n\} \subset \mathcal{A}$

does hold with $C = \beta = 1$.

3M+Z's Theorem for group-valued f.a. functions

For

- \triangleright \mathcal{A} σ -complete Boolean algebra,
- $\nu: \mathcal{A} \to \mathcal{G}$ σ -additive, with $\mathcal{G} = (G, \tau)$ a topological group
- ho $\eta: A
 ightarrow \mathcal{G}'$ σ -additive, with $\mathcal{G}' = (G', \tau')$ a topological group

the implication " $\nu \ll \eta \implies \nu$ [AC] η " FAILS

unless additional assumptions on η are made.

<u>3M+Z's Theorem for group-valued f.a. functions</u>

For

- \triangleright \mathcal{A} σ -complete Boolean algebra,
- $\nu: \mathcal{A} \to \mathcal{G}$ σ -additive, with $\mathcal{G} = (G, \tau)$ a topological group
- ho $\eta: A
 ightarrow \mathcal{G}'$ σ -additive, with $\mathcal{G}' = (G', \tau')$ a topological group

the implication "
$$u \ll \eta \implies \nu$$
 [AC] η " FAILS unless additional assumptions on η are made.

Known results

"
$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
" HOLDS when

▶ **G'** is **pseudometrizable** [Traynor, Canad. Math. Bull., 1973]

3M+Z's Theorem for group-valued f.a. functions

For

- \triangleright \mathcal{A} σ -complete Boolean algebra,
- $\nu: \mathcal{A} \to \mathcal{G}$ σ -additive, with $\mathcal{G} = (G, \tau)$ a topological group
- ho n: A
 ightarrow G' σ -additive, with $G' = (G', \tau')$ a topological group

the implication "
$$u \ll \eta \implies \nu$$
 [AC] η " FAILS unless additional assumptions on η are made.

Known results

"
$$\nu \ll \eta \implies \nu$$
 [AC] η " HOLDS when

▶ **G'** is **pseudometrizable** [Traynor, Canad. Math. Bull., 1973]

or

Each disjoint family in $A \setminus \mathcal{N}(\eta)$ is countable [Lipecki, Colloquium Math., 1974]

REMARK

An analysis of Traynor's and Lipecki's arguments displays that, for groupvalued functions, the validity of the implication

"
$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$
"

requires a 'good' behaviour of $\mathcal{N}(\eta)$,

REMARK

An analysis of Traynor's and Lipecki's arguments displays that, for groupvalued functions, the validity of the implication

"
$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$
"

requires a 'good' behaviour of $\mathcal{N}(\eta)$, that is

$$\mathcal{N}(\eta) = \left\{ a \in \mathcal{A} : \eta([0, a]) \subseteq \bigcap_{n \in \mathbb{N}} U_n \right\}$$
 (2)

for some sequence $(U_n)_{n\in\mathbb{N}}$ in $\tau'[0']$.

REMARK

An analysis of Traynor's and Lipecki's arguments displays that, for groupvalued functions, the validity of the implication

"
$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$
"

requires a 'good' behaviour of $\mathcal{N}(\eta)$, that is

$$\mathcal{N}(\mathbf{\eta}) = \left\{ a \in \mathcal{A} : \mathbf{\eta}([0, a]) \subseteq \bigcap_{n \in \mathbb{N}} U_n \right\}$$
 (2)

for some sequence $(U_n)_{n\in\mathbb{N}}$ in $\tau'[0']$.

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

when

- 1 $dom(\nu) = dom(\eta) =: \mathcal{R}$ is a σ -ring
- $\rho : \mathcal{R} \to \mathcal{G}$ is σ -additive

REMARK

An analysis of Traynor's and Lipecki's arguments displays that, for groupvalued functions, the validity of the implication

"
$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$
"

requires a 'good' behaviour of $\mathcal{N}(\eta)$, that is

$$\mathcal{N}(\eta) = \left\{ a \in \mathcal{A} : \eta([0, a]) \subseteq \bigcap_{n \in \mathbb{N}} U_n \right\}$$
 (2)

for some sequence $(U_n)_{n\in\mathbb{N}}$ in $\tau'[0']$.

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

- 1 $dom(\nu) = dom(\eta) =: \mathcal{R}$ is a σ -ring
- ρ $\nu: \mathcal{R} \to \mathcal{G}$ is σ -additive
- 3 $\eta: \mathcal{R} \to \mathcal{G}'$ is finitely additive & fulfils (2)

$$\nu \ll \eta \implies \nu \text{ [AC] } \eta$$

1
$$dom(\nu) = dom(\eta) =: \mathcal{R}$$
 is a σ -ring

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$

- 1 $dom(\nu) = dom(\eta) =: \mathcal{R}$ is a σ -ring
- $\mathbf{2} \quad \nu \colon \mathcal{R} \to \mathcal{S}$ is quasi-triangular

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

- 1 $dom(\nu) = dom(\eta) =: \mathcal{R}$ is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- $\mathbf{Q} \quad \nu \colon \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$u \ll \eta \implies \nu \text{ [AC] } \eta$$
 ,

when

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)

Recall that

$$u$$
 is order-continuous $\stackrel{def}{\Longleftrightarrow} \begin{cases} \forall (b_k)_{k \in \mathbb{N}} \subset \mathcal{R} & \text{decreasing to } 0: \\ \lim_k \nu(b_k) = \nu(0) \end{cases}$

Theorem (C.- de Lucia - De Simone, Funct. Approx., 2014)

$$u \, \ll \, \eta \qquad \Longrightarrow \qquad
u \, \, [{\sf AC}] \, \, \eta \, \, ,$$

when

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)

Recall that

$$u$$
 is order-continuous $\stackrel{def}{\Longleftrightarrow} \begin{cases} \forall (b_k)_{k \in \mathbb{N}} \subset \mathcal{R} & \text{decreasing to } 0: \\ \lim_k \nu(b_k) = \nu(0) \end{cases}$

The main idea of the proof is.....

.... to exhibit a link between quasi-triangular functions and group-valued finitely additive functions

In Financial Mathematics this is called "additivization of non-additive measures" (see, e.g., [Gilboa, 1989])

.... to exhibit a link between quasi-triangular functions and group-valued finitely additive functions

In Financial Mathematics this is called "additivization of non-additive measures" (see, e.g., [Gilboa, 1989])

.... Fréchet-Nikodým topologies

[Drewnowski (1970), Musial, Lipecki, Traynor, H.Weber....]

.... to exhibit a link between quasi-triangular functions and group-valued finitely additive functions

In Financial Mathematics this is called "additivization of non-additive measures" (see, e.g., [Gilboa, 1989])

.... Fréchet-Nikodým topologies

[Drewnowski (1970), Musial, Lipecki, Traynor, H.Weber....]

A finitely additive function $\mu: \mathcal{R} \to [0, +\infty[$, where \mathcal{R} is a ring, induces a pseudometric on \mathcal{R} , that is

$$d_{\mu}: (a,b) \in \mathcal{R} \times \mathcal{R} \longmapsto \mu(a \triangle b) \in [0,+\infty[.$$

Denoted as Γ_{μ} the topology induced by d_{μ} on \mathcal{R} , then

- i) $(\mathcal{R}, \triangle, \Gamma_{\mu})$ is a topological group
- ii) Functions $a \in \mathcal{R} \longmapsto a \land x \in \mathcal{R}$ are Γ_{μ} -continuous, uniformly with respect to $x \in \mathcal{R}$.

Every topology Γ on \mathcal{R} obeying i)-ii) is called an FN-topology.

Sketch of the proof of quasi-triangular 3M+Z's Th.

1 Each quasi-triangular function η acting on a Boolean ring \mathcal{R} induces an FN-topology Γ_{η} on \mathcal{R} .

[C. - de Lucia, Commun. Appl. Anal., 2009]

Sketch of the proof of quasi-triangular 3M+Z's Th.

1 Each quasi-triangular function η acting on a Boolean ring \mathcal{R} induces an FN-topology Γ_n on \mathcal{R} .

[C. - de Lucia, Commun. Appl. Anal., 2009]

2 Let ν and η be quasi-triangular functions, acting on the same Boolean ring \mathcal{R} .

```
If \Gamma_{\nu} = \Gamma_{n}, then \nu[AC]_{\eta} \& \eta[AC]_{\nu}.
                                    [C. - de Lucia, Commun. Appl. Anal., 2009]
```

Sketch of the proof of quasi-triangular 3M+Z's Th.

1 Each quasi-triangular function η acting on a Boolean ring \mathcal{R} induces an FN-topology Γ_{η} on \mathcal{R} .

[C. - de Lucia, Commun. Appl. Anal., 2009]

2 Let ν and η be quasi-triangular functions, acting on the same Boolean ring \mathcal{R} .

```
If \Gamma_{\nu} = \Gamma_{\eta}, then \nu[AC]_{\eta} \& \eta[AC]_{\nu}.

[C. - de Lucia, Commun. Appl. Anal., 2009]
```

(3) If ν is a quasi-triangular [& order-continuous] function, acting on a Boolean ring \mathcal{R} , then there exists a finitely $[\sigma$ -] additive function ν^* : $\mathcal{R} \to \mathcal{G}$, with \mathcal{G} a topological group, such that $\nu[\mathsf{AC}]\nu^*$ & $\nu^*[\mathsf{AC}]\nu$ ($\nu\sim\nu^*$, for short). [C. - de Lucia, Atti Accad. Naz. Lincei, 2009]

- $dom(\nu) = dom(\eta) =: \mathcal{R}$ is a σ -ring
- $\nu \colon \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)
- $\Phi \nu \ll \eta$

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)
- $\Phi \nu \ll \eta$

- 1 dom(ν^*) = dom(η^*) =: \mathcal{R} is a σ -ring
- $\nu^*: \mathcal{R} \to \mathcal{G}$ is σ -additive
- 3 η^* : $\mathcal{R} \to \mathcal{G}'$ is finitely additive & fulfils (2)

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)
- $\Phi \nu \ll \eta$

- 1 dom(ν^*) = dom(η^*) =: \mathcal{R} is a σ -ring
- $\nu^*: \mathcal{R} \to \mathcal{G}$ is σ -additive
- 3 η^* : $\mathcal{R} \to \mathcal{G}'$ is finitely additive & fulfils (2)

$$u^*$$
 [AC] η^*

- 1 dom(ν) = dom(η) =: \mathcal{R} is a σ -ring
- 2 $\nu: \mathcal{R} \to \mathcal{S}$ is quasi-triangular & order-continuous
- 3 $\eta: \mathcal{R} \to \mathcal{S}'$ is quasi-triangular & fulfils (2)
- $\Phi \nu \ll \eta$

- 1 dom (ν^*) = dom (η^*) =: \mathcal{R} is a σ -ring
- $\nu^*: \mathcal{R} \to \mathcal{G}$ is σ -additive
- 3 η^* : $\mathcal{R} \to \mathcal{G}'$ is finitely additive & fulfils (2)

$$u^*$$
 [AC] η^*

$$\bigvee \nu \sim \nu^* \& \eta^* \sim \eta$$

$$\nu$$
 [AC] η .

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

Theorem (C.- de Lucia - De Simone, in preparation)

X(E) solid Riesz subspace of $L^0(E)$,

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

Theorem (C.- de Lucia - De Simone, in preparation)

X(E) solid Riesz subspace of $L^0(E)$, with (E, Σ, μ) σ -finite,

Let (E, Σ, μ) be a measure space, and $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

Theorem (C.- de Lucia - De Simone, in preparation)

X(E) solid Riesz subspace of $L^0(E)$, with (E, Σ, μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- ▶ $\|\cdot\|^*: X(E) \to [0, \infty[$ quasi triangular

Let (E, Σ, μ) be a measure space, and $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{\kappa_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\|\cdot\|^*: X(E) \to [0, \infty[$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]])$ $\|\alpha f\|^* < \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[$, $f \in X(E)$,

Let (E, Σ, μ) be a measure space, and $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\|\cdot\|^*: X(E) \to [0, \infty[$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]])$ $\|\alpha f\|^* < \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[$, $f \in X(E)$,
 - \rightarrow $||f||^* > 0$ if f does not vanishes a.e.;

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\|\cdot\|^*: X(E) \to [0, \infty[$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]])$ $\|\alpha f\|^* < \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[$, $f \in X(E)$,
 - \rightarrow $||f||^* > 0$ if f does not vanishes a.e.;
 - \rightarrow for any $\lambda > 0$ there is $r_{\lambda} > 0$ s.t. if $f, g \in X(E)$, $|g| <_{a} |f|$ $||f||^* < r_\lambda \implies ||g||^* < \lambda$

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

Theorem (C.- de Lucia - De Simone, in preparation)

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\|\cdot\|^*: X(E) \to [0, \infty[$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]])$ $\|\alpha f\|^* < \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[$, $f \in X(E)$,
 - \rightarrow $||f||^* > 0$ if f does not vanishes a.e.;
 - \rightarrow for any $\lambda > 0$ there is $r_{\lambda} > 0$ s.t. if $f, g \in X(E)$, $|g| <_{a} |f|$ $||f||^* < r_\lambda \implies ||g||^* < \lambda$

Then

$$(X(E), \tau_{\parallel \cdot \parallel \star})$$

 $L^0(E)$:= Riesz space of all (μ -equiv. classes of) measurable $f: E \to \mathbb{R}$.

Theorem (C.- de Lucia - De Simone, in preparation)

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\|\cdot\|^*: X(E) \to [0,\infty[$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]])$ $\|\alpha f\|^* < \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[$, $f \in X(E)$,
 - \rightarrow $||f||^* > 0$ if f does not vanishes a.e.;
 - \rightarrow for any $\lambda > 0$ there is $r_{\lambda} > 0$ s.t. if $f, g \in X(E)$, $|g| <_{a} |f|$ $||f||^* < r_\lambda \implies ||g||^* < \lambda$

Then

$$(X(E), \tau_{\parallel,\parallel\star}) \hookrightarrow (L^0(E), \tau_{\mu})$$

Corollary (C.- de Lucia - De Simone)

- ▶ X(E) solid Riesz subspace of $L^0(E)$, with (E, Σ, μ) σ -finite, s.t. $\chi_{\kappa_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $\blacktriangleright \|\cdot\|^\star: X(E) \to [0,\infty[$ quasi triangular obeying the following
 - there exists a function $\omega : [0, +\infty[\to [0, +\infty[, \omega(0) = 0, s.t.]]]$ $\|\alpha f\|^* \le \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[, f \in X(E),]]$
 - $\rightarrow \|f\|^* > 0$ if f does not vanishes a.e.;
 - $\text{for any } \lambda > \mathbf{0} \text{ there is } r_{\lambda} > \mathbf{0} \text{ s.t. if } f, g \in X(E), |g| \leq_{\text{a.e.}} |f|$ $||f||^{\star} < r_{\lambda} \implies ||g||^{\star} < \lambda$

If $(f_n)_{n\in\mathbb{N}}\subset X(E)$ converges to an $f\in X(E)$, then every $(f_{n_k})_{k\in\mathbb{N}}$ admits a subsequence converging to f μ -a.e. in E.

Corollary (C.- de Lucia - De Simone)

- \blacktriangleright X(E) solid Riesz subspace of L⁰(E), with (E, Σ , μ) σ -finite, **s.t.** $\chi_{K_i} \in X(E)$ for all j, where $\mu(K_j) < \infty$ and $K_j \nearrow E$
- $|\cdot| | \cdot | | \star : X(E) \to [0, \infty]$ quasi triangular obeying the following
 - \rightarrow there exists a function $\omega: [0, +\infty[\rightarrow [0, +\infty[, \omega(0) = 0, s.t.]]]$ $\|\alpha f\|^* \leq \omega(\alpha) \|f\|^*$ for all $\alpha \in [0, \infty[, f \in X(E),$
 - $\rightarrow \|f\|^* > 0$ if f does not vanishes a.e.;
 - \rightarrow for any $\lambda > 0$ there is $r_{\lambda} > 0$ s.t. if $f, g \in X(E)$, $|g| \leq_{\lambda} |f|$ $||f||^* < r_\lambda \implies ||g||^* < \lambda$

If $(f_n)_{n\in\mathbb{N}}\subset X(E)$ converges to an $f\in X(E)$, then every $(f_{n_k})_{k\in\mathbb{N}}$ admits a subsequence converging to f μ -a.e. in E.

The converse holds when $\|\cdot\|^*$ is order-continuous.