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Henstock integral for real valued functions

[0, 1] is the unit interval of the real line

L denotes the family of all Lebesgue measurable subsets of
[0, 1] and if A ∈ L, then |A| denotes its Lebesgue measure.

I denotes the family of all nontrivial closed subintervals of
[0, 1]

A partition of [0, 1] is a finite collection of pairs
P = {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are non
overlapping intervals of I, tj ∈ [0, 1], j = 1, . . . , p, and
∪pj=1Ij = [0, 1]. If tj ∈ Ij , j = 1, . . . , p we say that P is a
Perron partition of [0, 1]

A gauge on [0, 1] is a positive function on [0, 1]

Given a gauge δ, a partition {(I1, t1), . . . , (Ip, tp)} is said to be
δ-fine if Ij ⊂ (tj − δ(tj), tj + δ(tj)), j = 1, . . . , p.
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Definition

A function h : [0, 1]→ R is said to be
Henstock-Kurzweil-integrable, or simply HK-integrable, on
[0, 1] if there exists a ∈ R with the following property: for every
ε > 0 there exists a gauge δ on [0, 1] such that∣∣∣∣∣∣

p∑
j=1

h(tj)|Ij| − a

∣∣∣∣∣∣ < ε , (1)

for each δ–fine Perron partition {(Ij , tj) : j = 1, .., p} of [0, 1].

We set (HK )
∫ 1
0 hdt := a.
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Multifunctions

X is a general Banach space with its dual X ∗

cb(X ) all non-empty closed convex and bounded subsets of X

cwk(X ) all weakly compact elements of cb(X )

ck(X ) all compact members of cb(X )

We consider on cb(X ) the Minkowski addition
(A
⊕

B : = {a + b : a ∈ A, b ∈ B}) and the standard
multiplication by scalars

dH is the Hausdorff metric on cb(X )
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Multifunctions

For each C ∈ cb(X ) the support function of C is denoted
by s(·,C ) and defined on X ∗ by

s(x∗,C ) = sup{< x∗, x > : x ∈ C},

for each x∗ ∈ X ∗

A multifunction is map Γ : [0, 1]→ cb(X )

A function f : [0, 1]→ X is called a selection of Γ if
f (t) ∈ Γ (t), for every t ∈ [0, 1].
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Multifunctions

A multifunction Γ : [0, 1]→ cb(X ) is said to be scalarly
measurable if for every x∗ ∈ X ∗, the function s(x∗, Γ (·)) is
measurable

A multifunction Γ : [0, 1]→ cb(X ) is said to be scalarly
integrable (resp. scalarly HK-integrable) if s(x∗, Γ (·)) is
integrable (resp. HK-integrable) for every x∗ ∈ X ∗.

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in an arbitrary Banach space



Multifunctions

A multifunction Γ : [0, 1]→ cb(X ) is said to be scalarly
measurable if for every x∗ ∈ X ∗, the function s(x∗, Γ (·)) is
measurable

A multifunction Γ : [0, 1]→ cb(X ) is said to be scalarly
integrable (resp. scalarly HK-integrable) if s(x∗, Γ (·)) is
integrable (resp. HK-integrable) for every x∗ ∈ X ∗.

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in an arbitrary Banach space



Henstock-Kurzweil-Pettis integrability

Definition

A scalarly HK-integrable multifunction Γ : [0, 1]→ cb(X ) is said to
be Henstock-Kurzweil-Pettis integrable (or simply
HKP-integrable) in cb(X ), [ck(X ), cwk(X )] if for each I ∈ I
there exists a set ΦΓ (I ) ∈ cb(X ) [ck(X ), cwk(X ), respectively]
such that

s(x∗,ΦΓ (I)) = (HK)

∫
I
s(x∗, Γ (t)) dt for every x∗ ∈ X∗.

We write (HKP)
∫
I Γ (t) dt := ΦΓ (I ) and call ΦΓ (I ) the

Henstock-Kurzweil-Pettis integral of Γ over I .
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Pettis integrability

Definition

A scalarly integrable multifunction Γ : [0, 1]→ cb(X ) is said to be
Pettis integrable (or simply P-integrable) in
cb(X ), [ck(X ), cwk(X )] if for each E ∈ L there exists a set
ΦΓ (E ) ∈ cb(X ) [ck(X ), cwk(X ), respectively] such that

s(x∗,ΦΓ (E)) =

∫
E

s(x∗, Γ (t)) dt for every x∗ ∈ X∗. (2)

We write (P)
∫
E Γ (t) dt := ΦΓ (E ) and call ΦΓ (E ) the Pettis

integral of Γ over E .

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in an arbitrary Banach space



Proposition

(i) Let Γ : [0, 1]→ cwk(X ) be a scalarly HK-integrable
multifunction. Then Γ is HKP-integrable in cwk(X ) if and
only if for each I ∈ I the mapping

x∗ −→ (HK)

∫
I
s(x∗, Γ (t)) dt

is τ(X ∗,X )-continuous (where τ(X ∗,X ) is the Mackey
topology on X ∗).

(ii) Let Γ : [0, 1]→ ck(X ) be a scalarly HK-integrable
multifunction. Then Γ is HKP-integrable in ck(X ) if and
only if for each I ∈ I the mapping

x∗ −→ (HK)

∫
I
s(x∗, Γ (t)) dt

is τc(X ∗,X )-continuous (where τc(X ∗,X ) is the topology on
X ∗ of uniform convergence on elements of ck(X )).
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Selections of HKP-integrable multifunctions

Proposition

Let Γ : [0, 1]→ cwk(X ) be a multifunction HKP-integrable in
cwk(X ). Then there exists an HKP-integrable selection f of Γ .
Moreover each scalarly measurable selection f of Γ is
HKP-integrable.

Sketch of the proof. Since Γ is scalarly HK-integrable, it is
scalarly measurable. So by a remarkable result of
Cascales-Kadets-Rodriguez (2010) we have the existence of a
scalarly measurable selection f of Γ .
Then, for each x∗ ∈ X ∗ we have

−s(−x∗, Γ (t)) ≤ x∗f (t) ≤ s(x∗, Γ (t)) .

0 ≤ x∗f (t) + s(−x∗, Γ (t)) ≤ s(x∗, Γ (t)) + s(−x∗, Γ (t)) .

and the HK-integrability of the function x∗f follows.
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continuation of the proof

Moreover for each I ∈ I

−(HK )

∫
I
s(−x∗, Γ (t)) dt ≤ (HK )

∫
I
x∗f (t) dt ≤ (HK )

∫
I
s(x∗, Γ (t)) dt .

So by previous characterization f is HKP-integrable. �

By the symbol SHKP(Γ ) we denote the family of all selections of Γ
that are HKP-integrable.
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HKP-integrable selections

Theorem

Let Γ : [0, 1]→ cwk(X ) be a scalarly measurable multifunction.
Then Γ is HKP-integrable in cwk(X ) if and only if each scalarly
measurable selection f of Γ is HKP-integrable.

Theorem

If Γ : [0, 1]→ ck(X ) is scalarly HK-integrable, then TFAE:

1 Γ is HKP-integrable in ck(X ) and ΦΓ (I) :=
⋃

I∈I ΦΓ (I) is
relatively compact

2 Each scalarly measurable selection of Γ is HKP-integrable and
has norm relatively compact range of its integral
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A Decomposition Theorem

Theorem

A scalarly HK-integrable multifunction Γ : [0, 1]→ ck(X )[cwk(X )]
is HKP-integrable in ck(X )[cwk(X )] if and only if
SHKP(Γ ) 6= ∅ and for every f ∈ SHKP(Γ ) the multifunction
G : [0, 1]→ ck(X )[cwk(X )] defined by

Γ (t) = G (t) + f (t)

is Pettis integrable in ck(X )[cwk(X )].
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Integration in weakly sequentially complete Banach spaces

We know that for Pettis integrable functions the space c0 is that
space which makes problems: if c0 ⊂ X isomorphically, then there
are X -valued scalarly integrable functions that are not Pettis
integrable.

In case of HKP-integral a similar role to spaces not containing c0 is
played by weakly sequentially complete separable Banach spaces.
Let us recall that X is called weakly sequentially complete if
each weakly Cauchy sequence in X is weakly convergent. It is
known that no weakly sequentially complete Banach space can
contain an isomorphic copy of c0.
(Gordon 1989): A separable Banach space X is weakly
sequentially complete if and only if each X -valued scalarly
HK-integrable function f : [0, 1]→ X is HKP integrable.
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Integration in weakly sequentially complete Banach spaces

We recall that a space Y determines a function f : [0, 1]→ X
(resp. a multifunction Γ : [0, 1]→ cb(X )) if x∗f = 0 (resp.
s(x∗, Γ ) = 0) a.e. for each x∗ ∈ Y⊥ (the exceptional sets depend
on x∗).

Theorem

For an arbitrary Banach space X TFAE:

1 X is weakly sequentially complete Banach space

2 Each scalarly HK-integrable function f : [0, 1]→ X that is
determined by a weakly compactly generated (WCG) space is
HKP-integrable

3 Each scalarly HK-integrable multifunction
Γ : [0, 1]→ cwk(X )[ck(X )] that is determined by a WCG
space, is HKP-integrable in cwk(X ).
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Integration in Banach spaces possessing the Schur property

We recall that a Banach space X has the Schur property is each
sequence weakly convergent to 0 is also norm convergent. It well
known that each space with the Schur property is weakly
sequentially complete.

Theorem

For an arbitrary Banach space X TFAE:

1 X has the Schur property

2 Each scalarly HK-integrable multifunction Γ : [0, 1]→ ck(X )
that is determined by a WCG space, is HKP-integrable in
ck(X ).

Proof. (1)⇒ (2) According to previous theorem, if
Γ : [0, 1]→ ck(X ) is scalarly HK-integrable and determined by a
WCG space, then it is HKP-integrable in cwk(X ). The Schur
property of X forces the integrability in ck(X ). �
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Henstock and McShane integrals for multifunctions

Definition

A multifunction Γ : [0, 1]→ cb(X ) is said to be Henstock (resp.
McShane) integrable, if there exists a set ΦΓ [0, 1] ∈ cb(X ) with
the following property: for every ε > 0 there exists a gauge δ on
[0, 1] such that for each δ–fine Perron partition (resp. partition)
{(I1, t1), . . . , (Ip, tp)} of [0, 1], we have

dH

(
ΦΓ [0, 1],

p⊕
i=1

Γ (ti )|Ii |

)
< ε .

We write then (H)
∫ 1
0 Γ (t) dt := ΦΓ [0, 1] (resp.

(MS)
∫ 1
0 Γ (t) dt := ΦΓ [0, 1]).
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Henstock and McShane integrals for multifunctions

Remarks:

From the definition and the completeness of the Hausdorff
metric in cwk(X )[ck(X )], it is easy to see that if a
cwk(X )[ck(X )]-valued multifunction is Henstock integrable,
than also ΦΓ [0, 1] ∈ cwk(X )[ck(X )].

Each McShane integrable multifunction, is also Henstock
integrable (with the same values of the integrals)
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Henstock and McShane integrals for multifunctions

According to Hörmander’s equality

dH

(
K,

p⊕
i=1

Γ (ti)|Ii|

)
= sup
‖x∗‖≤1

∣∣∣∣∣s(x∗,K)−
p∑

i=1

s(x∗, Γ (ti))|Ii|

∣∣∣∣∣ .

Let us consider the embedding j : cb(X )→ l∞(B(X ∗))
defined by

j(K)(x∗) = s(x∗,K).

The images j(cb(X )), j(ck(X )) and j(cwk(X )) are closed
cones of l∞(B(X ∗)). So, if z ∈ l∞(B(X ∗)) is the value of the
Henstock integral of j ◦ Γ , then there exists a set
K ∈ cb(X ) [ck(X ), cwk(X )] with j(K ) = z .
Therefore: a multifunction Γ : [0, 1]→ cb(X ) is Henstock
(or McShane) integrable if and only if the single valued
function j ◦ Γ : [0, 1]→ l∞(B(X ∗)) is Henstock (or
McShane) integrable in the usual sense.
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Henstock and McShane integrals for multifunctions

If Γ : [0, 1]→ cb(X )[cwk(X ), ck(X )] is Henstock
integrable, then it is also Henstock-Kurzweil-Pettis
integrable in cb(X )[cwk(X ), ck(X )].

If Γ : [0, 1]→ cb(X )[cwk(X ), ck(X )] is McShane integrable,
then it is also Pettis integrable in cb(X )[cwk(X ), ck(X )].
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Equi-integrability.

In the theory of Lebesgue integration uniform integrability plays
an essential role. It’s counterpart in the theory of gauge integrals is
the notion of equi-integrability.

Definition

We recall that a family of real valued HK-integrable (or McShane
integrable) functions {gα : α ∈ A} is Henstock (resp. McShane)
equi-integrable on [0, 1] whenever for every ε > 0 there is a gauge
δ such that

sup


∣∣∣∣∣∣

p∑
j=1

gα(tj)|Ij | − (HK )

∫ 1

0
gα dt

∣∣∣∣∣∣ : α ∈ A

 < ε ,

for each δ–fine Perron partition (resp. partition)
{(Ij , tj) : j = 1, .., p} of [0, 1].
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Equi-integrability

Given a multifunction Γ : [0, 1]→ cb(X ) we set

ZΓ := {s(x∗, Γ (·)) : ‖x∗‖ ≤ 1} ,

Proposition

A scalarly HK–integrable (resp. integrable) multifunction
Γ : [0, 1]→ cb(X ), is Henstock (resp. McShane) integrable iff the
family ZΓ is Henstock (resp. McShane) equi-integrable.
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Selections of Henstok or McShane integrable
multifunctions.

By SH(Γ ) [SMS(Γ ) , SP(Γ )] we denote the family of all scalarly
measurable selections of Γ that are Henstock [McShane, Pettis]
integrable.

Theorem

If Γ : [0, 1]→ cwk(X ) is Henstock integrable, then SH(Γ ) 6= ∅.

Sketch of the proof. In the first part we proceed in a way similar
to that of Cascales-Kadets-Rodriguez (2009) for Pettis integrable
multifunctions.

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in an arbitrary Banach space



Selections of Henstok or McShane integrable
multifunctions.

By SH(Γ ) [SMS(Γ ) , SP(Γ )] we denote the family of all scalarly
measurable selections of Γ that are Henstock [McShane, Pettis]
integrable.

Theorem

If Γ : [0, 1]→ cwk(X ) is Henstock integrable, then SH(Γ ) 6= ∅.

Sketch of the proof. In the first part we proceed in a way similar
to that of Cascales-Kadets-Rodriguez (2009) for Pettis integrable
multifunctions.
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Continuation of the proof

Let Γ : [0, 1]→ cwk(X ) be Henstock integrable. Since

H := (H)
∫ 1
0 Γ (t) dt ∈ cwk(X ), there exists a strongly

exposed point x0 ∈ H. Assume that x∗0 ∈ B(X ∗) is such that
x∗0 (x0) > x∗0 (x) for every x ∈ H \ {x0} and the sets
{x ∈ H : x∗0 (x) > x∗0 (x0)− α} , α ∈ R , form a neighborhood
basis of x0 in the norm topology on H.

We define G : [0, 1]→ cwk(X ) by

G (t) := {x ∈ Γ (t) : x∗0 (x) = s(x∗0 , Γ (t))}.

Since Γ is Henstock integrable, then Γ is also HKP-integrable
in cwk(X ) and also G is HKP-integrable in cwk(X ). Let
g : [0, 1]→ X be any selection of G . Then g is scalarly
measurable (and of course HKP-integrable). Moreover

x∗0 (x0) = (HK )
∫ 1
0 x∗0g(t) dt.
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Continuation of the proof

Let ε > 0 and 0 < ε′ < ε/2 be arbitrary. Then, let 0 < η < ε′

be such that

∀ x ∈ H [|x∗0 (x)− x∗0 (x0)| < η ⇒ ‖x − x0‖ < ε′]. (3)

Since Γ is Henstock integrable and x∗0g is HK-integrable we
can find a gauge δ on [0, 1] such that for each δ-fine Perron
partition P := {(I1, t1), . . . , (Ip, tp)} of [0, 1]

dH

(
H,

p⊕
i=1

Γ (ti )|Ii |

)
< η/2

and ∣∣∣∣∣
∫ 1

0
x∗0g(t) dt −

p∑
i=1

x∗0g(ti )|Ii |

∣∣∣∣∣ < η/2.

So there exists a point xP ∈ H with
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Continuation of the proof

∥∥∥∥∥
p∑

i=1

g(ti )|Ii | − xP

∥∥∥∥∥ < η/2.

and so

|x∗0 (xP)− x∗0 (x0)| ≤

∣∣∣∣∣x∗0 (xP)− x∗0

(
p∑

i=1

g(ti )|Ii |

)∣∣∣∣∣+

+

∣∣∣∣∣
p∑

i=1

x∗0g(ti )|Ii | − x∗0 (x0)

∣∣∣∣∣ < η.

Now, previous inequality yields ‖xP − x0‖ < ε′
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Continuation of the proof

Finally∥∥∥∥∥
p∑

i=1

g(ti )|Ii | − x0

∥∥∥∥∥ ≤
∥∥∥∥∥

p∑
i=1

g(ti )|Ii | − xP

∥∥∥∥∥+ ‖xP − x0‖ < ε .

�
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Relations among the integrals

Fremlin (1994) proved that a Banach space valued function is
McShane integrable if and only if it is Henstock and Pettis
integrable.

Question:

Is the result valid also in case of multifunctions?

We will see that answer is positive for multifunctions with compact
convex values being subsets of an arbitrary Banach space.
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Relations among the integrals

Key points to get the result:

1 the existence of Henstock integrable selections;

2 a Decomposition Theorem;

3 a technical (but useful) Lemma.
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A Decomposition Theorem

Theorem

Let Γ : [0, 1]→ ck(X ) be a scalarly Henstock–Kurzweil integrable
multifunction. Then TFAE:

1 Γ is Henstock integrable;

2 SH(Γ ) 6= ∅ and for every f ∈ SH(Γ ) the multifunction
G : [0, 1]→ ck(X ) defined by

Γ (t) = G (t) + f (t)

is McShane integrable.

ZΓ := {s(x∗, Γ (·)) = s(x∗,G(·)) + x∗f(·) : ‖x∗‖ ≤ 1} ,
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A technical Lemma

Lemma

Let A = {gα : [0, 1]→ [0,∞) : α ∈ S} be a family of functions
satisfying the following conditions:

1 A is Henstock equi-integrable;

2 A is totally bounded for the seminorm || ||1;

3 A is pointwise bounded.

Then the family A is also McShane equi-integrable.
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Relations among the integrals

Theorem

Let Γ : [0, 1]→ ck(X ) be a multifunction. Then TFAE:

1 Γ is McShane integrable;

2 Γ is Henstock and Pettis integrable in ck(X ).

Proof.
(2)⇒ (1) Since Γ : [0, 1]→ ck(X ) is Henstock and Pettis
integrable in ck(X ), then SMS(Γ ) 6= ∅. Let f be a McShane
integrable selection Γ . It follows from the Decomposition Theorem
that there exists a multifunction G : [0, 1]→ ck(X ) that is
McShane integrable such that Γ = G + f . It follows that Γ is also
McShane integrable. �
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Relations among the integrals

Theorem

Let Γ : [0, 1]→ ck(X ) be a multifunction. Then TFAE:

1 Γ is McShane integrable;

2 Γ is Henstock integrable and SH(Γ ) ⊂ SMS(Γ );

3 Γ is Henstock integrable and SH(Γ ) ⊂ SP(Γ );

4 Γ is Henstock integrable and SP(Γ ) 6= ∅.
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THANK YOU!
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