

Non-absolute gage integrals for multifunctions with values in an arbitrary Banach space

Luisa Di Piazza

University of Palermo (Italy)

Integration, Vector Measures and Related Topics VI

Bedlewo 15-21 Jun 2014

Joint results with Kazimierz Musiał

- L. Di Piazza and K. Musial, *Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values*, Monatshefte fr Mathematik, Vol. 173, Issue 4 (2014), pp. 459-470.

- L. Di Piazza and K. Musial, *Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values*, Monatshefte fr Mathematik, Vol. 173, Issue 4 (2014), pp. 459-470.
- L. Di Piazza and K. Musial, *Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space*, Jour. Math. Anal. Applic. Vol. 408 (2013), pp. 452-464, ISSN: 0022-247X

Contents

- Introduction

Contents

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions

Contents

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions
 - Henstock-Kurzweil-Pettis integrable selections

Contents

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions
 - Henstock-Kurzweil-Pettis integrable selections
 - integration in weakly sequentially complete Banach spaces

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions
 - Henstock-Kurzweil-Pettis integrable selections
 - integration in weakly sequentially complete Banach spaces
- Henstock and McShane integrability for multifunctions

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions
 - Henstock-Kurzweil-Pettis integrable selections
 - integration in weakly sequentially complete Banach spaces
- Henstock and McShane integrability for multifunctions
 - existence of Henstock (resp. McShane) integrable selections

- Introduction
- Henstock-Kurzweil-Pettis integrability for multifunctions
 - Henstock-Kurzweil-Pettis integrable selections
 - integration in weakly sequentially complete Banach spaces
- Henstock and McShane integrability for multifunctions
 - existence of Henstock (resp. McShane) integrable selections
 - relations among Henstock, McShane and Pettis integrals

Henstock integral for real valued functions

- $[0, 1]$ is the unit interval of the real line

- $[0, 1]$ is the unit interval of the real line
- \mathcal{L} denotes the family of all Lebesgue measurable subsets of $[0, 1]$ and if $A \in \mathcal{L}$, then $|A|$ denotes its Lebesgue measure.

- $[0, 1]$ is the unit interval of the real line
- \mathcal{L} denotes the family of all Lebesgue measurable subsets of $[0, 1]$ and if $A \in \mathcal{L}$, then $|A|$ denotes its Lebesgue measure.
- \mathcal{I} denotes the family of all nontrivial closed subintervals of $[0, 1]$

- $[0, 1]$ is the unit interval of the real line
- \mathcal{L} denotes the family of all Lebesgue measurable subsets of $[0, 1]$ and if $A \in \mathcal{L}$, then $|A|$ denotes its Lebesgue measure.
- \mathcal{I} denotes the family of all nontrivial closed subintervals of $[0, 1]$
- A **partition of** $[0, 1]$ is a finite collection of pairs $P = \{(I_1, t_1), \dots, (I_p, t_p)\}$, where I_1, \dots, I_p are non overlapping intervals of \mathcal{I} , $t_j \in [0, 1]$, $j = 1, \dots, p$, and $\bigcup_{j=1}^p I_j = [0, 1]$. If $t_j \in I_j$, $j = 1, \dots, p$ we say that P is a **Perron partition of** $[0, 1]$

- $[0, 1]$ is the unit interval of the real line
- \mathcal{L} denotes the family of all Lebesgue measurable subsets of $[0, 1]$ and if $A \in \mathcal{L}$, then $|A|$ denotes its Lebesgue measure.
- \mathcal{I} denotes the family of all nontrivial closed subintervals of $[0, 1]$
- A **partition of** $[0, 1]$ is a finite collection of pairs $P = \{(I_1, t_1), \dots, (I_p, t_p)\}$, where I_1, \dots, I_p are non overlapping intervals of \mathcal{I} , $t_j \in [0, 1]$, $j = 1, \dots, p$, and $\bigcup_{j=1}^p I_j = [0, 1]$. If $t_j \in I_j$, $j = 1, \dots, p$ we say that P is a **Perron partition of** $[0, 1]$
- A **gauge** on $[0, 1]$ is a positive function on $[0, 1]$

- $[0, 1]$ is the unit interval of the real line
- \mathcal{L} denotes the family of all Lebesgue measurable subsets of $[0, 1]$ and if $A \in \mathcal{L}$, then $|A|$ denotes its Lebesgue measure.
- \mathcal{I} denotes the family of all nontrivial closed subintervals of $[0, 1]$
- A **partition of** $[0, 1]$ is a finite collection of pairs $P = \{(I_1, t_1), \dots, (I_p, t_p)\}$, where I_1, \dots, I_p are non overlapping intervals of \mathcal{I} , $t_j \in [0, 1]$, $j = 1, \dots, p$, and $\bigcup_{j=1}^p I_j = [0, 1]$. If $t_j \in I_j$, $j = 1, \dots, p$ we say that P is a **Perron partition of** $[0, 1]$
- A **gauge** on $[0, 1]$ is a positive function on $[0, 1]$
- Given a gauge δ , a partition $\{(I_1, t_1), \dots, (I_p, t_p)\}$ is said to be **δ -fine** if $I_j \subset (t_j - \delta(t_j), t_j + \delta(t_j))$, $j = 1, \dots, p$.

Definition

A function $h : [0, 1] \rightarrow \mathbb{R}$ is said to be

Henstock-Kurzweil-integrable, or simply **HK-integrable**, on $[0, 1]$ if there exists $a \in \mathbb{R}$ with the following property: for every $\epsilon > 0$ there exists a gauge δ on $[0, 1]$ such that

$$\left| \sum_{j=1}^p h(t_j) |I_j| - a \right| < \epsilon, \quad (1)$$

for each δ -fine **Perron partition** $\{(I_j, t_j) : j = 1, \dots, p\}$ of $[0, 1]$.

We set $(HK)\int_0^1 h dt := a$.

- X is a general Banach space with its dual X^*

- X is a general Banach space with its dual X^*
- $cb(X)$ all non-empty closed convex and bounded subsets of X

- X is a general Banach space with its dual X^*
- $cb(X)$ all non-empty closed convex and bounded subsets of X
- $cwk(X)$ all weakly compact elements of $cb(X)$

- X is a general Banach space with its dual X^*
- $cb(X)$ all non-empty closed convex and bounded subsets of X
- $cwk(X)$ all weakly compact elements of $cb(X)$
- $ck(X)$ all compact members of $cb(X)$

- X is a general Banach space with its dual X^*
- $cb(X)$ all non-empty closed convex and bounded subsets of X
- $cwk(X)$ all weakly compact elements of $cb(X)$
- $ck(X)$ all compact members of $cb(X)$
- We consider on $cb(X)$ the **Minkowski addition**
$$(A \bigoplus B := \overline{\{a + b : a \in A, b \in B\}})$$
 and the standard multiplication by scalars

- X is a general Banach space with its dual X^*
- $cb(X)$ all non-empty closed convex and bounded subsets of X
- $cwk(X)$ all weakly compact elements of $cb(X)$
- $ck(X)$ all compact members of $cb(X)$
- We consider on $cb(X)$ the **Minkowski addition**
$$(A \bigoplus B := \overline{\{a + b : a \in A, b \in B\}})$$
 and the standard multiplication by scalars
- d_H is the Hausdorff metric on $cb(X)$

- For each $C \in cb(X)$ the **support function of C** is denoted by $s(\cdot, C)$ and defined on X^* by

$$s(x^*, C) = \sup\{\langle x^*, x \rangle : x \in C\},$$

for each $x^* \in X^*$

- For each $C \in cb(X)$ the **support function of C** is denoted by $s(\cdot, C)$ and defined on X^* by

$$s(x^*, C) = \sup\{\langle x^*, x \rangle : x \in C\},$$

for each $x^* \in X^*$

- A **multifunction** is map $\Gamma: [0, 1] \rightarrow cb(X)$

- For each $C \in cb(X)$ the **support function of C** is denoted by $s(\cdot, C)$ and defined on X^* by

$$s(x^*, C) = \sup\{\langle x^*, x \rangle : x \in C\},$$

for each $x^* \in X^*$

- A **multifunction** is map $\Gamma: [0, 1] \rightarrow cb(X)$
- A function $f: [0, 1] \rightarrow X$ is called a **selection of Γ** if $f(t) \in \Gamma(t)$, for every $t \in [0, 1]$.

- A multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **scalarly measurable** if for every $x^* \in X^*$, the function $s(x^*, \Gamma(\cdot))$ is measurable

- A multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **scalarly measurable** if for every $x^* \in X^*$, the function $s(x^*, \Gamma(\cdot))$ is measurable
- A multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **scalarly integrable** (resp. **scalarly HK-integrable**) if $s(x^*, \Gamma(\cdot))$ is integrable (resp. HK-integrable) for every $x^* \in X^*$.

Definition

A scalarly HK-integrable multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **Henstock-Kurzweil-Pettis integrable** (or simply **HKP-integrable**) in $cb(X)$, $[ck(X), cwk(X)]$ if for each $I \in \mathcal{I}$ there exists a set $\Phi_\Gamma(I) \in cb(X)$ [$ck(X)$, $cwk(X)$, respectively] such that

Definition

A scalarly HK-integrable multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **Henstock-Kurzweil-Pettis integrable** (or simply **HKP-integrable**) in $cb(X)$, $[ck(X), cwk(X)]$ if for each $I \in \mathcal{I}$ there exists a set $\Phi_\Gamma(I) \in cb(X)$ [$ck(X)$, $cwk(X)$, respectively] such that

$$s(x^*, \Phi_\Gamma(I)) = (\text{HK}) \int_I s(x^*, \Gamma(t)) dt \quad \text{for every } x^* \in X^*.$$

Definition

A scalarly HK-integrable multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **Henstock-Kurzweil-Pettis integrable** (or simply **HKP-integrable**) in $cb(X)$, $[ck(X), cwk(X)]$ if for each $I \in \mathcal{I}$ there exists a set $\Phi_\Gamma(I) \in cb(X)$ [$ck(X)$, $cwk(X)$, respectively] such that

$$s(x^*, \Phi_\Gamma(I)) = (\text{HK}) \int_I s(x^*, \Gamma(t)) dt \quad \text{for every } x^* \in X^*.$$

We write $(HKP) \int_I \Gamma(t) dt := \Phi_\Gamma(I)$ and call $\Phi_\Gamma(I)$ the **Henstock-Kurzweil-Pettis integral of Γ over I** .

Definition

A scalarly integrable multifunction $\Gamma: [0, 1] \rightarrow cb(X)$ is said to be **Pettis integrable** (or simply **P-integrable**) in $cb(X)$, $[ck(X), cwk(X)]$ if for each $E \in \mathcal{L}$ there exists a set $\Phi_\Gamma(E) \in cb(X)$ [$ck(X)$, $cwk(X)$, respectively] such that

$$s(x^*, \Phi_\Gamma(E)) = \int_E s(x^*, \Gamma(t)) dt \quad \text{for every } x^* \in X^*. \quad (2)$$

We write $(P) \int_E \Gamma(t) dt := \Phi_\Gamma(E)$ and call $\Phi_\Gamma(E)$ the **Pettis integral of Γ over E** .

Proposition

- (i) Let $\Gamma : [0, 1] \rightarrow \text{cwk}(X)$ be a scalarly HK-integrable multifunction. Then Γ is HKP-integrable in $\text{cwk}(X)$ **if and only if** for each $I \in \mathcal{I}$ the mapping

$$x^* \longrightarrow (\text{HK}) \int_I s(x^*, \Gamma(t)) dt$$

is $\tau(X^*, X)$ -continuous (where $\tau(X^*, X)$ is the Mackey topology on X^*).

Proposition

- (i) Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a scalarly HK-integrable multifunction. Then Γ is HKP-integrable in $cwk(X)$ **if and only if** for each $I \in \mathcal{I}$ the mapping

$$x^* \longrightarrow (\text{HK}) \int_I s(x^*, \Gamma(t)) dt$$

is $\tau(X^*, X)$ -continuous (where $\tau(X^*, X)$ is the Mackey topology on X^*).

- (ii) Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a scalarly HK-integrable multifunction. Then Γ is HKP-integrable in $ck(X)$ **if and only if** for each $I \in \mathcal{I}$ the mapping

$$x^* \longrightarrow (\text{HK}) \int_I s(x^*, \Gamma(t)) dt$$

is $\tau_c(X^*, X)$ -continuous (where $\tau_c(X^*, X)$ is the topology on X^* of uniform convergence on elements of $ck(X)$).

Proposition

Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a multifunction HKP-integrable in $cwk(X)$. Then there exists an HKP-integrable selection f of Γ . Moreover each scalarly measurable selection f of Γ is HKP-integrable.

Proposition

Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a multifunction HKP-integrable in $cwk(X)$. Then there exists an HKP-integrable selection f of Γ . Moreover each scalarly measurable selection f of Γ is HKP-integrable.

Sketch of the proof.

Proposition

Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a multifunction HKP-integrable in $cwk(X)$. Then there exists an HKP-integrable selection f of Γ . Moreover each scalarly measurable selection f of Γ is HKP-integrable.

Sketch of the proof. Since Γ is scalarly HK-integrable, it is scalarly measurable. So by a remarkable result of Cascales-Kadets-Rodriguez (2010) we have the existence of a scalarly measurable selection f of Γ .

Proposition

Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a multifunction HKP-integrable in $cwk(X)$. Then there exists an HKP-integrable selection f of Γ . Moreover each scalarly measurable selection f of Γ is HKP-integrable.

Sketch of the proof. Since Γ is scalarly HK-integrable, it is scalarly measurable. So by a remarkable result of Cascales-Kadets-Rodriguez (2010) we have the existence of a scalarly measurable selection f of Γ .

Then, for each $x^* \in X^*$ we have

$$-s(-x^*, \Gamma(t)) \leq x^*f(t) \leq s(x^*, \Gamma(t)).$$

$$0 \leq x^*f(t) + s(-x^*, \Gamma(t)) \leq s(x^*, \Gamma(t)) + s(-x^*, \Gamma(t)).$$

and the HK-integrability of the function x^*f follows.

Moreover for each $I \in \mathcal{I}$

$$-(HK) \int_I s(-x^*, \Gamma(t)) dt \leq (HK) \int_I x^* f(t) dt \leq (HK) \int_I s(x^*, \Gamma(t)) dt.$$

So by previous characterization f is HKP-integrable. □

By the symbol $\mathcal{S}_{\text{HKP}}(\Gamma)$ we denote the family of all selections of Γ that are HKP-integrable.

Theorem

Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be a scalarly measurable multifunction. Then Γ is HKP-integrable in $cwk(X)$ if and only if each scalarly measurable selection f of Γ is HKP-integrable.

Theorem

Let $\Gamma : [0, 1] \rightarrow \text{cwk}(X)$ be a scalarly measurable multifunction. Then Γ is HKP-integrable in $\text{cwk}(X)$ if and only if each scalarly measurable selection f of Γ is HKP-integrable.

Theorem

If $\Gamma : [0, 1] \rightarrow \text{ck}(X)$ is scalarly HK-integrable, then TFAE:

Theorem

Let $\Gamma : [0, 1] \rightarrow \text{cwk}(X)$ be a scalarly measurable multifunction. Then Γ is HKP-integrable in $\text{cwk}(X)$ if and only if each scalarly measurable selection f of Γ is HKP-integrable.

Theorem

If $\Gamma : [0, 1] \rightarrow \text{ck}(X)$ is scalarly HK-integrable, then TFAE:

- ① Γ is HKP-integrable in $\text{ck}(X)$ and $\Phi_\Gamma(\mathcal{I}) := \bigcup_{\mathbf{I} \in \mathcal{I}} \Phi_\Gamma(\mathbf{I})$ is relatively compact

Theorem

Let $\Gamma : [0, 1] \rightarrow \text{cwk}(X)$ be a scalarly measurable multifunction. Then Γ is HKP-integrable in $\text{cwk}(X)$ if and only if each scalarly measurable selection f of Γ is HKP-integrable.

Theorem

If $\Gamma : [0, 1] \rightarrow \text{ck}(X)$ is scalarly HK-integrable, then TFAE:

- 1 Γ is HKP-integrable in $\text{ck}(X)$ and $\Phi_\Gamma(\mathcal{I}) := \bigcup_{\mathbf{I} \in \mathcal{I}} \Phi_\Gamma(\mathbf{I})$ is relatively compact
- 2 Each scalarly measurable selection of Γ is HKP-integrable and has norm relatively compact range of its integral

Theorem

Let $\Gamma : [0, 1] \rightarrow \text{cwk}(X)$ be a scalarly measurable multifunction. Then Γ is HKP-integrable in $\text{cwk}(X)$ if and only if each scalarly measurable selection f of Γ is HKP-integrable.

Theorem

If $\Gamma : [0, 1] \rightarrow \text{ck}(X)$ is scalarly HK-integrable, then TFAE:

- 1 Γ is HKP-integrable in $\text{ck}(X)$ and $\Phi_\Gamma(\mathcal{I}) := \bigcup_{\mathbf{I} \in \mathcal{I}} \Phi_\Gamma(\mathbf{I})$ is relatively compact
- 2 Each scalarly measurable selection of Γ is HKP-integrable and has norm relatively compact range of its integral
- 3 Each scalarly measurable selection of Γ is HKP-integrable and has continuous primitive.

Theorem

A scalarly HK-integrable multifunction $\Gamma : [0, 1] \rightarrow ck(X)[cwk(X)]$ is **HKP-integrable** in $ck(X)[cwk(X)]$ if and only if $\mathcal{S}_{HKP}(\Gamma) \neq \emptyset$ and for every $f \in \mathcal{S}_{HKP}(\Gamma)$ the multifunction $\mathbf{G} : [0, 1] \rightarrow ck(X)[cwk(X)]$ defined by

$$\Gamma(t) = \mathbf{G}(t) + f(t)$$

is **Pettis integrable** in $ck(X)[cwk(X)]$.

We know that for Pettis integrable functions the space c_0 is that space which makes problems: if $c_0 \subset X$ isomorphically, then there are X -valued scalarly integrable functions that are not Pettis integrable.

We know that for Pettis integrable functions the space c_0 is that space which makes problems: if $c_0 \subset X$ isomorphically, then there are X -valued scalarly integrable functions that are not Pettis integrable.

In case of HKP-integral a similar role to spaces not containing c_0 is played by weakly sequentially complete separable Banach spaces.

We know that for Pettis integrable functions the space c_0 is that space which makes problems: if $c_0 \subset X$ isomorphically, then there are X -valued scalarly integrable functions that are not Pettis integrable.

In case of HKP-integral a similar role to spaces not containing c_0 is played by weakly sequentially complete separable Banach spaces.

Let us recall that X is called **weakly sequentially complete** if each weakly Cauchy sequence in X is weakly convergent. It is known that no weakly sequentially complete Banach space can contain an isomorphic copy of c_0 .

We know that for Pettis integrable functions the space c_0 is that space which makes problems: if $c_0 \subset X$ isomorphically, then there are X -valued scalarly integrable functions that are not Pettis integrable.

In case of HKP-integral a similar role to spaces not containing c_0 is played by weakly sequentially complete separable Banach spaces.

Let us recall that X is called **weakly sequentially complete** if each weakly Cauchy sequence in X is weakly convergent. It is known that no weakly sequentially complete Banach space can contain an isomorphic copy of c_0 .

(Gordon 1989): **A separable Banach space X is weakly sequentially complete if and only if each X -valued scalarly HK-integrable function $f : [0, 1] \rightarrow X$ is HKP integrable.**

We recall that a space Y **determines a function** $f : [0, 1] \rightarrow X$ (resp. a **multifunction** $\Gamma : [0, 1] \rightarrow cb(X)$) if $x^*f = 0$ (resp. $s(x^*, \Gamma) = 0$) a.e. for each $x^* \in Y^\perp$ (the exceptional sets depend on x^*).

We recall that a space Y **determines a function** $f : [0, 1] \rightarrow X$ (resp. **a multifunction** $\Gamma : [0, 1] \rightarrow cb(X)$) if $x^*f = 0$ (resp. $s(x^*, \Gamma) = 0$) a.e. for each $x^* \in Y^\perp$ (the exceptional sets depend on x^*).

Theorem

For an arbitrary Banach space X TFAE:

- ① X is weakly sequentially complete Banach space

We recall that a space Y **determines a function** $f : [0, 1] \rightarrow X$ (resp. a **multifunction** $\Gamma : [0, 1] \rightarrow cb(X)$) if $x^*f = 0$ (resp. $s(x^*, \Gamma) = 0$) a.e. for each $x^* \in Y^\perp$ (the exceptional sets depend on x^*).

Theorem

For an arbitrary Banach space X TFAE:

- ① X is weakly sequentially complete Banach space
- ② Each scalarly HK-integrable function $f : [0, 1] \rightarrow X$ that is determined by a weakly compactly generated (WCG) space is HKP-integrable

We recall that a space Y **determines a function** $f : [0, 1] \rightarrow X$ (resp. a **multifunction** $\Gamma : [0, 1] \rightarrow cb(X)$) if $x^*f = 0$ (resp. $s(x^*, \Gamma) = 0$) a.e. for each $x^* \in Y^\perp$ (the exceptional sets depend on x^*).

Theorem

For an arbitrary Banach space X TFAE:

- ① X is weakly sequentially complete Banach space
- ② Each scalarly HK-integrable function $f : [0, 1] \rightarrow X$ that is determined by a weakly compactly generated (WCG) space is HKP-integrable
- ③ Each scalarly HK-integrable multifunction $\Gamma : [0, 1] \rightarrow cwk(X)[ck(X)]$ that is determined by a WCG space, is HKP-integrable in $cwk(X)$.

We recall that a Banach space X has the **Schur property** if each sequence weakly convergent to 0 is also norm convergent. It is well known that each space with the Schur property is weakly sequentially complete.

We recall that a Banach space X has the **Schur property** if each sequence weakly convergent to 0 is also norm convergent. It is well known that each space with the Schur property is weakly sequentially complete.

Theorem

For an arbitrary Banach space X TFAE:

- 1 X has the Schur property

We recall that a Banach space X has the **Schur property** if each sequence weakly convergent to 0 is also norm convergent. It is well known that each space with the Schur property is weakly sequentially complete.

Theorem

For an arbitrary Banach space X TFAE:

- ① X has the Schur property
- ② Each scalarly HK-integrable multifunction $\Gamma : [0, 1] \rightarrow ck(X)$ that is determined by a WCG space, is HKP-integrable in $ck(X)$.

We recall that a Banach space X has the **Schur property** if each sequence weakly convergent to 0 is also norm convergent. It is well known that each space with the Schur property is weakly sequentially complete.

Theorem

For an arbitrary Banach space X TFAE:

- ① X has the Schur property
- ② Each scalarly HK-integrable multifunction $\Gamma : [0, 1] \rightarrow ck(X)$ that is determined by a WCG space, is HKP-integrable in $ck(X)$.

Proof. (1) \Rightarrow (2) According to previous theorem, if $\Gamma : [0, 1] \rightarrow ck(X)$ is scalarly HK-integrable and determined by a WCG space, then it is HKP-integrable in $cwk(X)$. The Schur property of X forces the integrability in $ck(X)$. □

Definition

A multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ is said to be **Henstock** (resp. **McShane**) **integrable**, if there exists a set $\Phi_\Gamma[0, 1] \in cb(X)$ with the following property: for every $\varepsilon > 0$ there exists a gauge δ on $[0, 1]$ such that for each δ -fine Perron partition (resp. partition) $\{(I_1, t_1), \dots, (I_p, t_p)\}$ of $[0, 1]$, we have

Definition

A multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ is said to be **Henstock** (resp. **McShane**) **integrable**, if there exists a set $\Phi_\Gamma[0, 1] \in cb(X)$ with the following property: for every $\varepsilon > 0$ there exists a gauge δ on $[0, 1]$ such that for each δ -fine Perron partition (resp. partition) $\{(I_1, t_1), \dots, (I_p, t_p)\}$ of $[0, 1]$, we have

$$d_H\left(\Phi_\Gamma[0, 1], \bigoplus_{i=1}^p \Gamma(t_i) | I_i | \right) < \varepsilon.$$

Definition

A multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ is said to be **Henstock** (resp. **McShane**) **integrable**, if there exists a set $\Phi_\Gamma[0, 1] \in cb(X)$ with the following property: for every $\varepsilon > 0$ there exists a gauge δ on $[0, 1]$ such that for each δ -fine Perron partition (resp. partition) $\{(I_1, t_1), \dots, (I_p, t_p)\}$ of $[0, 1]$, we have

$$d_H\left(\Phi_\Gamma[0, 1], \bigoplus_{i=1}^p \Gamma(t_i) | I_i | \right) < \varepsilon.$$

We write then $(H) \int_0^1 \Gamma(t) dt := \Phi_\Gamma[0, 1]$ (resp. $(MS) \int_0^1 \Gamma(t) dt := \Phi_\Gamma[0, 1]$).

Remarks:

- From the definition and the completeness of the Hausdorff metric in $cwk(X)[ck(X)]$, it is easy to see that if a $cwk(X)[ck(X)]$ -valued multifunction is Henstock integrable, then also $\Phi_\Gamma[0, 1] \in cwk(X)[ck(X)]$.

Remarks:

- From the definition and the completeness of the Hausdorff metric in $ck(X)[ck(X)]$, it is easy to see that if a $ck(X)[ck(X)]$ -valued multifunction is Henstock integrable, then also $\Phi_\Gamma[0, 1] \in ck(X)[ck(X)]$.
- Each McShane integrable multifunction, is also Henstock integrable (with the same values of the integrals)

- According to Hörmander's equality

$$d_H\left(K, \bigoplus_{i=1}^p \Gamma(t_i) |I_i| \right) = \sup_{\|x^*\| \leq 1} \left| s(x^*, K) - \sum_{i=1}^p s(x^*, \Gamma(t_i)) |I_i| \right|.$$

- According to Hörmander's equality

$$d_H\left(K, \bigoplus_{i=1}^p \Gamma(t_i)|l_i|\right) = \sup_{\|x^*\| \leq 1} \left| s(x^*, K) - \sum_{i=1}^p s(x^*, \Gamma(t_i))|l_i| \right|.$$

Let us consider the embedding $j : cb(X) \rightarrow l_\infty(B(X^*))$ defined by

$$j(K)(x^*) = s(x^*, K).$$

- According to Hörmander's equality

$$d_H\left(K, \bigoplus_{i=1}^p \Gamma(t_i) |I_i| \right) = \sup_{\|x^*\| \leq 1} \left| s(x^*, K) - \sum_{i=1}^p s(x^*, \Gamma(t_i)) |I_i| \right|.$$

Let us consider the embedding $j : cb(X) \rightarrow l_\infty(B(X^*))$ defined by

$$j(K)(x^*) = s(x^*, K).$$

The images $j(cb(X))$, $j(ck(X))$ and $j(cwk(X))$ are closed cones of $l_\infty(B(X^*))$. So, if $z \in l_\infty(B(X^*))$ is the value of the Henstock integral of $j \circ \Gamma$, then there exists a set $K \in cb(X) [ck(X), cwk(X)]$ with $j(K) = z$.

- According to Hörmander's equality

$$d_H\left(K, \bigoplus_{i=1}^p \Gamma(t_i) |I_i| \right) = \sup_{\|x^*\| \leq 1} \left| s(x^*, K) - \sum_{i=1}^p s(x^*, \Gamma(t_i)) |I_i| \right|.$$

Let us consider the embedding $j : cb(X) \rightarrow l_\infty(B(X^*))$ defined by

$$j(K)(x^*) = s(x^*, K).$$

The images $j(cb(X))$, $j(ck(X))$ and $j(cwk(X))$ are closed cones of $l_\infty(B(X^*))$. So, if $z \in l_\infty(B(X^*))$ is the value of the Henstock integral of $j \circ \Gamma$, then there exists a set $K \in cb(X)$ [$ck(X)$, $cwk(X)$] with $j(K) = z$.

Therefore: **a multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ is Henstock (or McShane) integrable if and only if the single valued function $j \circ \Gamma : [0, 1] \rightarrow l_\infty(B(X^*))$ is Henstock (or McShane) integrable in the usual sense.**

- If $\Gamma : [0, 1] \rightarrow cb(X)[cwk(X), ck(X)]$ is **Henstock integrable**, then it is also **Henstock-Kurzweil-Pettis integrable** in $cb(X)[cwk(X), ck(X)]$.

- If $\Gamma : [0, 1] \rightarrow cb(X)[cwk(X), ck(X)]$ is **Henstock integrable**, then it is also **Henstock-Kurzweil-Pettis integrable** in $cb(X)[cwk(X), ck(X)]$.
- If $\Gamma : [0, 1] \rightarrow cb(X)[cwk(X), ck(X)]$ is **McShane integrable**, then it is also **Pettis integrable** in $cb(X)[cwk(X), ck(X)]$.

Equi-integrability.

In the theory of Lebesgue integration **uniform integrability** plays an essential role. Its counterpart in the theory of gauge integrals is the notion of **equi-integrability**.

Equi-integrability.

In the theory of Lebesgue integration **uniform integrability** plays an essential role. Its counterpart in the theory of gauge integrals is the notion of **equi-integrability**.

Definition

We recall that a family of real valued HK-integrable (or McShane integrable) functions $\{g_\alpha : \alpha \in \mathbb{A}\}$ is **Henstock** (resp. **McShane**) **equi-integrable** on $[0, 1]$ whenever for every $\varepsilon > 0$ there is a gauge δ such that

$$\sup \left\{ \left| \sum_{j=1}^p g_\alpha(t_j) |I_j| - (HK) \int_0^1 g_\alpha \, dt \right| : \alpha \in \mathbb{A} \right\} < \varepsilon,$$

for each δ -fine Perron partition (resp. partition)

$\{(I_j, t_j) : j = 1, \dots, p\}$ of $[0, 1]$.

Given a multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ we set

$$\mathcal{Z}_\Gamma := \{\mathbf{s}(\mathbf{x}^*, \Gamma(\cdot)) : \|\mathbf{x}^*\| \leq \mathbf{1}\},$$

Given a multifunction $\Gamma : [0, 1] \rightarrow cb(X)$ we set

$$\mathcal{Z}_\Gamma := \{\mathbf{s}(\mathbf{x}^*, \Gamma(\cdot)) : \|\mathbf{x}^*\| \leq 1\},$$

Proposition

A scalarly HK-integrable (resp. integrable) multifunction $\Gamma : [0, 1] \rightarrow cb(X)$, is Henstock (resp. McShane) integrable **iff** the family \mathcal{Z}_Γ is Henstock (resp. McShane) equi-integrable.

Selections of Henstok or McShane integrable multifunctions.

By $\mathcal{S}_H(\Gamma)$ [$\mathcal{S}_{MS}(\Gamma)$, $\mathcal{S}_P(\Gamma)$] we denote the family of all scalarly measurable selections of Γ that are **Henstock** [**McShane, Pettis**] **integrable**.

Selections of Henstock or McShane integrable multifunctions.

By $\mathcal{S}_H(\Gamma)$ [$\mathcal{S}_{MS}(\Gamma)$, $\mathcal{S}_P(\Gamma)$] we denote the family of all scalarly measurable selections of Γ that are **Henstock** [**McShane, Pettis**] **integrable**.

Theorem

If $\Gamma : [0, 1] \rightarrow cwk(X)$ is Henstock integrable, then $\mathcal{S}_H(\Gamma) \neq \emptyset$.

Selections of Henstock or McShane integrable multifunctions.

By $\mathcal{S}_H(\Gamma)$ [$\mathcal{S}_{MS}(\Gamma)$, $\mathcal{S}_P(\Gamma)$] we denote the family of all scalarly measurable selections of Γ that are **Henstock** [**McShane, Pettis**] **integrable**.

Theorem

If $\Gamma : [0, 1] \rightarrow cwk(X)$ is Henstock integrable, then $\mathcal{S}_H(\Gamma) \neq \emptyset$.

Sketch of the proof. In the first part we proceed in a way similar to that of Cascales-Kadets-Rodriguez (2009) for Pettis integrable multifunctions.

Continuation of the proof

- Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be Henstock integrable. Since $H := (H) \int_0^1 \Gamma(t) dt \in cwk(X)$, there exists a **strongly exposed point** $x_0 \in H$. Assume that $x_0^* \in B(X^*)$ is such that $x_0^*(x_0) > x_0^*(x)$ for every $x \in H \setminus \{x_0\}$ and the sets $\{x \in H : x_0^*(x) > x_0^*(x_0) - \alpha\}$, $\alpha \in \mathbb{R}$, form a neighborhood basis of x_0 in the norm topology on H .

Continuation of the proof

- Let $\Gamma : [0, 1] \rightarrow cwk(X)$ be Henstock integrable. Since $H := (H) \int_0^1 \Gamma(t) dt \in cwk(X)$, there exists a **strongly exposed point** $x_0 \in H$. Assume that $x_0^* \in B(X^*)$ is such that $x_0^*(x_0) > x_0^*(x)$ for every $x \in H \setminus \{x_0\}$ and the sets $\{x \in H : x_0^*(x) > x_0^*(x_0) - \alpha\}$, $\alpha \in \mathbb{R}$, form a neighborhood basis of x_0 in the norm topology on H .
- We define $G : [0, 1] \rightarrow cwk(X)$ by

$$G(t) := \{x \in \Gamma(t) : x_0^*(x) = s(x_0^*, \Gamma(t))\}.$$

Since Γ is Henstock integrable, then Γ is also HKP-integrable in $cwk(X)$ and also G is HKP-integrable in $cwk(X)$. Let $g : [0, 1] \rightarrow X$ be any selection of G . Then g is scalarly measurable (and of course HKP-integrable). Moreover $x_0^*(x_0) = (HK) \int_0^1 x_0^* g(t) dt$.

Continuation of the proof

- Let $\varepsilon > 0$ and $0 < \varepsilon' < \varepsilon/2$ be arbitrary. Then, let $0 < \eta < \varepsilon'$ be such that

$$\forall x \in H \quad |x_0^*(x) - x_0^*(x_0)| < \eta \Rightarrow \|x - x_0\| < \varepsilon']. \quad (3)$$

Since Γ is Henstock integrable and x_0^*g is HK-integrable we can find a gauge δ on $[0, 1]$ such that for each δ -fine Perron partition $\mathcal{P} := \{(I_1, t_1), \dots, (I_p, t_p)\}$ of $[0, 1]$

$$d_H \left(H, \bigoplus_{i=1}^p \Gamma(t_i) |I_i| \right) < \eta/2$$

and

$$\left| \int_0^1 x_0^*g(t) dt - \sum_{i=1}^p x_0^*g(t_i) |I_i| \right| < \eta/2.$$

So there exists a point $x_{\mathcal{P}} \in H$ with

Continuation of the proof

$$\left\| \sum_{i=1}^p g(t_i)|I_i| - x_{\mathcal{P}} \right\| < \eta/2.$$

and so

$$|x_0^*(x_{\mathcal{P}}) - x_0^*(x_0)| \leq \left| x_0^*(x_{\mathcal{P}}) - x_0^* \left(\sum_{i=1}^p g(t_i)|I_i| \right) \right| +$$

$$+ \left| \sum_{i=1}^p x_0^* g(t_i)|I_i| - x_0^*(x_0) \right| < \eta.$$

- Now, previous inequality yields $\|x_{\mathcal{P}} - x_0\| < \varepsilon'$

Continuation of the proof

- Finally

$$\left\| \sum_{i=1}^p g(t_i)|I_i| - x_0 \right\| \leq \left\| \sum_{i=1}^p g(t_i)|I_i| - x_{\mathcal{P}} \right\| + \|x_{\mathcal{P}} - x_0\| < \varepsilon.$$

□

Fremlin (1994) proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable.

Fremlin (1994) proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable.

Question:

Is the result valid also in case of multifunctions?

Fremlin (1994) proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable.

Question:

Is the result valid also in case of multifunctions?

We will see that answer is positive for multifunctions with compact convex values being subsets of an arbitrary Banach space.

Key points to get the result:

Key points to get the result:

- ① the existence of Henstock integrable selections;

Key points to get the result:

- ① the existence of Henstock integrable selections;
- ② a Decomposition Theorem;

Key points to get the result:

- ① the existence of Henstock integrable selections;
- ② a Decomposition Theorem;
- ③ a technical (but useful) Lemma.

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a scalarly Henstock–Kurzweil integrable multifunction. Then TFAE:

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a scalarly Henstock–Kurzweil integrable multifunction. Then TFAE:

- ① Γ is Henstock integrable;

A Decomposition Theorem

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a scalarly Henstock–Kurzweil integrable multifunction. Then TFAE:

- ① Γ is Henstock integrable;
- ② $\mathcal{S}_H(\Gamma) \neq \emptyset$ and for every $f \in \mathcal{S}_H(\Gamma)$ the multifunction $G : [0, 1] \rightarrow ck(X)$ defined by

$$\Gamma(t) = G(t) + f(t)$$

is McShane integrable.

A Decomposition Theorem

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a scalarly Henstock–Kurzweil integrable multifunction. Then TFAE:

- ① Γ is Henstock integrable;
- ② $\mathcal{S}_H(\Gamma) \neq \emptyset$ and for every $f \in \mathcal{S}_H(\Gamma)$ the multifunction $G : [0, 1] \rightarrow ck(X)$ defined by

$$\Gamma(t) = G(t) + f(t)$$

is McShane integrable.

$$\mathcal{Z}_\Gamma := \{ \mathbf{s}(\mathbf{x}^*, \Gamma(\cdot)) = \mathbf{s}(\mathbf{x}^*, \mathbf{G}(\cdot)) + \mathbf{x}^* \mathbf{f}(\cdot) : \|\mathbf{x}^*\| \leq 1 \},$$

Lemma

Let $\mathcal{A} = \{g_\alpha : [0, 1] \rightarrow [0, \infty) : \alpha \in S\}$ be a family of functions satisfying the following conditions:

Lemma

Let $\mathcal{A} = \{g_\alpha : [0, 1] \rightarrow [0, \infty) : \alpha \in S\}$ be a family of functions satisfying the following conditions:

- ① \mathcal{A} is Henstock equi-integrable;

Lemma

Let $\mathcal{A} = \{g_\alpha : [0, 1] \rightarrow [0, \infty) : \alpha \in S\}$ be a family of functions satisfying the following conditions:

- ① \mathcal{A} is Henstock equi-integrable;
- ② \mathcal{A} is totally bounded for the seminorm $|| \cdot ||_1$;

Lemma

Let $\mathcal{A} = \{g_\alpha : [0, 1] \rightarrow [0, \infty) : \alpha \in S\}$ be a family of functions satisfying the following conditions:

- ① \mathcal{A} is Henstock equi-integrable;
- ② \mathcal{A} is totally bounded for the seminorm $|| \cdot ||_1$;
- ③ \mathcal{A} is pointwise bounded.

Lemma

Let $\mathcal{A} = \{g_\alpha : [0, 1] \rightarrow [0, \infty) : \alpha \in S\}$ be a family of functions satisfying the following conditions:

- ① \mathcal{A} is Henstock equi-integrable;
- ② \mathcal{A} is totally bounded for the seminorm $|| \cdot ||_1$;
- ③ \mathcal{A} is pointwise bounded.

Then the family \mathcal{A} is also McShane equi-integrable.

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- 1 Γ is McShane integrable;

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- ① Γ is McShane integrable;
- ② Γ is Henstock and Pettis integrable in $ck(X)$.

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- ① Γ is McShane integrable;
- ② Γ is Henstock and Pettis integrable in $ck(X)$.

Proof.

(2) \Rightarrow (1) Since $\Gamma : [0, 1] \rightarrow ck(X)$ is Henstock and Pettis integrable in $ck(X)$, then $\mathcal{S}_{MS}(\Gamma) \neq \emptyset$. Let f be a McShane integrable selection Γ . It follows from the Decomposition Theorem that there exists a multifunction $G : [0, 1] \rightarrow ck(X)$ that is McShane integrable such that $\Gamma = G + f$. It follows that Γ is also McShane integrable. \square

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- 1 Γ is McShane integrable;

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- ① Γ is McShane integrable;
- ② Γ is Henstock integrable and $\mathcal{S}_H(\Gamma) \subset \mathcal{S}_{MS}(\Gamma)$;

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- ① Γ is McShane integrable;
- ② Γ is Henstock integrable and $\mathcal{S}_H(\Gamma) \subset \mathcal{S}_{MS}(\Gamma)$;
- ③ Γ is Henstock integrable and $\mathcal{S}_H(\Gamma) \subset \mathcal{S}_P(\Gamma)$;

Theorem

Let $\Gamma : [0, 1] \rightarrow ck(X)$ be a multifunction. Then TFAE:

- ① Γ is McShane integrable;
- ② Γ is Henstock integrable and $\mathcal{S}_H(\Gamma) \subset \mathcal{S}_{MS}(\Gamma)$;
- ③ Γ is Henstock integrable and $\mathcal{S}_H(\Gamma) \subset \mathcal{S}_P(\Gamma)$;
- ④ Γ is Henstock integrable and $\mathcal{S}_P(\Gamma) \neq \emptyset$.

THANK YOU!

References

- A. Boccuto and A. R. Sambucini, A note on comparison between Birkhoff and McShane-type integrals for multifunctions, *Real. Anal. Exchange* 37 (2) (2012), 315-324.
- C. Cascales, V. Kadets and J. Rodriguez, Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, *J. Functional Analysis* 256(2009), 673-699.
- C. Cascales, V. Kadets and J. Rodriguez, Measurability and selections of multifunctions in Banach spaces, *J. Convex Anal.* 17(2010), 229-240.
- C. Cascales and J. Rodriguez, Birkhoff integral for multi-valued functions, *J. Math. Anal. Appl.* 297(2004), 540-560.
- C. Castaing and M. Valadier, *Convex Analysis and Measurable Multifunctions*, Lecture Notes in Math. 580(1977), Springer Verlag.

References

- J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts In Math. vol 92 (1984), Springer-Verlag.
- L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, Real Analysis Exchange 29 (2003/2004), 543–556.
- L. Di Piazza and K. Musiał, Characterizations of Kurzweil-Henstock-Pettis integrable functions, Studia Math. 176 (2), (2006), 159–176, ISSN: 0039-3223.
- L. Di Piazza and K. Musiał, *A decomposition theorem for compact-valued Henstock integral*, Monatsh. Math. 148 (2), (2006), 119–126.
- L. Di Piazza and K. Musiał, A decomposition of Denjoy-Khintchine-Pettis and Henstock-Kurzweil-Pettis integrable multifunctions, Vector Measures, Integration and Related Topics (Eds.) G.P. Curbera, G. Mockenhaupt, W.J. Ricker, Operator Theory: Advances and Applications Vol. 201

References

- L. Di Piazza and K. Musiał, Set-Valued Henstock-Kurzweil-Pettis Integral, *Set-Valued Analysis* 13 (2005), 167-179.
- K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, *Set-Valued Anal.* 8(2000), 329–360.
- D. H. Fremlin, Pointwise compact sets of measurable functions, *Manuscripta Math.* 15 (1975), 219–242
- D. H. Fremlin, The Henstock and McShane integrals of vector-valued functions, *Illinois J. Math.* 38(1994), 471-479
- D. H. Fremlin and J. Mendoza, *On the integration of vector-valued functions*, *Illinois J. Math.* 38(1994), 127-147.
- Fremlin, D. H., The generalized McShane integral, *Illinois J. Math.* 39(1995), 39-67.

References

- R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, *Studia Math.* 92 (1989), 73–91.
- Hu, S. and Papageorgiou, N.S., *Handbook of Multivalued Analysis I*, (1997), Kluwer Academic Publ.
- K. Musiał, Pettis integration, *Supplemento ai Rend. Circolo Mat. di Palermo, Serie II*(10)(1985), 133-142.
- K. Musiał, Topics in the theory of Pettis integration, *Rend. Istit. Mat. Univ. Trieste* 23(1991), 177–262.
- K. Musiał, Pettis Integral, *Handbook of Measure Theory I*, 532-586. Elsevier Science B. V. 2002.
- K. Musiał, Pettis integrability of multifunctions with values in arbitrary Banach spaces, *J. Convex Anal.* 18, No.3, (2011) ,769-810.

References

- K. M. Naralenkov, On continuity properties of some classes of vector-valued functions. *Math. Slovaca* 61 (2011), no. 6, 895-906.
- D. Ramachandran, Perfect measures and related topics. *Handbook of Measure Theory I*, 765-786. Elsevier Science B. V. 2002.
- P. Romanowski, Essai d'une exposition de l'intégrale de Denjoy sans nombres transfinis, *Fund. Math.* 19 (1932), 38-44.
- M. Talagrand, Pettis integral and measure theory, *Memoirs AMS* 307(1984).