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@ Introduction
@ Henstock-Kurzweil-Pettis integrability for multifunctions
e Henstock-Kurzweil-Pettis integrable selections
e integration in weakly sequentially complete Banach spaces
@ Henstock and McShane integrability for multifunctions

o existence of Henstock (resp. McShane) integrable selections

e relations among Henstock, McShane and Pettis integrals
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Henstock integral for real valued functions

e [0,1] is the unit interval of the real line
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e [0,1] is the unit interval of the real line

@ L denotes the family of all Lebesgue measurable subsets of
[0,1] and if A € L, then |A| denotes its Lebesgue measure.
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Henstock integral for real valued functions

e [0,1] is the unit interval of the real line

@ L denotes the family of all Lebesgue measurable subsets of
[0,1] and if A € L, then |A| denotes its Lebesgue measure.

@ 7 denotes the family of all nontrivial closed subintervals of

[0, 1]
e A partition of [0,1] is a finite collection of pairs
P={(h,t1),...,(Ip, tp)}, where I1,..., I, are non

overlapping intervals of Z, t; € [0,1], j =1,...,p, and

Uleljz[O,l]. Ifticl,j=1,...,pwesay that Pisa

Perron partition of [0,1]
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Henstock integral for real valued functions

[0, 1] is the unit interval of the real line

L denotes the family of all Lebesgue measurable subsets of
[0,1] and if A € L, then |A| denotes its Lebesgue measure.

7 denotes the family of all nontrivial closed subintervals of
[0, 1]

A partition of [0, 1] is a finite collection of pairs
P={(h,t1),...,(Ip, tp)}, where I1,..., I, are non
overlapping intervals of Z, t; € [0,1], j =1,...,p, and
U?_;=10,1). If tje l;, j=1,...,p we say that P is a

J
Perron partition of [0,1]

A gauge on [0, 1] is a positive function on [0, 1]
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Henstock integral for real valued functions

e [0,1] is the unit interval of the real line

@ L denotes the family of all Lebesgue measurable subsets of
[0,1] and if A € L, then |A| denotes its Lebesgue measure.

@ 7 denotes the family of all nontrivial closed subintervals of

[0, 1]
e A partition of [0,1] is a finite collection of pairs
P={(h,t1),...,(Ip, tp)}, where I1,..., I, are non

overlapping intervals of Z, t; € [0,1], j =1,...,p, and
Ulelj: [0,1]. ftje l;, j=1,...,p we say that P is a
Perron partition of [0,1]

e A gauge on [0, 1] is a positive function on [0, 1]

e Given a gauge 9, a partition {(/1, t1),...,(/p, tp)} is said to be
O-fineif [; C (tj —0(t;), t; +0(¢j)). j=1,...,p.
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Definition

A function h: [0,1] — R is said to be
Henstock-Kurzweil-integrable, or simply HK-integrable, on
[0, 1] if there exists a € R with the following property: for every
€ > 0 there exists a gauge 0 on [0, 1] such that

p

Z ()] —a| <e, (1)

=1

for each d—fine Perron partition {(/;,t;): j=1,..,p} of [0,1].
We set (HK)fO1 hdt := a.
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@ X is a general Banach space with its dual X*
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Multifunctions

@ X is a general Banach space with its dual X*

cb(X) all non-empty closed convex and bounded subsets of X

cwk(X) all weakly compact elements of cb(X)

(]

ck(X) all compact members of cb(X)

We consider on ¢b(X) the Minkowski addition
(A@B:={a+b:ac A, bec B}) and the standard
multiplication by scalars
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Multifunctions

@ X is a general Banach space with its dual X*

cb(X) all non-empty closed convex and bounded subsets of X

cwk(X) all weakly compact elements of cb(X)

(]

ck(X) all compact members of cb(X)

We consider on ¢b(X) the Minkowski addition
(A@B:={a+b:ac A, bec B}) and the standard
multiplication by scalars

@ dy is the Hausdorff metric on cb(X)
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Multifunctions

@ For each C € cb(X) the support function of C is denoted
by s(-, C) and defined on X* by

s(x*, C) =sup{< x*,x >: x € C},

for each x* € X*
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@ For each C € cb(X) the support function of C is denoted
by s(-, C) and defined on X* by
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for each x* € X*
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Multifunctions

@ For each C € cb(X) the support function of C is denoted
by s(-, C) and defined on X* by

s(x*, C) =sup{< x*,x >: x € C},
for each x* € X*

e A multifunction is map I": [0, 1] — ¢cb(X)

e A function f: [0,1] — X is called a selection of I" if
f(t) € I'(t), for every t € [0,1].
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Multifunctions

e A multifunction I": [0, 1] — cb(X) is said to be scalarly
measurable if for every x* € X*, the function s(x*, I'(-)) is
measurable
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Multifunctions

e A multifunction I": [0, 1] — cb(X) is said to be scalarly
measurable if for every x* € X*, the function s(x*, I'(-)) is
measurable

e A multifunction I': [0,1] — cb(X) is said to be scalarly
integrable (resp. scalarly HK-integrable) if s(x*, I'(-)) is
integrable (resp. HK-integrable) for every x* € X*.
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Henstock-Kurzweil-Pettis integrability

Definition

A scalarly HK-integrable multifunction I": [0,1] — ¢b(X) is said to
be Henstock-Kurzweil-Pettis integrable (or simply
HKP-integrable) in cb(X), [ck(X), cwk(X)] if for each | € T
there exists a set ® (/) € cb(X) [ck(X), cwk(X), respectively]
such that
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Henstock-Kurzweil-Pettis integrability

Definition

A scalarly HK-integrable multifunction I": [0,1] — ¢b(X) is said to
be Henstock-Kurzweil-Pettis integrable (or simply
HKP-integrable) in cb(X), [ck(X), cwk(X)] if for each | € T
there exists a set ® (/) € cb(X) [ck(X), cwk(X), respectively]
such that

s(x*, ®p(l) = (HK)/s(x*,F(t))dt for every x* € X*.
I
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Henstock-Kurzweil-Pettis integrability

Definition

A scalarly HK-integrable multifunction I": [0,1] — ¢b(X) is said to
be Henstock-Kurzweil-Pettis integrable (or simply
HKP-integrable) in cb(X), [ck(X), cwk(X)] if for each | € T
there exists a set ® (/) € cb(X) [ck(X), cwk(X), respectively]
such that

s(x*, ®p(l) = (HK)/s(x*,F(t))dt for every x* € X*.
I

We write (HKP) [, I'(t) dt := ®p(/) and call ®(/) the
Henstock-Kurzweil-Pettis integral of 1" over /.
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Pettis integrability

Definition

A scalarly integrable multifunction I": [0,1] — cb(X) is said to be
Pettis integrable (or simply P-integrable) in

cb(X), [ck(X), cwk(X)] if for each E € L there exists a set
®r(E) € cb(X) [ck(X), cwk(X), respectively] such that

s(x*, ®(E)) :/Es(x*,F(t))dt for every x* € X*.  (2)

We write (P) [z I'(t) dt := ®p(E) and call 1 (E) the Pettis
integral of I over E.
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Proposition

(i) Let I':[0,1] — cwk(X) be a scalarly HK-integrable
multifunction. Then I" is HKP-integrable in cwk(X) if and
only if for each | € Z the mapping

x* — (HK)/s(x*,F(t))dt
|

is 7(X*, X)-continuous (where 7(X*, X) is the Mackey
topology on X*).
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Proposition

(i) Let I':[0,1] — cwk(X) be a scalarly HK-integrable
multifunction. Then I" is HKP-integrable in cwk(X) if and
only if for each | € Z the mapping

X" — (HK)/s(x*,F(t))dt
I
is 7(X*, X)-continuous (where 7(X*, X) is the Mackey
topology on X*).
(i) Let I':[0,1] — ck(X) be a scalarly HK-integrable
multifunction. Then I" is HKP-integrable in ck(X) if and
only if for each | € 7 the mapping

x* — (HK)/s(x*,F(t))dt
|

is 7c(X*, X)-continuous (where 7.(X*, X) is the topology on
X* of uniform convergence on elements of ck(X)).
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Selections of HKP-integrable multifunctions

Proposition

Let I": [0,1] — cwk(X) be a multifunction HKP-integrable in
cwk(X). Then there exists an HKP-integrable selection f of I".
Moreover each scalarly measurable selection f of I is
HKP-integrable.

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in ai



Selections of HKP-integrable multifunctions

Proposition

Let I": [0,1] — cwk(X) be a multifunction HKP-integrable in
cwk(X). Then there exists an HKP-integrable selection f of I".
Moreover each scalarly measurable selection f of I is
HKP-integrable.

Sketch of the proof.
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Selections of HKP-integrable multifunctions

Proposition

Let I": [0,1] — cwk(X) be a multifunction HKP-integrable in
cwk(X). Then there exists an HKP-integrable selection f of I".
Moreover each scalarly measurable selection f of I is
HKP-integrable.

Sketch of the proof. Since I is scalarly HK-integrable, it is
scalarly measurable. So by a remarkable result of
Cascales-Kadets-Rodriguez (2010) we have the existence of a
scalarly measurable selection f of I'.
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Selections of HKP-integrable multifunctions

Proposition

Let I": [0,1] — cwk(X) be a multifunction HKP-integrable in
cwk(X). Then there exists an HKP-integrable selection f of I".
Moreover each scalarly measurable selection f of I is
HKP-integrable.

Sketch of the proof. Since I is scalarly HK-integrable, it is
scalarly measurable. So by a remarkable result of
Cascales-Kadets-Rodriguez (2010) we have the existence of a
scalarly measurable selection f of I'.

Then, for each x* € X* we have

—s(—x*,I'(t)) < x*f(t) <s(x*, I'(t)).

0 < x*f(t) + s(—x*,I'(t)) < s(x*, () +s(—x*,I'(t)).
and the HK-integrability of the function x*f follows.
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continuation of the proof

Moreover for each | € 7

—(HK)/IS(—X*,F(t)) dt < (HK)/x*f(t) dt < (HK)/S(X*,F(t))dt.

I I
So by previous characterization f is HKP-integrable. O

By the symbol Sykp(I") we denote the family of all selections of I’
that are HKP-integrable.
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HKP-integrable selections

Let I": [0,1] — cwk(X) be a scalarly measurable multifunction.
Then I' is HKP-integrable in cwk(X) if and only if each scalarly
measurable selection f of I' is HKP-integrable.
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HKP-integrable selections

Theorem

Let I": [0,1] — cwk(X) be a scalarly measurable multifunction.
Then I' is HKP-integrable in cwk(X) if and only if each scalarly
measurable selection f of I' is HKP-integrable.

Theorem
If I": [0,1] — ck(X) is scalarly HK-integrable, then TFAE:
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HKP-integrable selections

Theorem

Let I": [0,1] — cwk(X) be a scalarly measurable multifunction.
Then I' is HKP-integrable in cwk(X) if and only if each scalarly
measurable selection f of I' is HKP-integrable.

Theorem
If I": [0,1] — ck(X) is scalarly HK-integrable, then TFAE:

© I is HKP-integrable in ck(X) and ®(Z) := U,z ®r(l) is
relatively compact
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HKP-integrable selections

Theorem

Let I": [0,1] — cwk(X) be a scalarly measurable multifunction.
Then I' is HKP-integrable in cwk(X) if and only if each scalarly
measurable selection f of I' is HKP-integrable.

Theorem
If I": [0,1] — ck(X) is scalarly HK-integrable, then TFAE:

© I is HKP-integrable in ck(X) and ®(Z) := U,z ®r(l) is
relatively compact

@ Each scalarly measurable selection of I" is HKP-integrable and
has norm relatively compact range of its integral
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HKP-integrable selections

Theorem

Let I": [0,1] — cwk(X) be a scalarly measurable multifunction.
Then I' is HKP-integrable in cwk(X) if and only if each scalarly
measurable selection f of I' is HKP-integrable.

Theorem
If I": [0,1] — ck(X) is scalarly HK-integrable, then TFAE:

© I is HKP-integrable in ck(X) and ®(Z) := U,z ®r(l) is
relatively compact

@ Each scalarly measurable selection of I" is HKP-integrable and
has norm relatively compact range of its integral

© Each scalarly measurable selection of " is HKP-integrable and
has continuous primitive.

v
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A Decomposition Theorem

Theorem

A scalarly HK-integrable multifunction I" : [0, 1] — ck(X)[cwk(X)]
is HKP-integrable in ck(X)[cwk(X)] if and only if

Sukp(I') # 0 and for every f € Sykp(I") the multifunction

G : [0,1] — ck(X)[cwk(X)] defined by

I'(t) = G(t)+ f(t)

is Pettis integrable in ck(X)[cwk(X)].
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Integration in weakly sequentially complete Banach spaces

We know that for Pettis integrable functions the space ¢y is that
space which makes problems: if cg C X isomorphically, then there
are X-valued scalarly integrable functions that are not Pettis
integrable.
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Integration in weakly sequentially complete Banach spaces

We know that for Pettis integrable functions the space ¢y is that
space which makes problems: if cg C X isomorphically, then there
are X-valued scalarly integrable functions that are not Pettis
integrable.

In case of HKP-integral a similar role to spaces not containing ¢y is
played by weakly sequentially complete separable Banach spaces.
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Integration in weakly sequentially complete Banach spaces

We know that for Pettis integrable functions the space ¢y is that
space which makes problems: if cg C X isomorphically, then there
are X-valued scalarly integrable functions that are not Pettis
integrable.

In case of HKP-integral a similar role to spaces not containing ¢y is
played by weakly sequentially complete separable Banach spaces.
Let us recall that X is called weakly sequentially complete if
each weakly Cauchy sequence in X is weakly convergent. It is
known that no weakly sequentially complete Banach space can
contain an isomorphic copy of ¢.
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Integration in weakly sequentially complete Banach spaces

We know that for Pettis integrable functions the space ¢y is that
space which makes problems: if cg C X isomorphically, then there
are X-valued scalarly integrable functions that are not Pettis
integrable.

In case of HKP-integral a similar role to spaces not containing ¢y is
played by weakly sequentially complete separable Banach spaces.
Let us recall that X is called weakly sequentially complete if
each weakly Cauchy sequence in X is weakly convergent. It is
known that no weakly sequentially complete Banach space can
contain an isomorphic copy of ¢.

(Gordon 1989): A separable Banach space X is weakly
sequentially complete if and only if each X-valued scalarly
HK-integrable function f : [0,1] — X is HKP integrable.
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Integration in weakly sequentially complete Banach spaces

We recall that a space Y determines a function f : [0,1] — X
(resp. a multifunction " : [0, 1] — ¢b(X)) if x*f = 0 (resp.
s(x*,I') = 0) a.e. for each x* € Y (the exceptional sets depend
on x*).
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Integration in weakly sequentially complete Banach spaces

We recall that a space Y determines a function f : [0,1] — X
(resp. a multifunction " : [0, 1] — ¢b(X)) if x*f = 0 (resp.
s(x*,I') = 0) a.e. for each x* € Y (the exceptional sets depend
on x*).

Theorem
For an arbitrary Banach space X TFAE:

@ X is weakly sequentially complete Banach space
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Integration in weakly sequentially complete Banach spaces

We recall that a space Y determines a function f : [0,1] — X
(resp. a multifunction " : [0, 1] — ¢b(X)) if x*f = 0 (resp.
s(x*,I') = 0) a.e. for each x* € Y (the exceptional sets depend
on x*).

Theorem

For an arbitrary Banach space X TFAE:

@ X is weakly sequentially complete Banach space

@ Each scalarly HK-integrable function f : [0,1] — X that is

determined by a weakly compactly generated (WCG) space is
HKP-integrable
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Integration in weakly sequentially complete Banach spaces

We recall that a space Y determines a function f : [0,1] — X
(resp. a multifunction " : [0, 1] — ¢b(X)) if x*f = 0 (resp.
s(x*,I') = 0) a.e. for each x* € Y (the exceptional sets depend
on x*).

Theorem
For an arbitrary Banach space X TFAE:

@ X is weakly sequentially complete Banach space

@ Each scalarly HK-integrable function f : [0,1] — X that is

determined by a weakly compactly generated (WCG) space is
HKP-integrable

© Each scalarly HK-integrable multifunction
I': [0,1] — cwk(X)[ck(X)] that is determined by a WCG
space, is HKP-integrable in cwk(X).
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Integration in Banach spaces possessing the Schur property

We recall that a Banach space X has the Schur property is each
sequence weakly convergent to 0 is also norm convergent. It well
known that each space with the Schur property is weakly
sequentially complete.
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Integration in Banach spaces possessing the Schur property

We recall that a Banach space X has the Schur property is each
sequence weakly convergent to 0 is also norm convergent. It well
known that each space with the Schur property is weakly
sequentially complete.

Theorem
For an arbitrary Banach space X TFAE:
@ X has the Schur property
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Integration in Banach spaces possessing the Schur property

We recall that a Banach space X has the Schur property is each
sequence weakly convergent to 0 is also norm convergent. It well
known that each space with the Schur property is weakly
sequentially complete.

Theorem
For an arbitrary Banach space X TFAE:
@ X has the Schur property

@ Each scalarly HK-integrable multifunction I": [0, 1] — ck(X)
that is determined by a WCG space, is HKP-integrable in
ck(X).
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Integration in Banach spaces possessing the Schur property

We recall that a Banach space X has the Schur property is each
sequence weakly convergent to 0 is also norm convergent. It well
known that each space with the Schur property is weakly
sequentially complete.

Theorem
For an arbitrary Banach space X TFAE:
@ X has the Schur property

@ Each scalarly HK-integrable multifunction I": [0, 1] — ck(X)
that is determined by a WCG space, is HKP-integrable in
ck(X).

Proof. (1) = (2) According to previous theorem, if

I' 1 [0,1] — ck(X) is scalarly HK-integrable and determined by a
WCG space, then it is HKP-integrable in cwk(X). The Schur
property of X forces the integrability in ck(X). O

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in al



Henstock and McShane integrals for multifunctions

Definition

A multifunction " : [0, 1] — ¢b(X) is said to be Henstock (resp.
McShane) integrable, if there exists a set ® [0, 1] € cb(X) with
the following property: for every & > 0 there exists a gauge 0 on

[0, 1] such that for each d—fine Perron partition (resp. partition)
{(h,t1),...,(Ip, tp)} of [0,1], we have
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Henstock and McShane integrals for multifunctions

Definition

A multifunction " : [0, 1] — ¢b(X) is said to be Henstock (resp.
McShane) integrable, if there exists a set ® [0, 1] € cb(X) with
the following property: for every & > 0 there exists a gauge 0 on

[0, 1] such that for each d—fine Perron partition (resp. partition)
{(h,t1),...,(Ip, tp)} of [0,1], we have

dH<¢p[0, 1],ép(t,')|//|> <e.

i=1
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Henstock and McShane integrals for multifunctions

Definition

A multifunction " : [0, 1] — ¢b(X) is said to be Henstock (resp.
McShane) integrable, if there exists a set ® [0, 1] € cb(X) with
the following property: for every & > 0 there exists a gauge 0 on

[0, 1] such that for each d—fine Perron partition (resp. partition)
{(h,t1),...,(Ip, tp)} of [0,1], we have

dH<¢p[0, 1],ép(t,')|//|> <e.

i=1

We write then (H) fol I'(t) dt := &p[0,1] (resp.
(MS) [5 () dt :== [0, 1]).
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Henstock and McShane integrals for multifunctions

Remarks:

@ From the definition and the completeness of the Hausdorff
metric in cwk(X)[ck(X)], it is easy to see that if a
cwk (X)[ck(X)]-valued multifunction is Henstock integrable,
than also 1[0, 1] € cwk(X)[ck(X)].
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Henstock and McShane integrals for multifunctions

Remarks:

@ From the definition and the completeness of the Hausdorff
metric in cwk(X)[ck(X)], it is easy to see that if a
cwk (X)[ck(X)]-valued multifunction is Henstock integrable,
than also 1[0, 1] € cwk(X)[ck(X)].

@ Each McShane integrable multifunction, is also Henstock
integrable (with the same values of the integrals)
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Henstock and McShane integrals for multifunctions

@ According to Hormander's equality

dH<K,@F(ti)|i|> = sup
i=1

[x[<1

p
s(x*, K) st ()|l -
i=1

Luisa Di Piazza Non-absolute gage integrals for multifunctions with values in al



Henstock and McShane integrals for multifunctions

@ According to Hormander's equality

dH<K,@F(ti)|i|> = sup
i=1

[x[<1

p
s(x*, K) st ()|
i=1

Let us consider the embedding j : cb(X) — l(B(X™))
defined by

i(K)(x") = s(x*, K).
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Henstock and McShane integrals for multifunctions

@ According to Hormander's equality

dH<K,®F(ti)|i|> = sup
i=1

[x[<1

p
s(x*, K) st ()|
i=1

Let us consider the embedding j : cb(X) — l(B(X™))
defined by

H(K)(x") = s(x", K).
The images j(cb(X)), j(ck(X)) and j(cwk(X)) are closed
cones of Ix(B(X*)). So, if z € I,x(B(X*)) is the value of the

Henstock integral of j o I', then there exists a set
K € cb(X) [ck(X), ewk(X)] with j(K) = z.
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Henstock and McShane integrals for multifunctions

@ According to Hormander's equality

dH<K,@F(ti)|i|> = sup
i=1

[x[<1

p
s(x*, K) st ()|
i=1

Let us consider the embedding j : cb(X) — l(B(X™))
defined by

i(K)(x") = s(x",K).
The images j(cb(X)), j(ck(X)) and j(cwk(X)) are closed
cones of Ix(B(X*)). So, if z € I,x(B(X*)) is the value of the
Henstock integral of j o I', then there exists a set
K € cb(X) [ck(X), cwk(X)] with j(K) = z.
Therefore: a multifunction " : [0, 1] — cb(X) is Henstock
(or McShane) integrable if and only if the single valued
function jo I" : [0,1] — /,(B(X™)) is Henstock (or
McShane) integrable in the usual sense.
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Henstock and McShane integrals for multifunctions

o If I': [0,1] — cb(X)[ewk(X), ck(X)] is Henstock
integrable, then it is also Henstock-Kurzweil-Pettis
integrable in cb(X)[cwk(X), ck(X)].
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Henstock and McShane integrals for multifunctions

o If I': [0,1] — cb(X)[ewk(X), ck(X)] is Henstock
integrable, then it is also Henstock-Kurzweil-Pettis
integrable in cb(X)[cwk(X), ck(X)].

o If I : [0,1] — cb(X)[cwk(X), ck(X)] is McShane integrable,
then it is also Pettis integrable in cb(X)[cwk(X), ck(X)].
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Equi-integrability.

In the theory of Lebesgue integration uniform integrability plays
an essential role. It's counterpart in the theory of gauge integrals is
the notion of equi-integrability.
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Equi-integrability.

In the theory of Lebesgue integration uniform integrability plays
an essential role. It's counterpart in the theory of gauge integrals is
the notion of equi-integrability.

Definition

We recall that a family of real valued HK-integrable (or McShane
integrable) functions {g,: @ € A} is Henstock (resp. McShane)
equi-integrable on [0, 1] whenever for every € > 0 there is a gauge
0 such that

P 1
sup Z tJ|I|—HK)/0 gadtl:a€chAp <e,

for each d—fine Perron partition (resp. partition)
{(l;,t)): j=1,..,p} of [0,1].
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Equi-integrability

Given a multifunction I": [0,1] — cb(X) we set

Zr = {s(x", I'()) - x| <1},
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Equi-integrability

Given a multifunction I": [0,1] — cb(X) we set

Zr = {s(x", I'()) - x| <1},

Proposition

A scalarly HK—integrable (resp. integrable) multifunction
I' 1 [0,1] — cb(X), is Henstock (resp. McShane) integrable iff the
family Zp is Henstock (resp. McShane) equi-integrable.
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Selections of Henstok or McShane integrable

multifunctions.

By Su(I") [Sms(I"), Sp(I")] we denote the family of all scalarly
measurable selections of I" that are Henstock [McShane, Pettis]
integrable.
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Selections of Henstok or McShane integrable

multifunctions.

By Su(I") [Sms(I"), Sp(I")] we denote the family of all scalarly
measurable selections of I" that are Henstock [McShane, Pettis]
integrable.

If I": [0,1] — cwk(X) is Henstock integrable, then Sy(I") # 0.
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Selections of Henstok or McShane integrable

multifunctions.

By Su(I") [Sms(I"), Sp(I")] we denote the family of all scalarly
measurable selections of I" that are Henstock [McShane, Pettis]

integrable.

If I": [0,1] — cwk(X) is Henstock integrable, then Sy(I") # 0.

Sketch of the proof. In the first part we proceed in a way similar
to that of Cascales-Kadets-Rodriguez (2009) for Pettis integrable
multifunctions.
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Continuation of the proof

e Let I :[0,1] — cwk(X) be Henstock integrable. Since
H = (H) fol I'(t) dt € cwk(X), there exists a strongly
exposed point xp € H. Assume that x§ € B(X*) is such that
x5 (x0) > xg(x) for every x € H\ {xo} and the sets
{x € H:xj(x) > x5(x0) —a}, a € R, form a neighborhood
basis of xp in the norm topology on H.
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Continuation of the proof

e Let I :[0,1] — cwk(X) be Henstock integrable. Since
H = (H) fol I'(t) dt € cwk(X), there exists a strongly
exposed point xp € H. Assume that x§ € B(X*) is such that
x5 (x0) > xg(x) for every x € H\ {xo} and the sets
{x € H:xj(x) > x5(x0) —a}, a € R, form a neighborhood
basis of xp in the norm topology on H.

o We define G : [0,1] — cwk(X) by
G(t) :={x e I'(t) : x5(x) = s(xq, I'(t))}.

Since I' is Henstock integrable, then I is also HKP-integrable
in cwk(X) and also G is HKP-integrable in cwk(X). Let

g : [0,1] — X be any selection of G. Then g is scalarly
measurable (and of course HKP-integrable). Moreover

x5 (x0) = (HK) [y xg(t) dt.
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Continuation of the proof

@ Let e >0and 0 <& <e/2 be arbitrary. Then, let 0 <7 < &’
be such that

VxeH [xg(x)—x(0)l <n=lx—xl <&l (3)

Since I' is Henstock integrable and xjg is HK-integrable we
can find a gauge ¢ on [0, 1] such that for each d-fine Perron
partition P := {(h, t1),...,(lp, tp)} of [0,1]

p
dn (H,@r(t,-)|/,-|> <n/2

i=1
and

1
/0 x;8(t ZXog )i

So there exists a point xp € H W|th

<n/2.
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Continuation of the proof

p

> ()|l —xp

i=1

<n/2.

and so

X0 (xp) — X0 (x0)| <

X (xp) = X0 (Z g(ti)!/f!>

i=1

+ <.

p
> xge ()il — x5 (x0)
i=1

@ Now, previous inequality yields ||xp — xp|| < &’
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Continuation of the proof

e Finally
P P
> gl = xo|| <[> g(®)|hil —xp| + lIxp — ol <&
i=1 i=1

O
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Relations among the integrals

Fremlin (1994) proved that a Banach space valued function is
McShane integrable if and only if it is Henstock and Pettis
integrable.
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Relations among the integrals

Fremlin (1994) proved that a Banach space valued function is
McShane integrable if and only if it is Henstock and Pettis
integrable.

Is the result valid also in case of multifunctions? l
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Relations among the integrals

Fremlin (1994) proved that a Banach space valued function is
McShane integrable if and only if it is Henstock and Pettis
integrable.

Is the result valid also in case of multifunctions?

We will see that answer is positive for multifunctions with compact
convex values being subsets of an arbitrary Banach space.
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Relations among the integrals

Key points to get the result:
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Relations among the integrals

Key points to get the result:

O the existence of Henstock integrable selections;
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Relations among the integrals

Key points to get the result:

O the existence of Henstock integrable selections;

@ a Decomposition Theorem;
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Relations among the integrals

Key points to get the result:

O the existence of Henstock integrable selections;
@ a Decomposition Theorem;

@ a technical (but useful) Lemma.
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A Decomposition Theorem

Let I": [0,1] — ck(X) be a scalarly Henstock—Kurzweil integrable
multifunction. Then TFAE:
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A Decomposition Theorem

Let I": [0,1] — ck(X) be a scalarly Henstock—Kurzweil integrable
multifunction. Then TFAE:

© [ is Henstock integrable;
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A Decomposition Theorem

Let I": [0,1] — ck(X) be a scalarly Henstock—Kurzweil integrable
multifunction. Then TFAE:

© [ is Henstock integrable;

@ Su(I') # 0 and for every f € Sy(I") the multifunction
G : [0,1] — ck(X) defined by

I'(t) = G(t)+ f(t)

is McShane integrable.
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A Decomposition Theorem

Let I": [0,1] — ck(X) be a scalarly Henstock—Kurzweil integrable
multifunction. Then TFAE:

© [ is Henstock integrable;

@ Su(I') # 0 and for every f € Sy(I") the multifunction
G : [0,1] — ck(X) defined by

I'(t) = G(t)+ f(t)

is McShane integrable.

Zp = {s(x", I()) = s(x*, G(-)) + x"F() : x| <1},
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A technical Lemma

Lemma

Let A={g,:[0,1] = [0,00) : @« € S} be a family of functions
satisfying the following conditions:
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A technical Lemma

Lemma

Let A={g,:[0,1] = [0,00) : @« € S} be a family of functions
satisfying the following conditions:

© A is Henstock equi-integrable;
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A technical Lemma

Lemma

Let A={g,:[0,1] = [0,00) : @« € S} be a family of functions
satisfying the following conditions:

© A is Henstock equi-integrable;

@ A is totally bounded for the seminorm || ||1;
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A technical Lemma

Lemma

Let A={g,:[0,1] = [0,00) : @« € S} be a family of functions
satisfying the following conditions:

© A is Henstock equi-integrable;
@ A is totally bounded for the seminorm || ||1;

@ A is pointwise bounded.
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A technical Lemma

Lemma

Let A={g,:[0,1] = [0,00) : @« € S} be a family of functions
satisfying the following conditions:

© A is Henstock equi-integrable;
@ A is totally bounded for the seminorm || ||1;

@ A is pointwise bounded.

Then the family A is also McShane equi-integrable.
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Relations among the integrals

Let I": [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;
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Relations among the integrals

Let I": [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;

@ I is Henstock and Pettis integrable in ck(X).
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Relations among the integrals

Let I": [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;

@ I is Henstock and Pettis integrable in ck(X).

Proof.

(2) = (1) Since I": [0,1] — ck(X) is Henstock and Pettis
integrable in ck(X), then Sys(I") # (0. Let f be a McShane
integrable selection I". It follows from the Decomposition Theorem
that there exists a multifunction G : [0, 1] — ck(X) that is
McShane integrable such that I" = G + f. It follows that I" is also
McShane integrable. O
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Relations among the integrals

Let I : [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;
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Relations among the integrals

Let I : [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;

@ I is Henstock integrable and Sy(I") C Sms(I');
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Relations among the integrals

Let I : [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;

@ I is Henstock integrable and Sy(I") C Sms(I');

© I is Henstock integrable and Sy(I") C Sp(I');
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Relations among the integrals

Let I : [0,1] — ck(X) be a multifunction. Then TFAE:
@ [ is McShane integrable;

@ I is Henstock integrable and Sy(I") C Sms(I');

© I is Henstock integrable and Sy(I") C Sp(I');

@ I is Henstock integrable and Sp(I") # 0.
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THANK YOU!
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