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Classical Radon-Nikodym theorem

Assume that X = (X ,A) is a measurable space and ν, µ are
measures defined on X .

The Radon-Nikodym theorem says
that ν is absolutely continuous with respect to µ (we write
ν � µ) if and only if there exists a measurable function
g : X → [0,+∞) such that∫

f dν =

∫
(f · g) dµ

for all f ∈ L1(ν).
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Radon-Nikodym theorem for vector measures

Let Y be a Banach space.

Assume that (X ,A) is a measurable space, µ is a measure and
ν is a countably additive vector measure of bounded variation
having values in Y such that |ν| � µ.
We say that a Banach space Y has the Radon-Nikodym
property if there exist a µ-integrable function g : X → Y such
that:

ν(E) =

∫
E

g dµ, E ∈ A.

Every reflexive Banach space has the Radon-Nikodym
property. There are spaces which do not have the
Radon-Nikodym property, e.g. c0, L1(Ω), C(Ω), L∞(Ω).
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Operators instead of integrals

Put:

T (f ) :=

∫
f dν, V (h) :=

∫
h dµ, π(f )(x) := f (x) · g(x).

Note that T and V are positive operators defined on L1(ν) and
L1(µ), respectively, and π is an orthomorphism of L1(ν), i.e. π is
an order bounded linear operator such that f ⊥ g implies
πf ⊥ g.
The assertion of the Radon-Nikodym theorem:∫

f dν =

∫
(f · g) dµ

can be rewritten as follows: T = V ◦ π.
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Results of Maharam and the Luxemburg-Schep
theorem

Dorothy Maharam, The representation of abstract integrals,
Trans. Amer. Math. Soc., 75 (1953), 154–184.

Dorothy Maharam, On kernel representation of linear
operators, Trans. Amer. Math. Soc., 79 (1955), 229–255.

W.A.J. Luxemburg, A.R. Schep, A Radon-Nikodym type
theorem for positive operators and a dual, Nederl. Akad.
Wet., Proc. Ser. A, 81 (1978), 357–375.
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Maharam property

Let F and G be two Riesz spaces and let V : F → G be a
positive linear operator.

Then V is said to have Maharam property if for all f ∈ F and for
all g ∈ G such that f ≥ 0 and 0 ≤ g ≤ Vf there exists some
f1 ∈ F such that 0 ≤ f1 ≤ f and Vf1 = g.

In other words, for every positive f ∈ F , the interval [0,Vf ] is
contained in the set V ([0, f ]).
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Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces F and G
are Dedekind complete and operator V : F → G is order
continuous, then the Maharam property of V is equivalent to
the following fact:

For every operator T : F → G such that 0 ≤ T ≤ V there exists
an orthomorphism π of F such that 0 ≤ π ≤ I and T = V ◦ π.

This is an operator version of the assertion of the
Radon-Nikodym theorem.

The dual theorem: conditions for factorization T = π ◦ V .
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Luxemburg-Schep implies Radon-Nikodym

A typical example of orthomorphism is multiplication operator:

π(f )(x) = f (x) · g(x),

with some function g

(for example, if the domain of π is C(X ),
then g ∈ C(X ); if it is L1, then g ∈ L∞).
To derive the Radon-Nikodym theorem from the
Luxemburg-Schep theorem we need that every orthomorphism
of L1(µ) is a multiplication operator (so g is the Radon-Nikodym
derivative).
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Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on Lp(X ) for
0 < p <∞ is a multiplication operator (he proved this also for
C([a,b]), Cc(R) and for other spaces).

A.C. Zaanen, Examples of orthomorphisms, J. Approx.
Theory, 13 (1975), 194–204.

It is true that every Archimedean Riesz space is isomorphic to
C(Ω) with some totally disconnected space Ω and every
orthomorphism of C(Ω) is a multiplication operator (Bigard &
Keimel in 1969 and Conrad & Diem in 1971). But this does not
imply that every orthomorphism of the original space is a
multiplication operator.
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Factorization theorems of Arendt

Wolfgang Arendt, Factorization by lattice homomorphisms,
Math. Z., 185 (1984), 567–571.

Theorem (Arendt)
Let E be a Dedekind complete Riesz space, F ,G be Riesz
spaces and V : F → G be a Riesz homomorphism. Then, given
a positive linear mapping S : G→ E, every positive linear
mapping T : F → E which satisfies T ≤ S ◦ V admits a
factorization

T = S1 ◦ V ,

where S1 : G→ E is a linear mapping such that 0 ≤ S1 ≤ S.

F T //

V
��

E

G

S
??

S1

MM
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Factorization theorems of Arendt

Theorem (Arendt)
Let E ,F and G be Banach lattices with G having an
order-continuous norm and let U : G→ F be an interval
preserving positive linear mapping. Then, given a positive
linear mapping S : E → G, every positive linear mapping
T : E → F which satisfies T ≤ U ◦ S admits a factorization

T = U ◦ S1,

where S1 : E → G is a linear mapping such that 0 ≤ S1 ≤ S.

E T //

S

��
S1 ,,

F

G

U

OO
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Some definitions

Let Φ: X → End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G.

We will
write Φs instead of Φ(s) for s ∈ X . Therefore:

Φst = Φs ◦ Φt , s, t ∈ X .

If X is a group, then we also have

Φs−1 = (Φs)−1, s ∈ X ;

in particular, every Φs is an invertible map.
A group with a lattice order compatible with its algebraic
structure is called `-group.
A map f : G→ F between `-groups is called monotone if

x ≤ y =⇒ f (x) ≤ f (y)

for all x , y ∈ G and f is called Φ-invariant if f ◦ Φs = f for all
s ∈ X .
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A group with a lattice order compatible with its algebraic
structure is called `-group.

A map f : G→ F between `-groups is called monotone if

x ≤ y =⇒ f (x) ≤ f (y)

for all x , y ∈ G and f is called Φ-invariant if f ◦ Φs = f for all
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Result 1

Assume that E is a Dedekind complete Riesz space and F and
G are Abelian `-groups. Further, denote by End+(G) the
semigroup of all monotone endomorphisms of G. Moreover, let
X be a right-amenable semigroup and let Φ: X → End+(G) be
a representation of X .
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Result 1

Theorem

Let V : F → G be an `-group homomorphism such that
Φs ◦ V = V for all s ∈ X. Given an additive monotone and
Φ-invariant mapping S : G→ E, every additive monotone
mapping T : F → E such that T ≤ S ◦ V admits a factorization
T = S1 ◦ V,

F T //

V
��

E

X Φ // G

S
??

S1

MM

End+(G)
&&

where S1 : G→ E is an additive and Φ-invariant mapping such
that 0 ≤ S1 ≤ S.
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Proof

Let G1 := V (F );

G1 is a subgroup of G
by the assumption Φs(G1) = G1 for all s ∈ X .
Let S0 : G1 → E be defined by:

S0(Vx) := T (x), x ∈ F .

S0 is well defined: assume that x1, x2 ∈ F are such that
Vx1 = Vx2. We obtain

0 ≤ |T (x1)− T (x2)| = |T (x1 − x2)| ≤ T (|x1 − x2|)
≤ S(V (|x1 − x2|)) = S(|Vx1 − Vx2|) = 0.

Therefore, T (x1) = T (x2).
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Proof (continued)

S0 is additive: straightforward.

S0 is monotone: it is enough to prove that S0(y) ≥ 0 whenever
y ≥ 0 on G1. Fix y ∈ G1 such that y ≥ 0. We can pick some
x ∈ F such that Vx = y .
Since Vx ≥ 0, then Vx = (Vx)+ = V (x+), so we can assume
that x ≥ 0. We have

S0(y) = S0(Vx) = T (x) ≥ 0.

Φ-invariance of S0: fix s ∈ X .
S0(Φs(Vx)) = S0(Vx) for all x ∈ F .
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Proof (continued)
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Proof (continued)

Introduce p : G→ E by:

p(y) := S(y+), y ∈ G.

Check that p is subadditive: for fixed y1, y2 ∈ G we have
(y1 + y2)+ ≤ y+

1 + y+
2 .

p(y1 + y2) = S((y1 + y2)+) ≤ S(y+
1 + y+

2 )

= S(y+
1 ) + S(y+

2 ) = p(y1) + p(y2).

p is monotone: fix y1, y2 ∈ G such that y1 ≤ y2. We have
y+

1 ≤ y+
2

p(y1) = S(y+
1 ) ≤ S(y+

2 ) = p(y2).

p is Φ-subinvariant: fix s ∈ X and y ∈ G. Since we have
(Φsy)+ ≤ Φs(y+), then

p(Φs(y)) = S((Φsy)+) ≤ S(Φs(y+)) = S(y+) = p(y).
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Proof (continued)

The map S0 is majorized by p on G1:

fix y ∈ G1 and x ∈ F such
that y = Vx . We have

S0(y) = S0(Vx) = T (x) ≤ T (x+) ≤ S(V (x+))

= S((Vx)+) = S(y+) = p(y).

A Hahn-Banach type theorem of Z. Gajda provides the
existence of an additive monotone and Φ-invariant mapping
S1 : G→ E such that S0 and S1 coincide on G1 and S1 ≤ p on
G.
T = S1 ◦ V follows from the definition of S0 and from the fact
that S1 is an extension of S0.
S1 ≤ S: fix y ∈ G such that y ≥ 0. We have

S1(y) ≤ p(y) = S(y+) = S(y).
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Result 2

Assume that G is a Dedekind complete Riesz space and E and
F are Abelian `-groups. Further, assume that X is a
right-amenable group and Φ: X → End+(E) is a representation
of X in the set of of all monotone endomorphisms of E .
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Result 2

Theorem

Let U : G→ F be an injective `-group homomorphism. Given
an additive monotone and Φ-invariant mapping S : E → G,
every additive monotone and Φ-invariant mapping T : E → F
such that T ≤ U ◦ S admits a factorization T = U ◦ S1,

X Φ // E T //

S

��
S1 ,,

End+(E)
&&

F

G

U

OO

where S1 : E → G is an additive and Φ-invariant map such that
0 ≤ S1 ≤ S.
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Result 3

Assume that E , F and G are Banach lattices with G having an
order-continuous norm. Further, assume that X is a
right-amenable semigroup and Φ: X → Lp(G) is a
representation of X in the set Lp(G) of of all positive linear
self-mappings of G.
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Result 3

Theorem

Let U : G→ F be an interval preserving and Φ-invariant
positive linear mapping. Given a positive linear mapping
S : E → G such that Φs ◦ S = S for all s ∈ X, every positive
linear mapping T : E → F such that T ≤ U ◦ S admits a
factorization T = U ◦ S1,

E T //

S

��
S1 ,,

F

G

U

OO

Lp(G)ff XΦoo

where S1 : E → G is a linear map such that 0 ≤ S1 ≤ S and
Φs ◦ S1 = S1 for all s ∈ X.
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Result 4

Assume that E , F and G are Banach lattices with E having an
order-continuous norm. Further, assume that X is a
right-amenable semigroup and Φ: X → Lp(E) is a
representation of X in the set of of all positive linear
self-mappings of E .
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Result 4

Theorem

Let V : F → G be an interval preserving positive and injective
linear mapping. Given a positive linear mapping S : G→ E
such that Φs ◦ S = S for all s ∈ X, every positive linear mapping
T : F → E such that T ≤ S ◦ V and Φs ◦ T = T for all s ∈ X
admits a factorization T = S1 ◦ V,

F T //

V
��

E Lp(E)ff XΦoo

G

S
??

S1

MM

where S1 : G→ E is a linear mapping such that 0 ≤ S1 ≤ S
and Φs ◦ S1 = S1 for all s ∈ X.

Włodzimierz Fechner Radon-Nikodym theorem



Theorem of Z. Gajda

Assume that X is a right-amenable semigroup, G a partially
ordered Abelian group, Φ: X → End(G) is a representation of
X , E is a Dedekind complete Riesz space and G1 is a
subgroup of G such that Φs(G1) ⊆ G1 for every s ∈ X .

Theorem (Gajda)

Assume that p : G→ E is a monotone, subadditive and
Φ-subinvariant function and a0 : G1 → E is an additive
monotone and Φ-invariant function such that a0 ≤ p on G1.
Then a0 has an extension to an additive monotone and
Φ-invariant function a : G→ E such that a ≤ p on G.

Zbigniew Gajda, Sandwich theorems and amenable
semigroups of transformations, Grazer Math. Ber., 316
(1992), 43–58.
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Thank you for your kind attention!!!
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