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Classical Radon-Nikodym theorem

Assume that X = (X, .A) is a measurable space and v, 1, are
measures defined on X.
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Assume that X = (X, .A) is a measurable space and v, 1, are
measures defined on X. The Radon-Nikodym theorem says
that v is absolutely continuous with respect to u (we write

v < )
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Classical Radon-Nikodym theorem

Assume that X = (X, .A) is a measurable space and v, 1, are
measures defined on X. The Radon-Nikodym theorem says
that v is absolutely continuous with respect to u (we write

v < p) if and only if there exists a measurable function

g: X — [0, +00) such that

/fdu:/(f-g)dp

forall f € L'(v).
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Radon-Nikodym theorem for vector measures

Let Y be a Banach space.
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Radon-Nikodym theorem for vector measures

Let Y be a Banach space.

Assume that (X, .A) is a measurable space, 1 is a measure and
v is a countably additive vector measure of bounded variation
having values in Y such that |v| < p.
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Radon-Nikodym theorem for vector measures

Let Y be a Banach space.

Assume that (X, .A) is a measurable space, 1 is a measure and
v is a countably additive vector measure of bounded variation
having values in Y such that |v| < p.

We say that a Banach space Y has the Radon-Nikodym
property if there exist a u-integrable function g: X — Y such
that:

u(E):/gdu, EcA
E
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Radon-Nikodym theorem for vector measures

Let Y be a Banach space.

Assume that (X, .A) is a measurable space, 1 is a measure and
v is a countably additive vector measure of bounded variation
having values in Y such that |v| < p.

We say that a Banach space Y has the Radon-Nikodym
property if there exist a u-integrable function g: X — Y such
that:

u(E):/gdu, EcA
E

Every reflexive Banach space has the Radon-Nikodym
property.

Wiodzimierz Fechner Radon-Nikodym theorem



Radon-Nikodym theorem for vector measures

Let Y be a Banach space.

Assume that (X, .A) is a measurable space, 1 is a measure and
v is a countably additive vector measure of bounded variation
having values in Y such that |v| < p.

We say that a Banach space Y has the Radon-Nikodym
property if there exist a u-integrable function g: X — Y such
that:

u(E):/gdu, EcA
E

Every reflexive Banach space has the Radon-Nikodym
property. There are spaces which do not have the
Radon-Nikodym property, e.g. ¢, L'(Q), C(Q), L>(Q).
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Operators instead of integrals
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Operators instead of integrals

Put:

T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).
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Operators instead of integrals

Put:
T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).

Note that T and V are positive operators defined on L'() and
L'(u), respectively, and 7 is an orthomorphism of L'(v),
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Operators instead of integrals

Put:
T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).

Note that T and V are positive operators defined on L'() and
L'(u), respectively, and 7 is an orthomorphism of L'(v), i.e. 7 is
an order bounded linear operator such that f 1 g implies

nf L g.
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Operators instead of integrals

Put:
T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).

Note that T and V are positive operators defined on L'() and
L'(u), respectively, and 7 is an orthomorphism of L'(v), i.e. 7 is
an order bounded linear operator such that f 1 g implies

nf L g.
The assertion of the Radon-Nikodym theorem:

/fdy:/(f-g)du
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Operators instead of integrals

Put:
T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).

Note that T and V are positive operators defined on L'() and
L'(u), respectively, and 7 is an orthomorphism of L'(v), i.e. 7 is
an order bounded linear operator such that f 1 g implies

nf L g.
The assertion of the Radon-Nikodym theorem:

/fdy:/(f-g)du

can be rewritten as follows:
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Operators instead of integrals

Put:
T(f) ::/fdz/, V(h) ::/hdu, T((x) = f(x) - 9(x).

Note that T and V are positive operators defined on L'() and
L'(u), respectively, and 7 is an orthomorphism of L'(v), i.e. 7 is
an order bounded linear operator such that f 1 g implies

nf L g.
The assertion of the Radon-Nikodym theorem:

/fdy:/(f-g)du

can be rewritten as follows: T = Vo .
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Results of Maharam and the Luxemburg-Schep

theorem

@ Dorothy Maharam, The representation of abstract integrals,
Trans. Amer. Math. Soc., 75 (1953), 154—184.
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Results of Maharam and the Luxemburg-Schep

theorem

@ Dorothy Maharam, The representation of abstract integrals,
Trans. Amer. Math. Soc., 75 (1953), 154—184.

[§ Dorothy Maharam, On kernel representation of linear
operators, Trans. Amer. Math. Soc., 79 (1955), 229-255.
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Results of Maharam and the Luxemburg-Schep

theorem

@ Dorothy Maharam, The representation of abstract integrals,
Trans. Amer. Math. Soc., 75 (1953), 154—184.

[§ Dorothy Maharam, On kernel representation of linear
operators, Trans. Amer. Math. Soc., 79 (1955), 229-255.

[§ W.A.J. Luxemburg, A.R. Schep, A Radon-Nikodym type
theorem for positive operators and a dual, Nederl. Akad.
Wet., Proc. Ser. A, 81 (1978), 357-375.
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Maharam property

Let F and G be two Riesz spaces and let V: F — Gbe a
positive linear operator.
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Maharam property

Let F and G be two Riesz spaces and let V: F — Gbe a
positive linear operator.

Then V is said to have Maharam property if for all f € F and for
all g € Gsuchthat f > 0and 0 < g < Vf there exists some
fy € Fsuchthat0 < f; < fand Vf; = g.
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Maharam property

Let F and G be two Riesz spaces and let V: F — Gbe a
positive linear operator.

Then V is said to have Maharam property if for all f € F and for
all g € Gsuchthat f > 0and 0 < g < Vf there exists some
fy € Fsuchthat0 < f; < fand Vf; = g.

In other words, for every positive f € F, the interval [0, Vf] is
contained in the set V(]0, f]).
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Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces F and G
are Dedekind complete and operator V: F — G is order
continuous, then the Maharam property of V is equivalent to

the following fact:
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Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces F and G
are Dedekind complete and operator V: F — G is order
continuous, then the Maharam property of V is equivalent to
the following fact:

For every operator T: F — G such that0 < T < V there exists
an orthomorphism  of F suchthat0 <7 <land T = Vo .
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Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces F and G
are Dedekind complete and operator V: F — G is order
continuous, then the Maharam property of V is equivalent to
the following fact:

For every operator T: F — G such that0 < T < V there exists
an orthomorphism  of F suchthat0 <7 <land T = Vo .

This is an operator version of the assertion of the
Radon-Nikodym theorem.
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Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces F and G
are Dedekind complete and operator V: F — G is order
continuous, then the Maharam property of V is equivalent to
the following fact:

For every operator T: F — G such that0 < T < V there exists
an orthomorphism  of F suchthat0 <7 <land T = Vo .

This is an operator version of the assertion of the
Radon-Nikodym theorem.

The dual theorem: conditions for factorization T = 7o V.
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Luxemburg-Schep implies Radon-Nikodym

A typical example of orthomorphism is multiplication operator:

m(f)(x) = f(x) - 9(x);

with some function g
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Luxemburg-Schep implies Radon-Nikodym

A typical example of orthomorphism is multiplication operator:

m(f)(x) = f(x) - 9(x);

with some function g (for example, if the domain of = is C(X),
then g € C(X); ifitis L', then g € L>).
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Luxemburg-Schep implies Radon-Nikodym

A typical example of orthomorphism is multiplication operator:

m(f)(x) = f(x) - 9(x);

with some function g (for example, if the domain of = is C(X),
then g € C(X); ifitis L', then g € L>).

To derive the Radon-Nikodym theorem from the
Luxemburg-Schep theorem we need that every orthomorphism
of L'(1) is a multiplication operator (so g is the Radon-Nikodym
derivative).
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Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on LP(X) for
0 < p < oo is a multiplication operator (he proved this also for
C([a, b]), Cc(R) and for other spaces).
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Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on LP(X) for
0 < p < oo is a multiplication operator (he proved this also for
C([a, b]), Cc(R) and for other spaces).

[§ A.C. Zaanen, Examples of orthomorphisms, J. Approx.
Theory, 13 (1975), 194-204.
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Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on LP(X) for
0 < p < oo is a multiplication operator (he proved this also for
C([a, b]), Cc(R) and for other spaces).

[§ A.C. Zaanen, Examples of orthomorphisms, J. Approx.
Theory, 13 (1975), 194-204.

It is true that every Archimedean Riesz space is isomorphic to
C(Q2) with some totally disconnected space 2 and every
orthomorphism of C(2) is a multiplication operator

Wiodzimierz Fechner Radon-Nikodym theorem



Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on LP(X) for
0 < p < oo is a multiplication operator (he proved this also for
C([a, b]), Cc(R) and for other spaces).

[§ A.C. Zaanen, Examples of orthomorphisms, J. Approx.
Theory, 13 (1975), 194-204.

It is true that every Archimedean Riesz space is isomorphic to
C(Q2) with some totally disconnected space 2 and every
orthomorphism of C(2) is a multiplication operator (Bigard &
Keimel in 1969 and Conrad & Diem in 1971).
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Luxemburg-Schep implies Radon-Nikodym

Zaanen showed in 1975 that every orthomorphism on LP(X) for
0 < p < oo is a multiplication operator (he proved this also for
C([a, b]), Cc(R) and for other spaces).

[§ A.C. Zaanen, Examples of orthomorphisms, J. Approx.
Theory, 13 (1975), 194-204.

It is true that every Archimedean Riesz space is isomorphic to
C(Q2) with some totally disconnected space 2 and every
orthomorphism of C(2) is a multiplication operator (Bigard &
Keimel in 1969 and Conrad & Diem in 1971). But this does not
imply that every orthomorphism of the original space is a
multiplication operator.
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Factorization theorems of Arendt

[§ Wolfgang Arendt, Factorization by lattice homomorphisms,
Math. Z., 185 (1984), 567-571.
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Factorization theorems of Arendt

[§ Wolfgang Arendt, Factorization by lattice homomorphisms,
Math. Z., 185 (1984), 567-571.

Theorem (Arendt)

Let E be a Dedekind complete Riesz space, F, G be Riesz
spaces and V: F — G be a Riesz homomorphism. Then, given
a positive linear mapping S: G — E, every positive linear
mapping T: F — E which satisfies T < So V admits a
factorization

T=80oV,

where S;: G — E is a linear mapping such that0 < §; < S.

F_l . E

V
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Factorization theorems of Arendt

Theorem (Arendt)

Let E, F and G be Banach lattices with G having an
order-continuous norm and let U: G — F be an interval
preserving positive linear mapping. Then, given a positive
linear mapping S: E — G, every positive linear mapping
T: E — F which satisfies T < U o S admits a factorization

T:UOS17

where Sy: E — G is a linear mapping such that0 < §; < S.

E—L-F

N9,
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G.
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X.
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X. Therefore:

¢st:¢so¢t, S,tEX
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X. Therefore:

q)st:q>so¢t, S,tEX
If X is a group, then we also have

b1 = (¢s)_1, se X,
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X. Therefore:

q)st:q>so¢t, S,tEX
If X is a group, then we also have
b1 = (¢s)_1, se X,

in particular, every ¢ is an invertible map.
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X. Therefore:

q)st:q>so¢t, S,tEX
If X is a group, then we also have
b1 = (¢s)_1, se X,

in particular, every ¢ is an invertible map.
A group with a lattice order compatible with its algebraic
structure is called ¢-group.
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Some definitions

Let #: X — End(G) be a representation of a semigroup X in
the semigroup End(G) of endomorphisms of a group G. We will
write ®g instead of ®(s) for s € X. Therefore:

¢3t:¢so¢t, S,tGX
If X is a group, then we also have
b1 = (¢s)_1, se X,

in particular, every ¢ is an invertible map.

A group with a lattice order compatible with its algebraic
structure is called ¢-group.

A map f: G — F between ¢-groups is called monotone if

x <y =f(x) <f(y)

forall x,y € G and f is called ®-invariantif f o g = f for all
se X.
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Result 1

Assume that E is a Dedekind complete Riesz space and F and
G are Abelian (-groups. Further, denote by End™*(G) the
semigroup of all monotone endomorphisms of G. Moreover, let
X be a right-amenable semigroup and let ¢: X — End™(G) be
a representation of X.
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Result 1

Theorem

LetV: F — G be an (-group homomorphism such that
ds0V =V forall s € X. Given an additive monotone and
d-invariant mapping S: G — E, every additive monotone
mapping T: F — E such that T < So V admits a factorization
T=S0V,

-

F——E
XLEmﬁ@ G S

where S;: G — E is an additive and $-invariant mapping such
that 0 < 81 < S.
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Let Gy == V(F);
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Let Gy := V(F); Gy is a subgroup of G
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Let Gy := V(F); Gy is a subgroup of G
by the assumption ¢5(Gy) = G; for all s € X.
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Let Gy := V(F); Gy is a subgroup of G
by the assumption ¢5(Gy) = G; for all s € X.
Let Sg: Gi — E be defined by:

So(Vx) = T(x), xe€F.
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Let Gy := V(F); Gy is a subgroup of G

by the assumption ¢5(Gy) = G; for all s € X.

Let Sg: Gi — E be defined by:
So(Vx):=T(x), x€F.

Sy is well defined:
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Let Gy := V(F); Gy is a subgroup of G

by the assumption ¢5(Gy) = G; for all s € X.

Let Sg: Gi — E be defined by:
So(Vx):=T(x), x€F.

Sy is well defined: assume that xy, xo € F are such that
VX1 = VX2.
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Let Gy := V(F); Gy is a subgroup of G

by the assumption ¢5(Gy) = G; for all s € X.

Let Sg: Gi — E be defined by:
So(Vx):=T(x), x€F.

Sy is well defined: assume that xy, xo € F are such that
Vx; = Vxo. We obtain

0<|T(x1) = T(x)| = |T(x — x2)| < T(|x1 — x2|)
< S(V(1x1 — xel)) = S(|Vx1 — Vxa|) = 0.
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Let Gy := V(F); Gy is a subgroup of G

by the assumption ¢5(Gy) = G; for all s € X.

Let Sg: Gi — E be defined by:
So(Vx):=T(x), x€F.

Sy is well defined: assume that xy, xo € F are such that
Vx; = Vxo. We obtain

0<|T(x1) = T(x)| = |T(x — x2)| < T(|x1 — x2|)
< S(V(1x1 — xel)) = S(|Vx1 — Vxa|) = 0.

Therefore, T(x1) = T(x2).
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Proof (continued)

Sy is additive: straightforward.
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Proof (continued)

Sy is additive: straightforward.
So is monotone:
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y >0on Gj.
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0.
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Proof (continued)

Sy is additive: straightforward.

Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
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Proof (continued)

Sy is additive: straightforward.

Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.

Since Vx > 0, then Vx = (Vx)* = V(xT),
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
Since Vx > 0, then Vx = (Vx)™ = V(x™), so we can assume

that x > 0.
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
Since Vx > 0, then Vx = (Vx)™ = V(x™), so we can assume
that x > 0. We have

So(y) = So(Vx) = T(x) = 0.
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
Since Vx > 0, then Vx = (Vx)™ = V(x™), so we can assume
that x > 0. We have

So(y) = So(Vx) = T(x) = 0.

o-invariance of Sp:
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
Since Vx > 0, then Vx = (Vx)™ = V(x™), so we can assume
that x > 0. We have

So(y) = So(Vx) = T(x) = 0.

o-invariance of Sy: fix s € X.
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Proof (continued)

Sy is additive: straightforward.
Sp is monotone: it is enough to prove that Sy(y) > 0 whenever
y > 0on Gj. Fix y € Gy such that y > 0. We can pick some

x € Fsuchthat Vx = y.
Since Vx > 0, then Vx = (Vx)™ = V(x™), so we can assume

that x > 0. We have
So(y) = So(Vx) = T(x) > 0.

o-invariance of Sy: fix s € X.
So(Ps(Vx)) = Sp(Vx) forall x € F.
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Proof (continued)

Introduce p: G — E by:
p(y) :=S(y"), yedG
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Proof (continued)

Introduce p: G — E by:

ply)=8Wy"), yeG
Check that p is subadditive:
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Proof (continued)

Introduce p: G — E by:

py) :=S(y"), yeG

Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys
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Proof (continued)

Introduce p: G — E by:

p(y) =S(y"), yeG

Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys

p(y1 +y2) = S((y1 +y2)*) < S(vi" +y3)
=Sy )+ S(vs) = p(y1) + p(y2).
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Proof (continued)

Introduce p: G — E by:

p(y) =S(y"), yeG

Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys

p(y1 +y2) = S((y1 +y2)*) < S(vi" +y3)
=Sy )+ S(vs) = p(y1) + p(y2).

p is monotone:
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Proof (continued)

Introduce p: G — E by:

py) :=S(y"), yeG

Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys

p(y1 +y2) = S((y1 +y2)*) < S(vi" +y3)
= S(y;) + S(vs) = p(y1) + p(y2)-

p is monotone: fix y1, y» € G such that y; < y».
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Proof (continued)
Introduce p: G — E by:

p(y) =S(y"), yeG

Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys

p(y1 +y2) = S((y1 +y2)*) < S(vi" +y3)
= S(y;) + S(vs) = p(y1) + p(y2)-

p is monotone: fix y1, y» € G such that y; < y». We have
yi<ys
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Proof (continued)
Introduce p: G — E by:

p(y) :=S(y"), yedG
Check that p is subadditive: for fixed y1, y» € G we have
+y)t <y +ys.
p(yi +y2) = S((y1 +y2)") < Sy +y3)
= S(y;") + S(y3) = P(y1) + p(¥2)-

p is monotone: fix y1, y» € G such that y; < y». We have
+ < +
Yi = Yo
p(y1) = S(yy") < S(yz) = pP(y2)-
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Proof (continued)
Introduce p: G — E by:

p(y) :=S(y"), yedG
Check that p is subadditive: for fixed y1, y» € G we have
+y)t <y +ys.
p(yi +y2) = S((y1 +y2)") < Sy +y3)
= S(y;") + S(y3) = P(y1) + p(¥2)-

p is monotone: fix y1, y» € G such that y; < y». We have
+ < +
Yi = Yo
p(y1) = S(yy") < S(yz) = pP(y2)-

p is ®-subinvariant:
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Proof (continued)
Introduce p: G — E by:

p(y) :=S(y"), yedG
Check that p is subadditive: for fixed y1, y» € G we have
+y)t <y +ys.
p(yi +y2) = S((y1 +y2)") < Sy +y3)
= S(y;") + S(y3) = P(y1) + p(¥2)-

p is monotone: fix y1, y» € G such that y; < y». We have
y+ < y+
1 =2
p(y1) = S(yy") < S(yz) = pP(y2)-

p is ®-subinvariant: fix s € X and y € G.
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Proof (continued)

Introduce p: G — E by:

ply):=S(y"), yeG
Check that p is subadditive: for fixed y1, y» € G we have
W +y)t <y +ys.
p(y1 +y2) = S((r1 +y2)") < Sy +¥3)
= S(y;") + S(y3) = p(y1) + P(y2)-
p is monotone: fix y1, y» € G such that y; < y». We have

yi<ys
p(y1) = S(¥;") < S(y5) = pP(y2)-

p is ®-subinvariant: fix s € X and y € G. Since we have
(dsy)™ < dg(y™), then
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Proof (continued)

Introduce p: G — E by:

p(y) :=S(y"), yedG
Check that p is subadditive: for fixed y1, y» € G we have
+y)t <y +ys.
p(yi +y2) = S((y1 +y2)") < Sy +y3)
= S(y;") + S(y3) = P(y1) + p(¥2)-

p is monotone: fix y1, y» € G such that y; < y». We have
y+ < y+
1 =2
p(y1) = S(yy") < S(yz) = pP(y2)-

p is ®-subinvariant: fix s € X and y € G. Since we have
(dsy)™ < dg(y™), then

P(®s(y)) = S((Psy) ") < S(®s(y ™)) = S(y™) = p(y).
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Proof (continued)

The map Sy is majorized by p on Gj:
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx.
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have

So(y) = So(Vx) = T(x) < T(x") < S(V(xT))
= S((Vx)") = S(y™) = p(y).
A Hahn-Banach type theorem of Z. Gajda provides the

existence of an additive monotone and $-invariant mapping

Sy: G — E such that Sg and S; coincide on Gy and Sy < pon
G.
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have

So(y) = So(Vx) = T(x) < T(xT) < S(V(xT))
= S((Wx)") = S(y™) = p(y).

A Hahn-Banach type theorem of Z. Gajda provides the
existence of an additive monotone and $-invariant mapping
Sy: G — E such that Sg and S; coincide on Gy and Sy < pon
G.

T = S; o V follows from the definition of Sy and from the fact
that Sy is an extension of Sy.
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have

So(y) = So(Vx) = T(x) < T(xT) < S(V(xT))
= S((Wx)") = S(y™) = p(y).

A Hahn-Banach type theorem of Z. Gajda provides the
existence of an additive monotone and $-invariant mapping
Sy: G — E such that Sg and S; coincide on Gy and Sy < pon
G.

T = S; o V follows from the definition of Sy and from the fact
that Sy is an extension of Sy.

81 <S:
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have

So(y) = So(Vx) = T(x) < T(xT) < S(V(xT))
= S((Wx)") = S(y™) = p(y).

A Hahn-Banach type theorem of Z. Gajda provides the
existence of an additive monotone and $-invariant mapping
Sy: G — E such that Sg and S; coincide on Gy and Sy < pon
G.

T = S; o V follows from the definition of Sy and from the fact
that Sy is an extension of Sy.

Sy < S:fix y € Gsuchthaty > 0.
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Proof (continued)

The map S is majorized by p on Gj: fix y € Gy and x € F such
that y = Vx. We have

So(y) = So(Vx) = T(x) < T(xT) < S(V(xT))
= S((Wx)") = S(y™) = p(y).

A Hahn-Banach type theorem of Z. Gajda provides the
existence of an additive monotone and $-invariant mapping
Sy: G — E such that Sg and S; coincide on Gy and Sy < pon
G.

T = S; o V follows from the definition of Sy and from the fact
that Sy is an extension of Sy.

S1 < S:fix y € Gsuch that y > 0. We have
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Result 2

Assume that G is a Dedekind complete Riesz space and E and
F are Abelian ¢-groups. Further, assume that X is a
right-amenable group and ®: X — End™(E) is a representation
of X in the set of of all monotone endomorphisms of E.
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Result 2

Theorem

Let U: G — F be an injective ¢-group homomorphism. Given
an additive monotone and $-invariant mapping S: E — G,
every additive monotone and ®-invariant mapping T: E — F
such that T < U o S admits a factorization T = Uo Sy,

where S;: E — G is an additive and ®-invariant map such that
0<5 <S8
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Result 3

Assume that E, F and G are Banach lattices with G having an
order-continuous norm. Further, assume that X is a
right-amenable semigroup and ®: X — L,(G) is a
representation of X in the set £,(G) of of all positive linear
self-mappings of G.
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Result 3

Theorem

Let U: G — F be an interval preserving and ®-invariant
positive linear mapping. Given a positive linear mapping

S: E— Gsuchthatdso S = S forall s € X, every positive
linear mapping T: E — F such that T < U o S admits a
factorization T = U o Sy,

ENe

Q 7
G
where S;: E — G is a linear map such that0 < Sy < S and
bg0S; =8 forall s € X.

p<7X
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Result 4

Assume that E, F and G are Banach lattices with E having an
order-continuous norm. Further, assume that X is a
right-amenable semigroup and ®: X — L,(E) is a
representation of X in the set of of all positive linear
self-mappings of E.
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Result 4

Theorem

Let V: F — G be an interval preserving positive and injective
linear mapping. Given a positive linear mapping S: G — E
such that®s0 S = S for all s € X, every positive linear mapping
T:F - EsuchthatT < SoVand®soT =T forallsc X
admits a factorization T = Sy o V,

F- 1o E 2,52 X
~
S
17
G— S
where S;: G — E is a linear mapping such that0 < §; < S
and ®s0S; = Sy foralls e X.
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Theorem of Z. Gajda

Assume that X is a right-amenable semigroup, G a partially
ordered Abelian group, ¢: X — End(G) is a representation of
X, E is a Dedekind complete Riesz space and G; is a
subgroup of G such that ®5(Gy) C Gy for every s € X.
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Theorem of Z. Gajda

Assume that X is a right-amenable semigroup, G a partially
ordered Abelian group, ¢: X — End(G) is a representation of
X, E is a Dedekind complete Riesz space and G; is a
subgroup of G such that ®5(Gy) C Gy for every s € X.

Theorem (Gajda)

Assume that p: G — E is a monotone, subadditive and
®-subinvariant function and ay: Gy — E is an additive
monotone and ®-invariant function such that ag < p on Gy.
Then ag has an extension to an additive monotone and
&-invariant function a: G — E such thata < p on G.
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Theorem of Z. Gajda

Assume that X is a right-amenable semigroup, G a partially
ordered Abelian group, ¢: X — End(G) is a representation of
X, E is a Dedekind complete Riesz space and G; is a
subgroup of G such that ®5(Gy) C Gy for every s € X.

Theorem (Gajda)

Assume that p: G — E is a monotone, subadditive and
®-subinvariant function and ay: Gy — E is an additive
monotone and ®-invariant function such that ag < p on Gy.
Then ag has an extension to an additive monotone and
&-invariant function a: G — E such thata < p on G.

[§ Zbigniew Gajda, Sandwich theorems and amenable
semigroups of transformations, Grazer Math. Ber., 316
(1992), 43-58.
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Thank you for your kind attention!!!
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