

# Abstract versions of the Radon-Nikodym theorem

Włodzimierz Fechner

University of Silesia, Katowice, Poland

Integration, Vector Measures and Related Topics  
17.06.2014

# Classical Radon-Nikodym theorem

Assume that  $X = (X, \mathcal{A})$  is a measurable space and  $\nu, \mu$  are measures defined on  $X$ .

# Classical Radon-Nikodym theorem

Assume that  $X = (X, \mathcal{A})$  is a measurable space and  $\nu, \mu$  are measures defined on  $X$ . The Radon-Nikodym theorem says that  $\nu$  is absolutely continuous with respect to  $\mu$  (we write  $\nu \ll \mu$ )

# Classical Radon-Nikodym theorem

Assume that  $X = (X, \mathcal{A})$  is a measurable space and  $\nu, \mu$  are measures defined on  $X$ . The Radon-Nikodym theorem says that  $\nu$  is absolutely continuous with respect to  $\mu$  (we write  $\nu \ll \mu$ ) if and only if there exists a measurable function  $g: X \rightarrow [0, +\infty)$  such that

$$\int f d\nu = \int (f \cdot g) d\mu$$

for all  $f \in L^1(\nu)$ .

Let  $Y$  be a Banach space.

# Radon-Nikodym theorem for vector measures

Let  $Y$  be a Banach space.

Assume that  $(X, \mathcal{A})$  is a measurable space,  $\mu$  is a measure and  $\nu$  is a countably additive vector measure of bounded variation having values in  $Y$  such that  $|\nu| \ll \mu$ .

Let  $Y$  be a Banach space.

Assume that  $(X, \mathcal{A})$  is a measurable space,  $\mu$  is a measure and  $\nu$  is a countably additive vector measure of bounded variation having values in  $Y$  such that  $|\nu| \ll \mu$ .

We say that a Banach space  $Y$  has the Radon-Nikodym property if there exist a  $\mu$ -integrable function  $g: X \rightarrow Y$  such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}.$$

Let  $Y$  be a Banach space.

Assume that  $(X, \mathcal{A})$  is a measurable space,  $\mu$  is a measure and  $\nu$  is a countably additive vector measure of bounded variation having values in  $Y$  such that  $|\nu| \ll \mu$ .

We say that a Banach space  $Y$  has the Radon-Nikodym property if there exist a  $\mu$ -integrable function  $g: X \rightarrow Y$  such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}.$$

Every reflexive Banach space has the Radon-Nikodym property.

Let  $Y$  be a Banach space.

Assume that  $(X, \mathcal{A})$  is a measurable space,  $\mu$  is a measure and  $\nu$  is a countably additive vector measure of bounded variation having values in  $Y$  such that  $|\nu| \ll \mu$ .

We say that a Banach space  $Y$  has the Radon-Nikodym property if there exist a  $\mu$ -integrable function  $g: X \rightarrow Y$  such that:

$$\nu(E) = \int_E g \, d\mu, \quad E \in \mathcal{A}.$$

Every reflexive Banach space has the Radon-Nikodym property. There are spaces which do not have the Radon-Nikodym property, e.g.  $c_0$ ,  $L^1(\Omega)$ ,  $C(\Omega)$ ,  $L^\infty(\Omega)$ .

# Operators instead of integrals

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

Note that  $T$  and  $V$  are positive operators defined on  $L^1(\nu)$  and  $L^1(\mu)$ , respectively, and  $\pi$  is an orthomorphism of  $L^1(\nu)$ ,

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

Note that  $T$  and  $V$  are positive operators defined on  $L^1(\nu)$  and  $L^1(\mu)$ , respectively, and  $\pi$  is an orthomorphism of  $L^1(\nu)$ , i.e.  $\pi$  is an order bounded linear operator such that  $f \perp g$  implies  $\pi f \perp \pi g$ .

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

Note that  $T$  and  $V$  are positive operators defined on  $L^1(\nu)$  and  $L^1(\mu)$ , respectively, and  $\pi$  is an orthomorphism of  $L^1(\nu)$ , i.e.  $\pi$  is an order bounded linear operator such that  $f \perp g$  implies  $\pi f \perp \pi g$ .

The assertion of the Radon-Nikodym theorem:

$$\int f \, d\nu = \int (f \cdot g) \, d\mu$$

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

Note that  $T$  and  $V$  are positive operators defined on  $L^1(\nu)$  and  $L^1(\mu)$ , respectively, and  $\pi$  is an orthomorphism of  $L^1(\nu)$ , i.e.  $\pi$  is an order bounded linear operator such that  $f \perp g$  implies  $\pi f \perp \pi g$ .

The assertion of the Radon-Nikodym theorem:

$$\int f \, d\nu = \int (f \cdot g) \, d\mu$$

can be rewritten as follows:

# Operators instead of integrals

Put:

$$T(f) := \int f \, d\nu, \quad V(h) := \int h \, d\mu, \quad \pi(f)(x) := f(x) \cdot g(x).$$

Note that  $T$  and  $V$  are positive operators defined on  $L^1(\nu)$  and  $L^1(\mu)$ , respectively, and  $\pi$  is an orthomorphism of  $L^1(\nu)$ , i.e.  $\pi$  is an order bounded linear operator such that  $f \perp g$  implies  $\pi f \perp \pi g$ .

The assertion of the Radon-Nikodym theorem:

$$\int f \, d\nu = \int (f \cdot g) \, d\mu$$

can be rewritten as follows:  $T = V \circ \pi$ .

# Results of Maharam and the Luxemburg-Schep theorem

-  Dorothy Maharam, *The representation of abstract integrals*, Trans. Amer. Math. Soc., 75 (1953), 154–184.

# Results of Maharam and the Luxemburg-Schep theorem

-  Dorothy Maharam, *The representation of abstract integrals*, Trans. Amer. Math. Soc., 75 (1953), 154–184.
-  Dorothy Maharam, *On kernel representation of linear operators*, Trans. Amer. Math. Soc., 79 (1955), 229–255.

# Results of Maharam and the Luxemburg-Schep theorem

- ❑ Dorothy Maharam, *The representation of abstract integrals*, Trans. Amer. Math. Soc., 75 (1953), 154–184.
- ❑ Dorothy Maharam, *On kernel representation of linear operators*, Trans. Amer. Math. Soc., 79 (1955), 229–255.
- ❑ W.A.J. Luxemburg, A.R. Schep, *A Radon-Nikodym type theorem for positive operators and a dual*, Nederl. Akad. Wet., Proc. Ser. A, 81 (1978), 357–375.

# Maharam property

Let  $F$  and  $G$  be two Riesz spaces and let  $V: F \rightarrow G$  be a positive linear operator.

Let  $F$  and  $G$  be two Riesz spaces and let  $V: F \rightarrow G$  be a positive linear operator.

Then  $V$  is said to have *Maharam property* if for all  $f \in F$  and for all  $g \in G$  such that  $f \geq 0$  and  $0 \leq g \leq Vf$  there exists some  $f_1 \in F$  such that  $0 \leq f_1 \leq f$  and  $Vf_1 = g$ .

Let  $F$  and  $G$  be two Riesz spaces and let  $V: F \rightarrow G$  be a positive linear operator.

Then  $V$  is said to have *Maharam property* if for all  $f \in F$  and for all  $g \in G$  such that  $f \geq 0$  and  $0 \leq g \leq Vf$  there exists some  $f_1 \in F$  such that  $0 \leq f_1 \leq f$  and  $Vf_1 = g$ .

In other words, for every positive  $f \in F$ , the interval  $[0, Vf]$  is contained in the set  $V([0, f])$ .

Luxemburg-Schep theorem says that if Riesz spaces  $F$  and  $G$  are Dedekind complete and operator  $V: F \rightarrow G$  is order continuous, then the Maharam property of  $V$  is equivalent to the following fact:

Luxemburg-Schep theorem says that if Riesz spaces  $F$  and  $G$  are Dedekind complete and operator  $V: F \rightarrow G$  is order continuous, then the Maharam property of  $V$  is equivalent to the following fact:

*For every operator  $T: F \rightarrow G$  such that  $0 \leq T \leq V$  there exists an orthomorphism  $\pi$  of  $F$  such that  $0 \leq \pi \leq I$  and  $T = V \circ \pi$ .*

Luxemburg-Schep theorem says that if Riesz spaces  $F$  and  $G$  are Dedekind complete and operator  $V: F \rightarrow G$  is order continuous, then the Maharam property of  $V$  is equivalent to the following fact:

*For every operator  $T: F \rightarrow G$  such that  $0 \leq T \leq V$  there exists an orthomorphism  $\pi$  of  $F$  such that  $0 \leq \pi \leq I$  and  $T = V \circ \pi$ .*

This is an operator version of the assertion of the Radon-Nikodym theorem.

# Luxemburg-Schep theorem

Luxemburg-Schep theorem says that if Riesz spaces  $F$  and  $G$  are Dedekind complete and operator  $V: F \rightarrow G$  is order continuous, then the Maharam property of  $V$  is equivalent to the following fact:

*For every operator  $T: F \rightarrow G$  such that  $0 \leq T \leq V$  there exists an orthomorphism  $\pi$  of  $F$  such that  $0 \leq \pi \leq I$  and  $T = V \circ \pi$ .*

This is an operator version of the assertion of the Radon-Nikodym theorem.

The dual theorem: conditions for factorization  $T = \pi \circ V$ .

A typical example of orthomorphism is multiplication operator:

$$\pi(f)(x) = f(x) \cdot g(x),$$

with some function  $g$

A typical example of orthomorphism is multiplication operator:

$$\pi(f)(x) = f(x) \cdot g(x),$$

with some function  $g$  (for example, if the domain of  $\pi$  is  $C(X)$ , then  $g \in C(X)$ ; if it is  $L^1$ , then  $g \in L^\infty$ ).

A typical example of orthomorphism is multiplication operator:

$$\pi(f)(x) = f(x) \cdot g(x),$$

with some function  $g$  (for example, if the domain of  $\pi$  is  $C(X)$ , then  $g \in C(X)$ ; if it is  $L^1$ , then  $g \in L^\infty$ ).

To derive the Radon-Nikodym theorem from the Luxemburg-Schep theorem we need that every orthomorphism of  $L^1(\mu)$  is a multiplication operator (so  $g$  is the Radon-Nikodym derivative).

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

-  A.C. Zaanen, *Examples of orthomorphisms*, J. Approx. Theory, 13 (1975), 194–204.

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

-  A.C. Zaanen, *Examples of orthomorphisms*, J. Approx. Theory, 13 (1975), 194–204.

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

-  A.C. Zaanen, *Examples of orthomorphisms*, J. Approx. Theory, 13 (1975), 194–204.

It is true that every Archimedean Riesz space is isomorphic to  $C(\Omega)$  with some totally disconnected space  $\Omega$  and every orthomorphism of  $C(\Omega)$  is a multiplication operator

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

 A.C. Zaanen, *Examples of orthomorphisms*, J. Approx. Theory, 13 (1975), 194–204.

It is true that every Archimedean Riesz space is isomorphic to  $C(\Omega)$  with some totally disconnected space  $\Omega$  and every orthomorphism of  $C(\Omega)$  is a multiplication operator (Bigard & Keimel in 1969 and Conrad & Diem in 1971).

Zaanen showed in 1975 that every orthomorphism on  $L^p(X)$  for  $0 < p < \infty$  is a multiplication operator (he proved this also for  $C([a, b])$ ,  $C_c(\mathbb{R})$  and for other spaces).

 A.C. Zaanen, *Examples of orthomorphisms*, J. Approx. Theory, 13 (1975), 194–204.

It is true that every Archimedean Riesz space is isomorphic to  $C(\Omega)$  with some totally disconnected space  $\Omega$  and every orthomorphism of  $C(\Omega)$  is a multiplication operator (Bigard & Keimel in 1969 and Conrad & Diem in 1971). But this does not imply that every orthomorphism of the original space is a multiplication operator.

# Factorization theorems of Arendt

 Wolfgang Arendt, *Factorization by lattice homomorphisms*,  
 Math. Z., 185 (1984), 567–571.

# Factorization theorems of Arendt

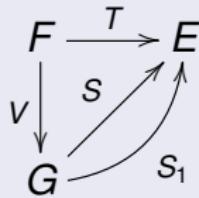
 Wolfgang Arendt, *Factorization by lattice homomorphisms*,  
 Math. Z., 185 (1984), 567–571.

## Theorem (Arendt)

Let  $E$  be a Dedekind complete Riesz space,  $F, G$  be Riesz spaces and  $V: F \rightarrow G$  be a Riesz homomorphism. Then, given a positive linear mapping  $S: G \rightarrow E$ , every positive linear mapping  $T: F \rightarrow E$  which satisfies  $T \leq S \circ V$  admits a factorization

$$T = S_1 \circ V,$$

where  $S_1: G \rightarrow E$  is a linear mapping such that  $0 \leq S_1 \leq S$ .

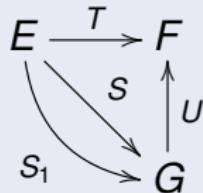


## Theorem (Arendt)

Let  $E, F$  and  $G$  be Banach lattices with  $G$  having an order-continuous norm and let  $U: G \rightarrow F$  be an interval preserving positive linear mapping. Then, given a positive linear mapping  $S: E \rightarrow G$ , every positive linear mapping  $T: E \rightarrow F$  which satisfies  $T \leq U \circ S$  admits a factorization

$$T = U \circ S_1,$$

where  $S_1: E \rightarrow G$  is a linear mapping such that  $0 \leq S_1 \leq S$ .



# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ .

# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ .

# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ . Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ . Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If  $X$  is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

## Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ . Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If  $X$  is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular, every  $\Phi_s$  is an invertible map.

# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ . Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If  $X$  is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular, every  $\Phi_s$  is an invertible map.

A group with a lattice order compatible with its algebraic structure is called  $\ell$ -group.

# Some definitions

Let  $\Phi: X \rightarrow \text{End}(G)$  be a representation of a semigroup  $X$  in the semigroup  $\text{End}(G)$  of endomorphisms of a group  $G$ . We will write  $\Phi_s$  instead of  $\Phi(s)$  for  $s \in X$ . Therefore:

$$\Phi_{st} = \Phi_s \circ \Phi_t, \quad s, t \in X.$$

If  $X$  is a group, then we also have

$$\Phi_{s^{-1}} = (\Phi_s)^{-1}, \quad s \in X;$$

in particular, every  $\Phi_s$  is an invertible map.

A group with a lattice order compatible with its algebraic structure is called  $\ell$ -group.

A map  $f: G \rightarrow F$  between  $\ell$ -groups is called *monotone* if

$$x \leq y \implies f(x) \leq f(y)$$

for all  $x, y \in G$  and  $f$  is called  $\Phi$ -*invariant* if  $f \circ \Phi_s = f$  for all  $s \in X$ .

Assume that  $E$  is a Dedekind complete Riesz space and  $F$  and  $G$  are Abelian  $\ell$ -groups. Further, denote by  $\text{End}^+(G)$  the semigroup of all monotone endomorphisms of  $G$ . Moreover, let  $X$  be a right-amenable semigroup and let  $\Phi: X \rightarrow \text{End}^+(G)$  be a representation of  $X$ .

## Theorem

Let  $V: F \rightarrow G$  be an  $\ell$ -group homomorphism such that  $\Phi_s \circ V = V$  for all  $s \in X$ . Given an additive monotone and  $\Phi$ -invariant mapping  $S: G \rightarrow E$ , every additive monotone mapping  $T: F \rightarrow E$  such that  $T \leq S \circ V$  admits a factorization  $T = S_1 \circ V$ ,

$$\begin{array}{ccc} F & \xrightarrow{T} & E \\ V \downarrow & \nearrow S & \\ X & \xrightarrow{\Phi} & \text{End}^+(G) \end{array}$$

$\circlearrowleft$

$$S_1$$

where  $S_1: G \rightarrow E$  is an additive and  $\Phi$ -invariant mapping such that  $0 \leq S_1 \leq S$ .

Let  $G_1 := V(F)$ ;

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .  
Let  $S_0: G_1 \rightarrow E$  be defined by:

$$S_0(Vx) := T(x), \quad x \in F.$$

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .  
Let  $S_0: G_1 \rightarrow E$  be defined by:

$$S_0(Vx) := T(x), \quad x \in F.$$

$S_0$  is well defined:

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .  
Let  $S_0: G_1 \rightarrow E$  be defined by:

$$S_0(Vx) := T(x), \quad x \in F.$$

$S_0$  is well defined: assume that  $x_1, x_2 \in F$  are such that  
 $Vx_1 = Vx_2$ .

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .  
Let  $S_0: G_1 \rightarrow E$  be defined by:

$$S_0(Vx) := T(x), \quad x \in F.$$

$S_0$  is well defined: assume that  $x_1, x_2 \in F$  are such that  
 $Vx_1 = Vx_2$ . We obtain

$$\begin{aligned} 0 \leq |T(x_1) - T(x_2)| &= |T(x_1 - x_2)| \leq T(|x_1 - x_2|) \\ &\leq S(V(|x_1 - x_2|)) = S(|Vx_1 - Vx_2|) = 0. \end{aligned}$$

# Proof

Let  $G_1 := V(F)$ ;  $G_1$  is a subgroup of  $G$   
by the assumption  $\Phi_s(G_1) = G_1$  for all  $s \in X$ .  
Let  $S_0: G_1 \rightarrow E$  be defined by:

$$S_0(Vx) := T(x), \quad x \in F.$$

$S_0$  is well defined: assume that  $x_1, x_2 \in F$  are such that  
 $Vx_1 = Vx_2$ . We obtain

$$\begin{aligned} 0 \leq |T(x_1) - T(x_2)| &= |T(x_1 - x_2)| \leq T(|x_1 - x_2|) \\ &\leq S(V(|x_1 - x_2|)) = S(|Vx_1 - Vx_2|) = 0. \end{aligned}$$

Therefore,  $T(x_1) = T(x_2)$ .

# Proof (continued)

$S_0$  is additive: straightforward.

# Proof (continued)

$S_0$  is additive: straightforward.

$S_0$  is monotone:

## Proof (continued)

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ .

## Proof (continued)

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ .

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ ,

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ , so we can assume that  $x \geq 0$ .

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ , so we can assume that  $x \geq 0$ . We have

$$S_0(y) = S_0(Vx) = T(x) \geq 0.$$

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ , so we can assume that  $x \geq 0$ . We have

$$S_0(y) = S_0(Vx) = T(x) \geq 0.$$

$\Phi$ -invariance of  $S_0$ :

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ , so we can assume that  $x \geq 0$ . We have

$$S_0(y) = S_0(Vx) = T(x) \geq 0.$$

$\Phi$ -invariance of  $S_0$ : fix  $s \in X$ .

$S_0$  is additive: straightforward.

$S_0$  is monotone: it is enough to prove that  $S_0(y) \geq 0$  whenever  $y \geq 0$  on  $G_1$ . Fix  $y \in G_1$  such that  $y \geq 0$ . We can pick some  $x \in F$  such that  $Vx = y$ .

Since  $Vx \geq 0$ , then  $Vx = (Vx)^+ = V(x^+)$ , so we can assume that  $x \geq 0$ . We have

$$S_0(y) = S_0(Vx) = T(x) \geq 0.$$

$\Phi$ -invariance of  $S_0$ : fix  $s \in X$ .

$S_0(\Phi_s(Vx)) = S_0(Vx)$  for all  $x \in F$ .

# Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

# Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive:

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone:

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ .

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

$$p(y_1) = S(y_1^+) \leq S(y_2^+) = p(y_2).$$

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

$$p(y_1) = S(y_1^+) \leq S(y_2^+) = p(y_2).$$

$p$  is  $\Phi$ -subinvariant:

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

$$p(y_1) = S(y_1^+) \leq S(y_2^+) = p(y_2).$$

$p$  is  $\Phi$ -subinvariant: fix  $s \in X$  and  $y \in G$ .

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

$$p(y_1) = S(y_1^+) \leq S(y_2^+) = p(y_2).$$

$p$  is  $\Phi$ -subinvariant: fix  $s \in X$  and  $y \in G$ . Since we have  
 $(\Phi_s y)^+ \leq \Phi_s(y^+)$ , then

## Proof (continued)

Introduce  $p: G \rightarrow E$  by:

$$p(y) := S(y^+), \quad y \in G.$$

Check that  $p$  is subadditive: for fixed  $y_1, y_2 \in G$  we have  
 $(y_1 + y_2)^+ \leq y_1^+ + y_2^+$ .

$$\begin{aligned} p(y_1 + y_2) &= S((y_1 + y_2)^+) \leq S(y_1^+ + y_2^+) \\ &= S(y_1^+) + S(y_2^+) = p(y_1) + p(y_2). \end{aligned}$$

$p$  is monotone: fix  $y_1, y_2 \in G$  such that  $y_1 \leq y_2$ . We have  
 $y_1^+ \leq y_2^+$

$$p(y_1) = S(y_1^+) \leq S(y_2^+) = p(y_2).$$

$p$  is  $\Phi$ -subinvariant: fix  $s \in X$  and  $y \in G$ . Since we have  
 $(\Phi_s y)^+ \leq \Phi_s(y^+)$ , then

$$p(\Phi_s(y)) = S((\Phi_s y)^+) \leq S(\Phi_s(y^+)) = S(y^+) = p(y).$$

The map  $S_0$  is majorized by  $p$  on  $G_1$ :

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ .

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

A Hahn-Banach type theorem of Z. Gajda provides the existence of an additive monotone and  $\Phi$ -invariant mapping  $S_1: G \rightarrow E$  such that  $S_0$  and  $S_1$  coincide on  $G_1$  and  $S_1 \leq p$  on  $G$ .

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

A Hahn-Banach type theorem of Z. Gajda provides the existence of an additive monotone and  $\Phi$ -invariant mapping  $S_1: G \rightarrow E$  such that  $S_0$  and  $S_1$  coincide on  $G_1$  and  $S_1 \leq p$  on  $G$ .

$T = S_1 \circ V$  follows from the definition of  $S_0$  and from the fact that  $S_1$  is an extension of  $S_0$ .

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

A Hahn-Banach type theorem of Z. Gajda provides the existence of an additive monotone and  $\Phi$ -invariant mapping  $S_1: G \rightarrow E$  such that  $S_0$  and  $S_1$  coincide on  $G_1$  and  $S_1 \leq p$  on  $G$ .

$T = S_1 \circ V$  follows from the definition of  $S_0$  and from the fact that  $S_1$  is an extension of  $S_0$ .

$S_1 \leq S$ :

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

A Hahn-Banach type theorem of Z. Gajda provides the existence of an additive monotone and  $\Phi$ -invariant mapping  $S_1: G \rightarrow E$  such that  $S_0$  and  $S_1$  coincide on  $G_1$  and  $S_1 \leq p$  on  $G$ .

$T = S_1 \circ V$  follows from the definition of  $S_0$  and from the fact that  $S_1$  is an extension of  $S_0$ .

$S_1 \leq S$ : fix  $y \in G$  such that  $y \geq 0$ .

## Proof (continued)

The map  $S_0$  is majorized by  $p$  on  $G_1$ : fix  $y \in G_1$  and  $x \in F$  such that  $y = Vx$ . We have

$$\begin{aligned} S_0(y) &= S_0(Vx) = T(x) \leq T(x^+) \leq S(V(x^+)) \\ &= S((Vx)^+) = S(y^+) = p(y). \end{aligned}$$

A Hahn-Banach type theorem of Z. Gajda provides the existence of an additive monotone and  $\Phi$ -invariant mapping  $S_1: G \rightarrow E$  such that  $S_0$  and  $S_1$  coincide on  $G_1$  and  $S_1 \leq p$  on  $G$ .

$T = S_1 \circ V$  follows from the definition of  $S_0$  and from the fact that  $S_1$  is an extension of  $S_0$ .

$S_1 \leq S$ : fix  $y \in G$  such that  $y \geq 0$ . We have

$$S_1(y) \leq p(y) = S(y^+) = S(y).$$

## Result 2

Assume that  $G$  is a Dedekind complete Riesz space and  $E$  and  $F$  are Abelian  $\ell$ -groups. Further, assume that  $X$  is a right-amenable group and  $\Phi: X \rightarrow \text{End}^+(E)$  is a representation of  $X$  in the set of all monotone endomorphisms of  $E$ .

## Result 2

### Theorem

Let  $U: G \rightarrow F$  be an injective  $\ell$ -group homomorphism. Given an additive monotone and  $\Phi$ -invariant mapping  $S: E \rightarrow G$ , every additive monotone and  $\Phi$ -invariant mapping  $T: E \rightarrow F$  such that  $T \leq U \circ S$  admits a factorization  $T = U \circ S_1$ ,

$$\begin{array}{ccccc} X & \xrightarrow{\Phi} & \text{End}^+(E) & \xrightarrow{T} & F \\ & & \curvearrowright & & \\ & & S & \searrow & \\ & & S_1 & \curvearrowright & \\ & & & \uparrow U & \\ & & & G & \end{array}$$

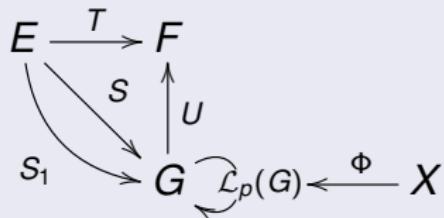
where  $S_1: E \rightarrow G$  is an additive and  $\Phi$ -invariant map such that  $0 \leq S_1 \leq S$ .

Assume that  $E$ ,  $F$  and  $G$  are Banach lattices with  $G$  having an order-continuous norm. Further, assume that  $X$  is a right-amenable semigroup and  $\Phi: X \rightarrow \mathcal{L}_p(G)$  is a representation of  $X$  in the set  $\mathcal{L}_p(G)$  of all positive linear self-mappings of  $G$ .

# Result 3

## Theorem

Let  $U: G \rightarrow F$  be an interval preserving and  $\Phi$ -invariant positive linear mapping. Given a positive linear mapping  $S: E \rightarrow G$  such that  $\Phi_s \circ S = S$  for all  $s \in X$ , every positive linear mapping  $T: E \rightarrow F$  such that  $T \leq U \circ S$  admits a factorization  $T = U \circ S_1$ ,



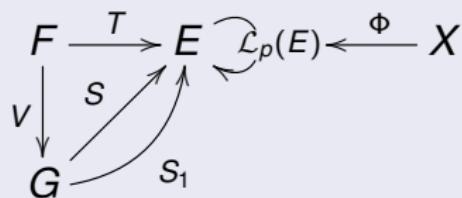
where  $S_1: E \rightarrow G$  is a linear map such that  $0 \leq S_1 \leq S$  and  $\Phi_s \circ S_1 = S_1$  for all  $s \in X$ .

Assume that  $E$ ,  $F$  and  $G$  are Banach lattices with  $E$  having an order-continuous norm. Further, assume that  $X$  is a right-amenable semigroup and  $\Phi: X \rightarrow \mathcal{L}_p(E)$  is a representation of  $X$  in the set of all positive linear self-mappings of  $E$ .

# Result 4

## Theorem

Let  $V: F \rightarrow G$  be an interval preserving positive and injective linear mapping. Given a positive linear mapping  $S: G \rightarrow E$  such that  $\Phi_s \circ S = S$  for all  $s \in X$ , every positive linear mapping  $T: F \rightarrow E$  such that  $T \leq S \circ V$  and  $\Phi_s \circ T = T$  for all  $s \in X$  admits a factorization  $T = S_1 \circ V$ ,



where  $S_1: G \rightarrow E$  is a linear mapping such that  $0 \leq S_1 \leq S$  and  $\Phi_s \circ S_1 = S_1$  for all  $s \in X$ .

# Theorem of Z. Gajda

Assume that  $X$  is a right-amenable semigroup,  $G$  a partially ordered Abelian group,  $\Phi: X \rightarrow \text{End}(G)$  is a representation of  $X$ ,  $E$  is a Dedekind complete Riesz space and  $G_1$  is a subgroup of  $G$  such that  $\Phi_s(G_1) \subseteq G_1$  for every  $s \in X$ .

# Theorem of Z. Gajda

Assume that  $X$  is a right-amenable semigroup,  $G$  a partially ordered Abelian group,  $\Phi: X \rightarrow \text{End}(G)$  is a representation of  $X$ ,  $E$  is a Dedekind complete Riesz space and  $G_1$  is a subgroup of  $G$  such that  $\Phi_s(G_1) \subseteq G_1$  for every  $s \in X$ .

## Theorem (Gajda)

Assume that  $p: G \rightarrow E$  is a monotone, subadditive and  $\Phi$ -subinvariant function and  $a_0: G_1 \rightarrow E$  is an additive monotone and  $\Phi$ -invariant function such that  $a_0 \leq p$  on  $G_1$ . Then  $a_0$  has an extension to an additive monotone and  $\Phi$ -invariant function  $a: G \rightarrow E$  such that  $a \leq p$  on  $G$ .

# Theorem of Z. Gajda

Assume that  $X$  is a right-amenable semigroup,  $G$  a partially ordered Abelian group,  $\Phi: X \rightarrow \text{End}(G)$  is a representation of  $X$ ,  $E$  is a Dedekind complete Riesz space and  $G_1$  is a subgroup of  $G$  such that  $\Phi_s(G_1) \subseteq G_1$  for every  $s \in X$ .

## Theorem (Gajda)

Assume that  $p: G \rightarrow E$  is a monotone, subadditive and  $\Phi$ -subinvariant function and  $a_0: G_1 \rightarrow E$  is an additive monotone and  $\Phi$ -invariant function such that  $a_0 \leq p$  on  $G_1$ . Then  $a_0$  has an extension to an additive monotone and  $\Phi$ -invariant function  $a: G \rightarrow E$  such that  $a \leq p$  on  $G$ .



Zbigniew Gajda, *Sandwich theorems and amenable semigroups of transformations*, Grazer Math. Ber., 316 (1992), 43–58.

Thank you for your kind attention!!!