Nonseparable spaceability and strong algebrability of sets of continuous singular functions

Marek Balcerzak, Artur Bartoszewicz, Małgorzata Filipczak Integration, Vector Measures and Related Topics VI

Bedlewo, June 15-21, 2014

CBV and strongly singular functions

We denote by CBV the Banach algebra of all continuous real functions from [0,1] of bounded variation, with the norm

$$||f|| = |f(0)| + Var(f)$$

CBV and strongly singular functions

We denote by CBV the Banach algebra of all continuous real functions from $\left[0,1\right]$ of bounded variation, with the norm

$$||f|| = |f(0)| + Var(f)$$

A continuous function $f:[a,b]\to\mathbb{R}$ of bounded variation is said to be singular whenever it is not constant and f'=0 almost everywhere.

CBV and strongly singular functions

We denote by CBV the Banach algebra of all continuous real functions from [0,1] of bounded variation, with the norm

$$||f|| = |f(0)| + Var(f)$$

A continuous function $f:[a,b]\to\mathbb{R}$ of bounded variation is said to be singular whenever it is not constant and f'=0 almost everywhere.

A singular function $f \in CBV$ is called strongly singular if its restriction to every subinterval of [0,1] is singular.

Measures μ_p and distribution functions F_p

Let $p \in (0, 1/2)$, μ_p be the distribution of the sum

$$X = \sum_{k=1}^{\infty} \left(\frac{1}{2^k}\right) X_k$$

where X_k , $k \in \mathbb{N}$, is a sequence of independent random variables with $\Pr{(X_k = 0) = p}$ and $\Pr{(X_k = 1) = 1 - p}$.

Measures μ_p and distribution functions F_p

Let $p \in (0, 1/2)$, μ_p be the distribution of the sum

$$X = \sum_{k=1}^{\infty} \left(\frac{1}{2^k}\right) X_k$$

where X_k , $k \in \mathbb{N}$, is a sequence of independent random variables with $\Pr{(X_k = 0) = p}$ and $\Pr{(X_k = 1) = 1 - p}$.

We will denote

$$F_{p}(t) := \Pr(X < t)$$

(1) F_p is continuous and strictly increasing on [0, 1].

- (1) F_p is continuous and strictly increasing on [0, 1].
- (2) If $t=\sum_{k=1}^n\frac{u_k}{2^k}$ with $u_k\in\{0,1\}$, $I\left(t\right)$ and $r\left(t\right)$ denote the numbers of zeros and ones among $u_1,...,u_n$ then

$$\mu_{p}\left(\left\lceil t,t+\frac{1}{2^{n}}\right\rceil\right)=F_{p}\left(t+\frac{1}{2^{n}}\right)-F_{p}\left(t\right)=p^{l\left(t\right)}\left(1-p\right)^{r\left(t\right)}.$$

- (1) F_p is continuous and strictly increasing on [0,1].
- (2) If $t = \sum_{k=1}^{n} \frac{u_k}{2^k}$ with $u_k \in \{0,1\}$, I(t) and r(t) denote the numbers of zeros and ones among $u_1,...,u_n$ then

$$\mu_{p}\left(\left[t,t+\frac{1}{2^{n}}\right]\right)=F_{p}\left(t+\frac{1}{2^{n}}\right)-F_{p}\left(t\right)=p^{I\left(t\right)}\left(1-p\right)^{r\left(t\right)}.$$

(3) If $x \in (0,1)$ and $F'_{p}(x)$ exists then $F'_{p}(x) = 0$.

Suppose that $F_p'(x) \neq 0$. For any n there is k_n such that $x \in I_n := \left(\frac{k_n}{2^n}, \frac{k_n+1}{2^n}\right]$

Suppose that $F_p'(x) \neq 0$. For any n there is k_n such that $x \in I_n := \left(\frac{k_n}{2^n}, \frac{k_n+1}{2^n}\right]$ Clearly

$$\frac{\mu_{p}\left(I_{n}\right)}{\lambda\left(I_{n}\right)} = \frac{F_{p}\left(\frac{k_{n}+1}{2^{n}}\right) - F_{p}\left(\frac{k_{n}}{2^{n}}\right)}{2^{-n}} \rightarrow F'_{p}\left(x\right)$$

Suppose that $F'_p(x) \neq 0$. For any n there is k_n such that $x \in I_n := \left(\frac{k_n}{2^n}, \frac{k_n+1}{2^n}\right]$

Clearly

$$\frac{\mu_{p}\left(I_{n}\right)}{\lambda\left(I_{n}\right)} = \frac{F_{p}\left(\frac{k_{n}+1}{2^{n}}\right) - F_{p}\left(\frac{k_{n}}{2^{n}}\right)}{2^{-n}} \rightarrow F'_{p}\left(x\right)$$

and

$$\frac{\mu_{p}\left(I_{n+1}\right)}{\lambda\left(I_{n}\right)} = \frac{\mu_{p}\left(I_{n+1}\right)}{2\lambda\left(I_{n+1}\right)} \to \frac{1}{2}F'_{p}\left(x\right).$$

Suppose that $F'_p(x) \neq 0$. For any n there is k_n such that $x \in I_n := \left(\frac{k_n}{2^n}, \frac{k_n+1}{2^n}\right]$

Clearly

$$\frac{\mu_{p}\left(I_{n}\right)}{\lambda\left(I_{n}\right)} = \frac{F_{p}\left(\frac{k_{n}+1}{2^{n}}\right) - F_{p}\left(\frac{k_{n}}{2^{n}}\right)}{2^{-n}} \to F'_{p}\left(x\right)$$

and

$$\frac{\mu_{p}\left(I_{n+1}\right)}{\lambda\left(I_{n}\right)} = \frac{\mu_{p}\left(I_{n+1}\right)}{2\lambda\left(I_{n+1}\right)} \to \frac{1}{2}F'_{p}\left(x\right).$$

Hence $\frac{\mu_{p}(I_{n+1})}{\mu_{p}(I_{n})}
ightarrow \frac{1}{2}$,

Suppose that $F'_p(x) \neq 0$. For any n there is k_n such that $x \in I_n := \left(\frac{k_n}{2^n}, \frac{k_n+1}{2^n}\right]$

Clearly

$$\frac{\mu_{p}\left(I_{n}\right)}{\lambda\left(I_{n}\right)} = \frac{F_{p}\left(\frac{k_{n}+1}{2^{n}}\right) - F_{p}\left(\frac{k_{n}}{2^{n}}\right)}{2^{-n}} \rightarrow F'_{p}\left(x\right)$$

and

$$\frac{\mu_{p}\left(I_{n+1}\right)}{\lambda\left(I_{n}\right)} = \frac{\mu_{p}\left(I_{n+1}\right)}{2\lambda\left(I_{n+1}\right)} \to \frac{1}{2}F'_{p}\left(x\right).$$

Hence $\frac{\mu_{p}(I_{n+1})}{\mu_{p}(I_n)} o \frac{1}{2}$, but $\frac{\mu_{p}(I_{n+1})}{\mu_{p}(I_n)}$ is equal to p or 1-p.

- (1) F_p is continuous and strictly increasing on [0, 1].
- (2) If $t = \sum_{k=1}^{n} \frac{u_k}{2^k}$ with $u_k \in \{0,1\}$, I(t) and r(t) denote the numbers of zeros and ones among $u_1, ..., u_n$ then

$$\mu_{p}\left(\left[t,t+\frac{1}{2^{n}}\right]\right)=F_{p}\left(t+\frac{1}{2^{n}}\right)-F_{p}\left(t\right)=p^{I\left(t\right)}\left(1-p\right)^{r\left(t\right)}.$$

(3) If $x \in (0,1)$ and $F'_p(x)$ exists then $F'_p(x) = 0$.

- (1) F_p is continuous and strictly increasing on [0, 1].
- (2) If $t = \sum_{k=1}^{n} \frac{u_k}{2^k}$ with $u_k \in \{0,1\}$, I(t) and r(t) denote the numbers of zeros and ones among $u_1, ..., u_n$ then

$$\mu_{p}\left(\left[t,t+\frac{1}{2^{n}}\right]\right)=F_{p}\left(t+\frac{1}{2^{n}}\right)-F_{p}\left(t\right)=p^{I\left(t\right)}\left(1-p\right)^{r\left(t\right)}.$$

- (3) If $x \in (0,1)$ and $F'_p(x)$ exists then $F'_p(x) = 0$.
- (4) $F'_p = 0$ almost everywhere in [0, 1].

- (1) F_p is continuous and strictly increasing on [0, 1].
- (2) If $t = \sum_{k=1}^{n} \frac{u_k}{2^k}$ with $u_k \in \{0, 1\}$, I(t) and I(t) denote the numbers of zeros and ones among $u_1, ..., u_n$ then

$$\mu_{p}\left(\left[t,t+\frac{1}{2^{n}}\right]\right)=F_{p}\left(t+\frac{1}{2^{n}}\right)-F_{p}\left(t\right)=p^{I\left(t\right)}\left(1-p\right)^{r\left(t\right)}.$$

- (3) If $x \in (0,1)$ and $F'_p(x)$ exists then $F'_p(x) = 0$.
- (4) $F_p' = 0$ almost everywhere in [0, 1].
- (5) F_p is a strongly singular function.

(6) The set

$$B_p = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{x_1 + \ldots + x_n}{n} = 1 - p \right\}$$

where $x=0.x_1x_2x_3x_4..._{(2)}$, is Borel and $\mu_p\left(B_p\right)=1$.

(6) The set

$$B_p = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{x_1 + \ldots + x_n}{n} = 1 - p \right\}$$

where $x = 0.x_1x_2x_3x_4..._{(2)}$, is Borel and $\mu_p(B_p) = 1$.

(7) For any distinct $p,q\in\left(0,\frac{1}{2}\right)$, $Var_{\left[0,1\right]}\left(F_{p}-F_{q}\right)=2.$

Let $\varepsilon \in (0, 1/4)$. Pick closed sets $C_p \subset B_p$ and $C_q \subset B_q$ such that $\mu_p(C_p) \ge 1 - \varepsilon$ and $\mu_q(C_q) \ge 1 - \varepsilon$.

Let $\varepsilon \in (0,1/4)$. Pick closed sets $C_p \subset B_p$ and $C_q \subset B_q$ such that $\mu_p(C_p) \geq 1 - \varepsilon$ and $\mu_q(C_q) \geq 1 - \varepsilon$. Choose disjoint sets $G_p \supset C_p$ and $G_q \supset C_q$ that are open in [0,1]. Let (I_n) and (J_n) stand for the sequences of all connected components of G_p and G_q , respectively.

Let $\varepsilon \in (0,1/4)$. Pick closed sets $C_p \subset B_p$ and $C_q \subset B_q$ such that $\mu_p(C_p) \geq 1 - \varepsilon$ and $\mu_q(C_q) \geq 1 - \varepsilon$. Choose disjoint sets $G_p \supset C_p$ and $G_q \supset C_q$ that are open in [0,1]. Let (I_n) and (J_n) stand for the sequences of all connected components of G_p and G_q , respectively.

Then $\mu_p(G_p) \ge 1 - \varepsilon$, that is $\sum_n Var_{cl(I_n)} F_p \ge 1 - \varepsilon$, and $\mu_p(G_q) \le \varepsilon$, that is $\sum_n Var_{cl(J_n)} F_p \le \varepsilon$.

Let $\varepsilon \in (0,1/4)$. Pick closed sets $C_p \subset B_p$ and $C_q \subset B_q$ such that $\mu_p(C_p) \geq 1 - \varepsilon$ and $\mu_q(C_q) \geq 1 - \varepsilon$. Choose disjoint sets $G_p \supset C_p$ and $G_q \supset C_q$ that are open in [0,1]. Let (I_n) and (J_n) stand for the sequences of all connected components of G_p and G_q , respectively.

Then $\mu_p(G_p) \ge 1 - \varepsilon$, that is $\sum_n Var_{cl(I_n)} F_p \ge 1 - \varepsilon$, and $\mu_p(G_q) \le \varepsilon$, that is $\sum_n Var_{cl(J_n)} F_p \le \varepsilon$. Using above inequalities we obtain

$$\sum_{n} \textit{Var}_{\textit{cl}(I_n)}(\textit{F}_p - \textit{F}_q) \geq 1 - 2\epsilon \text{ and } \sum_{n} \textit{Var}_{\textit{cl}(J_n)}(\textit{F}_p - \textit{F}_q) \geq 1 - 2\epsilon.$$

Let $\varepsilon \in (0,1/4)$. Pick closed sets $C_p \subset B_p$ and $C_q \subset B_q$ such that $\mu_p(C_p) \geq 1 - \varepsilon$ and $\mu_q(C_q) \geq 1 - \varepsilon$. Choose disjoint sets $G_p \supset C_p$ and $G_q \supset C_q$ that are open in [0,1]. Let (I_n) and (J_n) stand for the sequences of all connected components of G_p and G_q , respectively.

Then $\mu_p(G_p) \ge 1 - \varepsilon$, that is $\sum_n Var_{cl(I_n)} F_p \ge 1 - \varepsilon$, and $\mu_p(G_q) \le \varepsilon$, that is $\sum_n Var_{cl(J_n)} F_p \le \varepsilon$. Using above inequalities we obtain

$$\sum_{n} \textit{Var}_{\textit{cl}(\textit{I}_n)}(\textit{F}_p - \textit{F}_q) \geq 1 - 2\epsilon \text{ and } \sum_{n} \textit{Var}_{\textit{cl}(\textit{J}_n)}(\textit{F}_p - \textit{F}_q) \geq 1 - 2\epsilon.$$

Hence

$$Var_{[0,1]}(F_p - F_q) \geq 2 - 4\varepsilon.$$

(6) The Borel set

$$B_p = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{x_1 + \ldots + x_n}{n} = 1 - p \right\}$$

where $x = 0.x_1x_2x_3x_4...(2)$, has measure μ_p one.

(7) For any distinct $p, q \in \left(0, \frac{1}{2}\right), \ \mathit{Var}_{[0,1]}\left(\mathit{F}_{\mathit{p}} - \mathit{F}_{\mathit{q}}\right) = 2.$

Corollary: The space *CBV* is nonseparable

Lineability and spaceability

A subset A of a vector space V is called lineable if $A \cup \{\theta\}$ contains an infinite dimensional vector subspace W of V.

Lineability and spaceability

A subset A of a vector space V is called lineable if $A \cup \{\theta\}$ contains an infinite dimensional vector subspace W of V.

A subset A of a topological vector space V is called spaceable if $A \cup \{\theta\}$ contains an infinite dimensional closed vector subspace W of V. If W is nonseparable, we say that A is nonseparably spaceable.

Theorem 1. The set of strongly singular functions in CBV is nonseparable spaceable.

Theorem 1. The set of strongly singular functions in CBV is nonseparable spaceable.

Sketch of the proof: Denote

$$W = span \left\{ F_p : p \in (0, 1/2) \right\}$$

Theorem 1. The set of strongly singular functions in CBV is nonseparable spaceable.

Sketch of the proof: Denote

$$W = span\left\{F_p : p \in (0,1/2)\right\}$$

Lemma 1: If $0 < p_1 < ... < p_k < 1/2$ and $a_i \neq 0$ for i = 1, ..., k, then for any interval J there exists $I \subset J$ such that

$$\sum_{i=1}^{k} a_i \mu_{p_i}(I) \neq 0.$$

Theorem 1. The set of strongly singular functions in CBV is nonseparable spaceable.

Sketch of the proof: Denote

$$W = span\left\{F_p: p \in (0,1/2)\right\}$$

Lemma 1: If $0 < p_1 < ... < p_k < 1/2$ and $a_i \neq 0$ for i = 1, ..., k, then for any interval J there exists $I \subset J$ such that

$$\sum_{i=1}^{k} a_i \mu_{p_i}(I) \neq 0.$$

Corollary: Each nonzero function from W is strongly singular.

Theorem 1. The set of strongly singular functions in CBV is nonseparably spaceable.

$$W = span\left\{F_p : p \in (0, 1/2)\right\}$$

If f'=0 a.e., $g\in CBV$ and $|g'|>\alpha$ on the set X of positive measure $\lambda\left(X\right)=\beta$ then

$$Var_{[0,1]}(f-g)\geqslant \int_{[0,1]}\left|\left(f-g\right)'\right|>lphaeta$$

Theorem 1. The set of strongly singular functions in CBV is nonseparably spaceable.

$$W = span\left\{F_p : p \in (0, 1/2)\right\}$$

If f'=0 a.e., $g\in CBV$ and $|g'|>\alpha$ on the set X of positive measure $\lambda\left(X\right)=\beta$ then

$$Var_{[0,1]}\left(f-g
ight)\geqslant\int_{[0,1]}\left|\left(f-g
ight)'
ight|>lphaeta$$

Lemma 2: If $f \in cl(W)$ in CBV then f' = 0 almost everywhere in [0,1].

Theorem 1. The set of strongly singular functions in CBV is nonseparably spaceable.

$$W=span\left\{ F_{p}:p\in\left(0,1/2\right)\right\}$$

Theorem 1. The set of strongly singular functions in CBV is nonseparably spaceable.

$$W = span\left\{F_p : p \in (0, 1/2)\right\}$$

Lemma 3: Consider arbitrary birational numbers $t_0=i_0/2^{n_0}$ and $t_1=i_1/2^{n_1}$ such that $n_1\geq n_0$, $\ell(t_1)\geq \ell(t_0)$ and $r(t_1)\geq r(t_0)$. Put $l_0=[t_0,t_0+1/2^{n_0}]$ and $l_1=[t_1,t_1+1/2^{n_1}]$. Then there exists a subinterval $J=[j/2^{n_1},(j+1)/2^{n_1+1}]$ of l_0 such that $\mu_p(J)=\mu_p(I_1)$ for each $p\in(0,1/2)$.

Moreover, for any real numbers $\alpha, \beta \in I_1$, $\alpha < \beta$, there exists a subinterval $[\alpha_1, \beta_1]$ of I_0 such that $\mu_{\rho}([\alpha_1, \beta_1]) = \mu_{\rho}([\alpha, \beta])$ for each $\rho \in (0, 1/2)$.

Theorem 1. The set of strongly singular functions in CBV is nonseparably spaceable.

$$W = span\left\{F_p : p \in (0, 1/2)\right\}$$

Lemma 3: Consider arbitrary birational numbers $t_0=i_0/2^{n_0}$ and $t_1=i_1/2^{n_1}$ such that $n_1\geq n_0$, $\ell(t_1)\geq \ell(t_0)$ and $r(t_1)\geq r(t_0)$. Put $l_0=[t_0,t_0+1/2^{n_0}]$ and $l_1=[t_1,t_1+1/2^{n_1}]$. Then there exists a subinterval $J=[j/2^{n_1},(j+1)/2^{n_1+1}]$ of l_0 such that $\mu_p(J)=\mu_p(I_1)$ for each $p\in(0,1/2)$.

Moreover, for any real numbers $\alpha, \beta \in I_1$, $\alpha < \beta$, there exists a subinterval $[\alpha_1, \beta_1]$ of I_0 such that $\mu_p([\alpha_1, \beta_1]) = \mu_p([\alpha, \beta])$ for each $p \in (0, 1/2)$.

Lemma 4: If $f \in cl(W)$ is constant in some interval of [0,1] then f is equal to 0 in [0,1].

Algebrability

A subset E of a commutative algebra is called κ -algebrable if there exists an algebra $A \subset E \cup \{\theta\}$ such that

$$\kappa = \min\left\{ |F| : A = \mathcal{A}\left(F\right) \right\}$$

Algebrability

A subset E of a commutative algebra is called κ -algebrable if there exists an algebra $A \subset E \cup \{\theta\}$ such that

$$\kappa = \min \left\{ |F| : A = \mathcal{A}(F) \right\}$$

E is called strongly κ -algebrable if there exists a free algebra $A \subset E \cup \{\theta\}$ such that

$$\kappa = \min\left\{ |F| : A = \mathcal{A}\left(F\right) \right\}$$

Theorem 2. The set of strongly singular functions in *CBV* is strongly c-algebrable.

Theorem 2. The set of strongly singular functions in CBV is strongly \mathfrak{c} -algebrable.

A function $f: \mathbb{R} \to \mathbb{R}$ is exponential like (of range m) whenever

$$f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x}, \quad x \in \mathbb{R},$$

for some distinct nonzero real numbers $\beta_1, \ldots \beta_m$ and some nonzero real numbers $a_1, \ldots a_m$.

Theorem 2. The set of strongly singular functions in *CBV* is strongly c-algebrable.

A function $f: \mathbb{R} \to \mathbb{R}$ is exponential like (of range m) whenever

$$f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x}, \quad x \in \mathbb{R},$$

for some distinct nonzero real numbers $\beta_1, \ldots \beta_m$ and some nonzero real numbers $a_1, \ldots a_m$.

METHOD. Given a family $\mathcal{F} \subset \mathbb{R}^{[0,1]}$, assume that there exists a function $F \in \mathcal{F}$ such that $f \circ F \in \mathcal{F} \setminus \{0\}$ for every exponential like function $f \colon \mathbb{R} \to \mathbb{R}$. Then \mathcal{F} is strongly \mathfrak{c} -algebrable. More exactly, if $H \subset \mathbb{R}$ is a set of cardinality \mathfrak{c} , linearly independent over \mathbb{Q} , then $\exp \circ (rF)$, $r \in H$, are free generators of an algebra contained in $\mathcal{F} \cup \{0\}$.

Lemma 5. For any exponential like function $f: [0,1] \to \mathbb{R}$ of range m, and each $c \in \mathbb{R}$, the preimage $f^{-1}[\{c\}]$ has at most m elements. Consequently, f is not constant in every subinterval of [0,1].

Lemma 5. For any exponential like function $f:[0,1] \to \mathbb{R}$ of range m, and each $c \in \mathbb{R}$, the preimage $f^{-1}[\{c\}]$ has at most m elements. Consequently, f is not constant in every subinterval of [0,1].

Proof of Theorem 2: Let $F = F_{1/4}$ and $f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x}$. Since F' = 0 almost everywhere in [0,1]

$$(f \circ F)'(x) = F'(x) \sum_{i=1}^m a_i \beta_i e^{\beta_i F(x)} = 0$$
 for almost all $x \in [0, 1]$.

Lemma 5. For any exponential like function $f:[0,1] \to \mathbb{R}$ of range m, and each $c \in \mathbb{R}$, the preimage $f^{-1}[\{c\}]$ has at most m elements. Consequently, f is not constant in every subinterval of [0,1].

Proof of Theorem 2: Let $F = F_{1/4}$ and $f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x}$. Since F' = 0 almost everywhere in [0,1]

$$(f \circ F)'(x) = F'(x) \sum_{i=1}^m a_i \beta_i e^{\beta_i F(x)} = 0$$
 for almost all $x \in [0, 1]$.

Suppose that $f \circ F$ is constant in some subinterval [c,d] of [0,1] with c < d. Since F^{-1} is a continuous increasing bijection from [0,1] onto [0,1], the function $f = (f \circ F) \circ F^{-1}$ is constant in the interval [F(c),F(d)] which gives a contradiction.

References

- P. Billingsley, Prawdopodobieństwo i miara, PWN 1987.
- M. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263–269.
- D.H. Fremlin, *Measure Theory. Broad Foundations*, vol. 2, Colchester 2003.