filename n14513.tex Version of 28.5.14

A martingale inequality

D.H.Fremlin

University of Essex, Colchester, England

Theorem Suppose that (Ω, Σ, μ) is a probability space, $\Sigma_0 \subseteq \ldots \subseteq \Sigma_n$ are σ -subalgebras of Σ , (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, and $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for each i < n. Set

$$Z = \sum_{i=0}^{n-1} X_i \times (Y_{i+1} - Y_i).$$

Then $\Pr(|Z| \ge M) \le \frac{1}{M^{2/3}} (1 + \mathbb{E}(|Y_n|))$ for every M > 0.

Theorem If (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for i < n, and

$$Z = \sum_{i=0}^{n-1} X_i \times (Y_{i+1} - Y_i),$$

then $\Pr(|Z| \ge M) \le \frac{1}{M^{2/3}} (1 + \mathbb{E}(|Y_n|))$ for every M > 0.

Doob's maximal inequality If (Y_0, \ldots, Y_n) is a martingale, and $Z = \max_{i \le n} |Y_i|$,

then $\Pr(|Z| \ge M) \le \frac{1}{M} \mathbb{E}(|Y_n|)$ for every M > 0.

Theorem If (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for i < n, and

$$Z = \sum_{i=0}^{n-1} X_i \times (Y_{i+1} - Y_i),$$

then $\Pr(|Z| \ge M) \le \frac{1}{M^{2/3}} (1 + \mathbb{E}(|Y_n|))$ for every M > 0.

A fractionally sharper theorem If (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for i < n, and

$$Z = \sum_{i=0}^{n-1} X_i \times (Y_{i+1} - Y_i),$$

then $\Pr(|Z| \ge M) \le \frac{K^2}{M^2} + \frac{1}{K} \mathbb{E}(|Y_n|)$ for all K, M > 0.

(Set $K = M^{2/3}$ to get the original version.)

Case 1 Suppose that $|Y_n| \leq_{\text{a.e.}} K$. Then $\Pr(|Z| \geq M) \leq \frac{K^2}{M^2}$.

Case 1 Suppose that $|Y_n| \leq_{\text{a.e.}} K$. Then $\Pr(|Z| \geq M) \leq \frac{K^2}{M^2}$. **proof** We have

$$\mathbb{E}(Z^2) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \mathbb{E}(X_i \times X_j \times (Y_{i+1} - Y_i) \times (Y_{j+1} - Y_j))$$
$$= \sum_{i=0}^{n-1} \mathbb{E}(X_i^2 \times (Y_{i+1} - Y_i)^2)$$

(because if i < j, $X_i \times X_j \times (Y_{i+1} - Y_i)$ is Σ_j -measurable, while 0 is a conditional expectation of $Y_{j+1} - Y_j$ on Σ_j)

$$\leq \sum_{i=0}^{n-1} \mathbb{E}((Y_{i+1} - Y_i)^2)$$

$$= \sum_{i=0}^{n-1} \mathbb{E}(Y_{i+1}^2 - Y_i^2) - 2\mathbb{E}(Y_i \times (Y_{i+1} - Y_i))$$

$$= \sum_{i=0}^{n-1} \mathbb{E}(Y_{i+1}^2 - Y_i^2) = \mathbb{E}(Y_n^2) - \mathbb{E}(Y_0^2) \leq K^2$$

and the result follows at once.

Case 2 Suppose that whenever i < n and $\max_{j \le i} |Y_j(\omega)| < K \le |Y_{i+1}(\omega)|$ then $|Y_{i+1}(\omega)| = K$. Then $\Pr(|Z| \ge M) \le \frac{K^2}{M^2} + \frac{1}{K} \mathbb{E}(|Y_n|)$.

proof Set

$$\begin{aligned} Y_i'(\omega) &= 0 \text{ if } |Y_0(\omega)| \geq K, \\ &= Y_i(\omega) \text{ if } |Y_j(\omega)| < K \text{ for every } j \leq i, \\ &= Y_k(\omega) \text{ if } 0 < k \leq i, |Y_j(\omega)| < K \text{ for every } j < k, |Y_k(\omega)| = K \end{aligned}$$

and set

$$Z' = \sum_{i=0}^{n-1} X_i \times (Y'_{i+1} - Y'_i).$$

By Case 1, $\Pr(|Z'| \ge M) \le \frac{K^2}{M^2}$, so

$$\Pr(|Z| \ge M) \le \Pr(|Z'| \ge M) + \Pr(Z' \ne Z) \le \frac{K^2}{M^2} + \Pr(\exists i, Y_i' \ne Y_i)$$
$$\le \frac{K^2}{M^2} + \Pr(\exists i, |Y_i| \ge K) \le \frac{K^2}{M^2} + \frac{1}{K} \mathbb{E}(|Y_n|)$$

by Doob's inequality.

Lemma Suppose that (Ω, Σ, μ) is a probability space, $\Sigma_0 \subseteq \ldots \subseteq \Sigma_n$ are σ -subalgebras of Σ , (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, and $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for each i < n. Then there are a probability space (Ω', Σ', μ') , σ -subalgebras $\Sigma'_0 \subseteq \ldots \subseteq \Sigma'_{2n}$ of Σ' , a martingale (Y'_0, \ldots, Y'_{2n}) adapted to $(\Sigma'_0, \ldots, \Sigma'_{2n})$, and a Σ'_{2i} -measurable random variable X'_{2i} for each i < n, such that

- (i) whenever i < n and $|Y'_{2i}(\omega')| < K$ then either $|Y'_{2i+1}(\omega')| = K$ or $|Y'_{2i+1}(\omega')| < K$ and $|Y'_{2i+2}(\omega')| < K$,
- (ii) $Y'_0, Y'_2, \ldots, Y'_{2n}, X'_0, X'_2, \ldots, X'_{2n-2}$ have the same joint distribution as $Y_0, Y_1, \ldots, Y_n, X_0, X_1, \ldots, X_{n-1}$.

proof of theorem Set $X'_{2i+1} = X'_{2i}$ for i < n,

$$Z' = \sum_{j=0}^{2n-1} X'_j \times (Y'_{j+1} - Y'_j) = \sum_{i=0}^{n-1} X'_{2i} \times (Y'_{2i+2} - Y'_{2i}).$$

Then Z and Z' have the same distribution so

$$\Pr(|Z| \ge M) = \Pr(|Z'| \ge M) \le \frac{K^2}{M^2} + \frac{1}{K} \mathbb{E}(|Y'_{2n}|)$$
 (by Case 2)
$$= \frac{K^2}{M^2} + \frac{1}{K} \mathbb{E}(|Y_n|).$$

Lemma Suppose that (Y_0, \ldots, Y_n) is a martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, and $X_i : \Omega \to [-1,1]$ is Σ_i -measurable for each i < n. Then there are a probability space (Ω', Σ', μ') , a martingale (Y'_0, \ldots, Y'_{2n}) adapted to $(\Sigma'_0, \ldots, \Sigma'_{2n})$, and a Σ'_{2i} -measurable random variable X'_{2i} for each i < n, such that

- (i) whenever i < n and $|Y'_{2i}(\omega')| < K$ then either $|Y'_{2i+1}(\omega')| = K$ or $|Y'_{2i+1}(\omega')| < K$ and $|Y'_{2i+2}(\omega')| < K$,
- (ii) $Y_0, Y_2, \ldots, Y_{2n}, X_0, X_2, \ldots, X_{2n-2}$ have the same joint distribution as $Y_0, \ldots, Y_n, X_0, \ldots, X_{n-1}$.

Proving the lemma: basic case Take $n=1, \Sigma_1=\Sigma, \Sigma_0=\{\emptyset,\Omega\},$ $Y_0=\gamma=\mathbb{E}(Y_1)$ where $|\gamma|< K$. Set $\Omega'=\Omega\times[0,1]$ with product measure μ' , domain Σ'_2 ; set $\Sigma'_0=\{\emptyset,\Omega'\}, \, Y'_0(\omega,t)=Y_0(\omega)=\gamma, \, X'_0(\omega,t)=X_0(\omega),$ $Y'_2(\omega,t)=Y_1(\omega)$. Seek a partition (G^+,G^-,H) of Ω' such that

$$\int_{G^+} Y_2' d\mu' = K\mu' G^+, \quad \int_{G^-} Y_2' d\mu' = -K\mu' G^-$$

and $H \subseteq F \times [0,1]$ where $F = \{\omega : |Y_1(\omega)| < K\}$. Then we can take Σ_1' to have atoms G^+ , G^- and H.

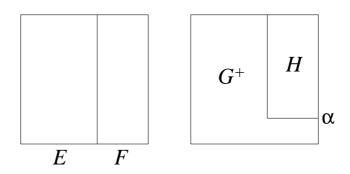
Construction when n = 1, $\Sigma_0 = \{\emptyset, \Omega\}$, $\Omega' = \Omega \times [0, 1]$, $|\mathbb{E}(Y_1)| < K$, $Y_2'(\omega, t) = Y_1(\omega)$. Seek a partition (G^+, G^-, H) of Ω' such that

$$\int_{G^+} Y_2' d\mu' = K\mu' G^+, \quad \int_{G^-} Y_2' d\mu' = -K\mu' G^+$$

and $H \subseteq F \times [0,1]$ where $F = \{\omega : |Y_1(\omega)| < K\}$.

(
$$\alpha$$
) If $\int_E Y_1 \ge K\mu E$ where $E = \Omega \setminus F$, try $G_{\alpha} = (E \times [0,1]) \cup (F \times [0,\alpha])$ for $\alpha \in [0,1]$.

If $\alpha = 0$, $\int_{G_{\alpha}} Y_2' d\mu' \ge K\mu' G_{\alpha}$; if $\alpha = 1$, $\int_{G_{\alpha}} Y_2' d\mu' < K\mu' G_{\alpha}$; so for a suitable α can take $G^+ = G_{\alpha}$, $G^- = \emptyset$.



(β) Similarly if $\int_E Y_1 \leq -K\mu E$.

Seek a partition (G^+, G^-, H) of Ω' such that

$$\int_{G^+} Y_2' d\mu' = K\mu' G^+, \quad \int_{G^-} Y_2' d\mu' = -K\mu' G^+$$

and $H \subseteq F \times [0,1]$ where $F = \{\omega : |Y_1(\omega)| < K\}$.

$$(\gamma)$$
 If $-K\mu E < \int_E Y_1 < K\mu E$; set

$$E^{+} = \{\omega : Y_1(\omega) \ge K\}, \quad E^{-} = \{\omega : Y_1(\omega) \le -K\},$$

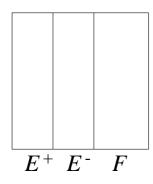
$$V_{\alpha} = (E^+ \times [0,1]) \cup (E^- \times [0,\alpha]) \text{ for } \alpha \in [0,1].$$

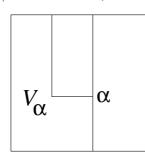
Then there is an α such that $\int_{V_{\alpha}} Y_2' d\mu' = K\mu' V_{\alpha}$. Now set

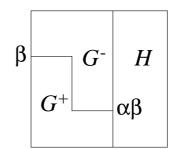
$$W_{\beta} = (E^+ \times [\beta, 1]) \cup (E^- \times [\alpha \beta, 1]) \text{ for } \beta \in [0, 1].$$

Then there is a β such that $\int_{W_{\beta}} Y_2' = -K\mu' W_{\beta}$. Take

$$G^{-} = W_{\beta}, \quad G^{+} = (E^{+} \times [0, \beta[) \cup (E^{-} \times [0, \alpha\beta[).$$







Vector-valued extensions? Lemma Let U be a Banach space. Suppose that (Ω, Σ, μ) is a probability space, $\Sigma_0 \subseteq \ldots \subseteq \Sigma_n$ are σ -subalgebras of Σ , (Y_0, \ldots, Y_n) is a martingale of Bochner integrable U-valued functions adapted to $(\Sigma_0, \ldots, \Sigma_n)$, and $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for each i < n. Then there are a probability space (Ω', Σ', μ') , σ -subalgebras $\Sigma'_0 \subseteq \ldots \subseteq \Sigma'_{2n}$ of Σ' , a U-valued Bochner martingale (Y'_0, \ldots, Y'_{2n}) adapted to $(\Sigma'_0, \ldots, \Sigma'_{2n})$, and a Σ'_{2i} -measurable random variable X'_{2i} for each i < n, such that

- (i) whenever i < n and $||Y'_{2i}(\omega')|| < K$ then either $||Y'_{2i+1}(\omega')|| = K$ or $||Y'_{2i+1}(\omega')|| < K$ and $||Y'_{2i+2}(\omega')|| < K$,
- (ii) $Y_0', Y_2', \ldots, Y_{2n}', X_0', X_2', \ldots, X_{2n-2}'$ have the same joint distribution as $Y_0, Y_1, \ldots, Y_n, X_0, X_1, \ldots, X_{n-1}$.

Theorem Let U be a Hilbert space. Suppose that (Y_0, \ldots, Y_n) is a U-valued Bochner martingale adapted to $(\Sigma_0, \ldots, \Sigma_n)$, and $X_i : \Omega \to [-1, 1]$ is Σ_i -measurable for each i < n. Set

$$Z = \sum_{i=0}^{n-1} X_i \times (Y_{i+1} - Y_i).$$

Then $\Pr(\|Z\| \ge M) \le \frac{1}{M^{2/3}} (1 + \mathbb{E}(\|Y_n\|))$ for every M > 0.