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Theorem (Grothendieck). Let (fn)∞n=1 be a weak*-convergent sequence in
`∞(Γ)∗. Then (fn)∞n=1 converges weakly.

De�nition: Let us call a Banach space X for which weak*-convergent
sequences in X ∗ converge weakly a Grothendieck space.

Examples: re�exive spaces, quotients (hence complemented subspaces) of
Grothendieck spaces, injective spaces etc.

Figure: J. Diestel, J. R. Uhl, Vector measures, p. 179

An easy exercise on the Eberlein��mulian theorem: A separable space is
Grothendieck if and only if it is re�exive.

A non-example: c0. If follows from the above but it can be seen directly: take
the canonical basis (ek)∞k=1 of `1 ∼= c∗0 . It is w*-null, however it does not
converge weakly as 〈((−1)n)∞n=1, ek〉 fails to converge whenever k →∞.
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Grothendieck spaces � why bother? A typical application: to show that, for
instance, c0 is not a quotient of `∞ or that separable quotients of `∞ are
separable.

Theorem. Let X be a Banach space. Then the following conditions are
equivalent:

1. X is a Grothendieck space

2. every operator T : X → c0 is weakly compact;

3. for every separable space X , each operator T : X → Y is weakly compact.

Some properties:

� Duals of Grothendieck spaces are weakly sequentially complete (easy).

� Every Grothendieck space X has Peªczy«ski's property (V): for each Banach
space Y every unconditionally converging operator T : X → Y is weakly
compact1.

� Spaces with property (V) without complemented copies of c0 are
Grothendieck (Räbiger 1984)

Theorem. (Peªczy«ski 1962, Cembranos 1988). C(K)-spaces have property
(V). Consequently, a C(K)-space is Grothendieck if and only if it does not
contain complemented copies of c0.

1weakly compact operators are always unconditionally converging
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Diestel and Uhl wrote in their famous monograph [p. 180]:

Finally, there is some evidence (Akemann [1967], [1968]) that the
space L (H; H) of bounded linear operators on a Hilbert space is
a Grothendieck space and that more generally the space L (X ; X ) is
a Grothendieck space for any re�exive Banach space X .

Akemann was interested in conditional expectations (norm-one projections) from

B(H), the algebra of operators on a Hilbert space, onto separable sub-C*-algebras; he

proved that separable C*-algebras are never complemented in B(H).

Theorem (P�tzner 1994). C*-algebras have property (V). In particular, a
C*-algebra is a Grothendieck space if and only if it does not contain a
complemented copy of c0; von Neumann algebras (dual C*-algebras) are thus
Grothendieck.

Corollary. For any Hilbert space H, B(H) is a Grothendieck space.

Question. For what E , the space B(E) is Grothendieck?

Let us note that the question of the Grothendieck property is interesting only for E

re�exive; in the non-re�exive case B(E) is never Grothendieck.
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Easy fact. Let E be a Banach space. Then both E and E∗ are isomorphic to
complemented subspaces of B(E).

Proof. Choose a norm-one elements x0 ∈ E and λ0 ∈ E∗ such that
〈x0, λ0〉 = 1. Consider the map x 3 E 7→ x ⊗ λ0, which is an isomorphic
embedding of E into B(E). It has a left inverse given by
B(E) 3 T 7→ Tx0 ∈ E . A similar proof works for E∗. �

Corollary. If B(E) is Grothendieck, then so are E and E∗.

Proposition. A Banach space E is re�exive if and only if E and E∗ are
Grothendieck.

Proof. Suppose that E is not re�exive. It follows from the Eberlein��mulian
theorem that there is a bounded sequence (xn)∞n=1 in E such that {xn : n ∈ N}
is not relatively weakly compact. By a result of Godefroy and Saab (1986);
since E is a subspace of a dual of Grothendieck space, we may �nd an in�nite
set A ⊂ N such that the closed linear span of {xn : n ∈ A} is complemented in
E and isomorphic to `1. �
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We shall need the following fact (probably �rst observed by W. B. Johnson):

Lemma. The Banach space F =
(⊕∞

n=1 `
n
1

)
`∞

contains an (isometric)
complemented copy of `1.

A re�exive space E for which B(E) is not Grothendieck. (K. 2013)

Let p ∈ (1,∞) and consider

E =
( ∞⊕

n=1

`n1
)
`p
.

(We identify T ∈ B(E) with a matrix (Tij )
∞
i,j=1 where Tij ∈ B(`j

1
, `i
1
).) To complete

the proof it is enough to embed F as a complemented subspace of B(E).
Let us identify `n1 with a 1-complemented subspace of B(`n1) via the mapping

ek 7→ ek ⊗ e∗1 (k 6 n, n ∈ N),

where e∗1 stands for the coordinate functional associated with e1.
The space D = (

⊕∞
n=1 B(`n1))`∞ contains a complemented copy of F . Let

∆: D → B(E) be the diagonal embedding, that is,

∆((Tn)∞n=1) = diag(T1,T2, . . .) ((Tn)∞n=1 ∈ D).

The map ∆ is well-de�ned since the decomposition of E into the subspaces
`11, `

2
1, . . . is unconditional.
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It is enough to notice that ∆ has a left-inverse Ξ: B(E)→ D given by

Ξ(Tij )i,j∈N = (Tii )
∞
i=1 ((Tij )i,j∈N ∈ B(E)),

which is bounded.

With each operator T = (Tij )i,j∈N ∈ B(E) we shall associate a sequence
(S (n))∞n=1 of operators such that for each n ∈ N we have ‖S (n)‖ 6 ‖T‖ and the
matrix of S (n) agrees with the matrix of the diagonal operator
diag(−T11, . . . ,−Tnn, 0, 0, . . .) at entries (i , j) with i 6 n or j 6 n.

This will immediately yield that

‖Ξ(T )‖ = sup
n∈N
‖Tnn‖ = sup

n∈N
‖ − S (n)

nn ‖ 6 sup
n∈N
‖S (n)‖ 6 ‖T‖.

De�ne operators Tk,n,Tr,n (n > 1) which have the same columns and rows as
T respectively, except the �rst n ones, where we instead set (Tk,n)ij = −Tij and
(Tr)ji = −Tji for j ∈ {1, . . . , n} and i ∈ N. Certainly, ‖T‖ = ‖Tk,n‖ = ‖Tr,n‖
for all n ∈ N and the norm of S (n) := (Tk,n + Tr,n)/2 does not exceed the norm
of T . Consequently,

(
S (n)

)∞
n=1

is the desired sequence. �
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Observation. There is nothing really speci�c about this space; all we need are
the following ingredients:

- X is re�exive;

- X contains `n1's uniformly complemented;

- X has an unconditional basis (or more generally, B(X ) ∼= `∞(B(X )) as
Banach spaces)

Theorem (Johnson 1974). Suppose that X is a Banach space with local
unconditional structure. Then either X is super-re�exive or X contains `n∞'s
uniformly or X contains `n1's uniformly complemented.

Example. Tsierlson's space T (actually the dual of Tsirelson's original
construction) � it has an unconditional basis and is easily seen that it is not
super-re�exive.
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Observation. For E re�exive, B(E) and B(E∗) are isomorphic, so B(E) is
Grothendieck if and only B(E∗) is.

Another observation. Suppose that E is a re�exive space with a basis. Then
K (E)∗∗ ∼= B(E). It cannot happen that B(E) is Grothendieck and K (E) is
of �nite codimension in B(E).

Indeed, K (E) is separable so would be B(E). The Grothendieck property of
B(E) would force to be re�exive, however B(E) is re�exive if and only if E is
�nite-dimensional.

Question. Is it true that if E is super-re�exive, then B(E) is Grothendieck?
What if E = `p for p 6= 1, 2,∞?

If yes, then there would be no super-re�exive analogues of the Argyros�Haydon
space.

A weaker question: Is B(`p)∗ weakly sequentially complete for p 6= 1, 2,∞?

Not sure if it helps, but by a result of Daws and Read, if E is super-re�exive
then B(E)∗∗ is a 1-complemented subalgebra of B(F ) for some super-re�exive
F ; this however is another story...
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Theorem (Argyros�Haydon 2011). There is a Banach space XAH which has the
following three remarkable properties:

(i) XAH has very few operators, in the sense that each operator on XAH is a
compact perturbation of a scalar multiple of the identity;

(ii) XAH has a Schauder basis;

(iii) the dual space of XAH is isomorphic to `1.
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