

Which alGebras of operators on Banach spaces are Grothendieck spaces?

Tomasz Kania

Polish Academy of Sciences

Będlewo, 20th June 2014

Theorem (Grothendieck). Let $(f_n)_{n=1}^{\infty}$ be a weak*-convergent sequence in $\ell_{\infty}(\Gamma)^*$. Then $(f_n)_{n=1}^{\infty}$ converges weakly.

Definition: Let us call a Banach space X for which weak*-convergent sequences in X^* converge weakly a *Grothendieck space*.

Examples: reflexive spaces, quotients (hence complemented subspaces) of Grothendieck spaces, injective spaces etc.

According to Corollary 2.12 and the remarks following it, $B(\Sigma)$ is a Grothendieck space if Σ is a σ -field. Grothendieck spaces are close to the heart of every vector measure theorist. A close relationship exists between $B(\mathcal{F})$ spaces that are Grothendieck spaces, the validity of the Vitali-Hahn-Saks theorem for measures on the field \mathcal{F} and the validity of the Nikodým Boundedness Theorem for measures defined on \mathcal{F} (see Faires [1976] and Seever [1968]). This fact further accentuates the importance of the study of the interrelationships between Grothendieck spaces and vector measure theory. Here is a list of reformulations of the definition of Grothendieck spaces. For proofs, see Diestel [1973c], Faires [1974b], Grothendieck [1953].

Figure: J. Diestel, J. R. Uhl, Vector measures, p. 179

An easy exercise on the Eberlein-Šmulian theorem: A separable space is Grothendieck if and only if it is reflexive.

A non-example: c_0 . It follows from the above but it can be seen directly: take the canonical basis $(e_k)_{k=1}^{\infty}$ of $\ell_1 \cong c_0^*$. It is w^* -null, however it does *not* converge weakly as $\langle ((-1)^n)_{n=1}^{\infty}, e_k \rangle$ fails to converge whenever $k \rightarrow \infty$.

Grothendieck spaces — why bother? A typical application: to show that, for instance, c_0 is not a quotient of ℓ_∞ or that separable quotients of ℓ_∞ are separable.

Theorem. Let X be a Banach space. Then the following conditions are equivalent:

1. X is a Grothendieck space
2. every operator $T: X \rightarrow c_0$ is weakly compact;
3. for every separable space X , each operator $T: X \rightarrow Y$ is weakly compact.

Some properties:

- Duals of Grothendieck spaces are weakly sequentially complete (easy).
- Every Grothendieck space X has Pełczyński's property (V): for each Banach space Y every unconditionally converging operator $T: X \rightarrow Y$ is weakly compact¹.
- Spaces with property (V) without complemented copies of c_0 are Grothendieck (Räbiger 1984)

Theorem. (Pełczyński 1962, Cembranos 1988). $C(K)$ -spaces have property (V). Consequently, a $C(K)$ -space is Grothendieck if and only if it does not contain complemented copies of c_0 .

¹weakly compact operators are always unconditionally converging

Diestel and Uhl wrote in their famous monograph [p. 180]:

Finally, there is some evidence (Akemann [1967], [1968]) that the space $\mathcal{L}(H; H)$ of bounded linear operators on a Hilbert space is a Grothendieck space and that more generally the space $\mathcal{L}(X; X)$ is a Grothendieck space for any reflexive Banach space X .

Akemann was interested in conditional expectations (norm-one projections) from $\mathcal{B}(H)$, the algebra of operators on a Hilbert space, onto separable sub-C*-algebras; he proved that separable C*-algebras are never complemented in $\mathcal{B}(H)$.

Theorem (Pfitzner 1994). C*-algebras have property (V). In particular, a C*-algebra is a Grothendieck space if and only if it does not contain a complemented copy of c_0 ; von Neumann algebras (dual C*-algebras) are thus Grothendieck.

Corollary. For any Hilbert space H , $\mathcal{B}(H)$ is a Grothendieck space.

Question. For what E , the space $\mathcal{B}(E)$ is Grothendieck?

Let us note that the question of the Grothendieck property is interesting only for E reflexive; in the non-reflexive case $\mathcal{B}(E)$ is never Grothendieck.

Easy fact. Let E be a Banach space. Then both E and E^* are isomorphic to complemented subspaces of $\mathcal{B}(E)$.

Proof. Choose a norm-one elements $x_0 \in E$ and $\lambda_0 \in E^*$ such that $\langle x_0, \lambda_0 \rangle = 1$. Consider the map $x \ni E \mapsto x \otimes \lambda_0$, which is an isomorphic embedding of E into $\mathcal{B}(E)$. It has a left inverse given by $\mathcal{B}(E) \ni T \mapsto Tx_0 \in E$. A similar proof works for E^* . \square

Corollary. If $\mathcal{B}(E)$ is Grothendieck, then so are E and E^* .

Proposition. A Banach space E is reflexive if and only if E and E^* are Grothendieck.

Proof. Suppose that E is not reflexive. It follows from the Eberlein–Šmulian theorem that there is a bounded sequence $(x_n)_{n=1}^\infty$ in E such that $\{x_n : n \in \mathbb{N}\}$ is not relatively weakly compact. By a result of Godefroy and Saab (1986); since E is a subspace of a dual of Grothendieck space, we may find an infinite set $A \subset \mathbb{N}$ such that the closed linear span of $\{x_n : n \in A\}$ is complemented in E and isomorphic to ℓ_1 . \square

We shall need the following fact (probably first observed by W. B. Johnson):

Lemma. The Banach space $\textcolor{orange}{F} = (\bigoplus_{n=1}^{\infty} \ell_1^n)_{\ell_{\infty}}$ contains an (isometric) complemented copy of ℓ_1 .

A reflexive space E for which $\mathcal{B}(E)$ is not Grothendieck. (K. 2013)

Let $p \in (1, \infty)$ and consider

$$E = \left(\bigoplus_{n=1}^{\infty} \ell_1^n \right)_{\ell_p}.$$

(We identify $T \in \mathcal{B}(E)$ with a matrix $(T_{ij})_{i,j=1}^{\infty}$ where $T_{ij} \in \mathcal{B}(\ell_1^j, \ell_1^i)$.) To complete the proof it is enough to embed $\textcolor{orange}{F}$ as a complemented subspace of $\mathcal{B}(E)$.

Let us identify ℓ_1^n with a 1-complemented subspace of $\mathcal{B}(\ell_1^n)$ via the mapping

$$e_k \mapsto e_k \otimes e_1^* \quad (k \leq n, n \in \mathbb{N}),$$

where e_1^* stands for the coordinate functional associated with e_1 .

The space $D = (\bigoplus_{n=1}^{\infty} \mathcal{B}(\ell_1^n))_{\ell_{\infty}}$ contains a complemented copy of $\textcolor{orange}{F}$. Let $\Delta: D \rightarrow \mathcal{B}(E)$ be the *diagonal embedding*, that is,

$$\Delta((T_n)_{n=1}^{\infty}) = \text{diag}(T_1, T_2, \dots) \quad ((T_n)_{n=1}^{\infty} \in D).$$

The map Δ is well-defined since the decomposition of E into the subspaces $\ell_1^1, \ell_1^2, \dots$ is unconditional.

It is enough to notice that Δ has a left-inverse $\Xi: \mathcal{B}(E) \rightarrow D$ given by

$$\Xi(T_{ij})_{i,j \in \mathbb{N}} = (T_{ii})_{i=1}^{\infty} \quad ((T_{ij})_{i,j \in \mathbb{N}} \in \mathcal{B}(E)),$$

which is bounded.

With each operator $T = (T_{ij})_{i,j \in \mathbb{N}} \in \mathcal{B}(E)$ we shall associate a sequence $(S^{(n)})_{n=1}^{\infty}$ of operators such that for each $n \in \mathbb{N}$ we have $\|S^{(n)}\| \leq \|T\|$ and the matrix of $S^{(n)}$ agrees with the matrix of the diagonal operator $\text{diag}(-T_{11}, \dots, -T_{nn}, 0, 0, \dots)$ at entries (i, j) with $i \leq n$ or $j \leq n$.

This will immediately yield that

$$\|\Xi(T)\| = \sup_{n \in \mathbb{N}} \|T_{nn}\| = \sup_{n \in \mathbb{N}} \| -S_{nn}^{(n)} \| \leq \sup_{n \in \mathbb{N}} \|S^{(n)}\| \leq \|T\|.$$

Define operators $T_{k,n}$, $T_{r,n}$ ($n \geq 1$) which have the same columns and rows as T respectively, except the first n ones, where we instead set $(T_{k,n})_{ij} = -T_{ij}$ and $(T_r)_{ji} = -T_{ji}$ for $j \in \{1, \dots, n\}$ and $i \in \mathbb{N}$. Certainly, $\|T\| = \|T_{k,n}\| = \|T_{r,n}\|$ for all $n \in \mathbb{N}$ and the norm of $S^{(n)} := (T_{k,n} + T_{r,n})/2$ does not exceed the norm of T . Consequently, $(S^{(n)})_{n=1}^{\infty}$ is the desired sequence. \square

Observation. There is nothing really specific about this space; all we need are the following ingredients:

- X is reflexive;
- X contains ℓ_1^n 's uniformly complemented;
- X has an unconditional basis (or more generally, $\mathcal{B}(X) \cong \ell_\infty(\mathcal{B}(X))$ as Banach spaces)

Theorem (Johnson 1974). Suppose that X is a Banach space with local unconditional structure. Then either X is super-reflexive or X contains ℓ_∞^n 's uniformly or X contains ℓ_1^n 's uniformly complemented.

Example. Tsierlson's space T (actually the dual of Tsirelson's original construction) – it has an unconditional basis and is easily seen that it is *not* super-reflexive.

Observation. For E reflexive, $\mathcal{B}(E)$ and $\mathcal{B}(E^*)$ are isomorphic, so $\mathcal{B}(E)$ is Grothendieck if and only $\mathcal{B}(E^*)$ is.

Another observation. Suppose that E is a reflexive space with a basis. Then $\mathcal{K}(E)^{**} \cong \mathcal{B}(E)$. It cannot happen that $\mathcal{B}(E)$ is Grothendieck and $\mathcal{K}(E)$ is of finite codimension in $\mathcal{B}(E)$.

Indeed, $\mathcal{K}(E)$ is separable so would be $\mathcal{B}(E)$. The Grothendieck property of $\mathcal{B}(E)$ would force E to be reflexive, however $\mathcal{B}(E)$ is reflexive if and only if E is finite-dimensional.

Question. Is it true that if E is super-reflexive, then $\mathcal{B}(E)$ is Grothendieck? What if $E = \ell_p$ for $p \neq 1, 2, \infty$?

If yes, then there would be no super-reflexive analogues of the Argyros–Haydon space.

A weaker question: Is $\mathcal{B}(\ell_p)^*$ weakly sequentially complete for $p \neq 1, 2, \infty$?

Not sure if it helps, but by a result of Daws and Read, if E is super-reflexive then $\mathcal{B}(E)^{**}$ is a 1-complemented subalgebra of $\mathcal{B}(F)$ for some super-reflexive F ; this however is another story...

Theorem (Argyros–Haydon 2011). There is a Banach space X_{AH} which has the following three remarkable properties:

- (i) X_{AH} has very few operators, in the sense that each operator on X_{AH} is a compact perturbation of a scalar multiple of the identity;
- (ii) X_{AH} has a Schauder basis;
- (iii) the dual space of X_{AH} is isomorphic to ℓ_1 .