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Theorem (Grothendieck). Let (f,),2;1 be a weak*-convergent sequence in
loo(M)*. Then (f,)n21 converges weakly.

Definition: Let us call a Banach space X for which weak*-convergent
sequences in X* converge weakly a Grothendieck space.

Examples: reflexive spaces, quotients (hence complemented subspaces) of
Grothendieck spaces, injective spaces etc.

According to Corollary 2.12 and the remarks following it, B(Y) is a Grothendieck
space if Y is a o-field. Grothendieck spaces are close to the heart of every vector
measure theorist. A close relationship exists between B(%) spaces that are Gro-
thendieck spaces, the validity of the Vitali-Hahn-Saks  theorem for measures on
the field # and the validity of the Nikodym Boundedness Theorem for measures
defined on % (see Faires[1976] and Seever [1968]). This fact further accentuates the
importance of the study of the interrelationships between Grothendieck spaces and
vector measure theory. Here is a list of reformulations of the definition of Gro-
thendieck spaces. For proofs, see Diestel [1973c], Faires [1974b], Grothendieck
[1953].

Figure: J. Diestel, J. R. UK, Vector measures, p. [19

An easy exercise on the Eberlein—-Smulian theorem: A separable space is
Grothendieck if and only if it is reflexive.

A non-example: ¢p. If follows from the above but it can be seen directly: take
the canonical basis (ex)poq of £1 = ¢p. It is w*-null, however it does not
converge weakly as (((—1)")n21, ex) fails to converge whenever k — oo.
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Grothendieck spaces — why bother? A typical application: to show that, for
instance, co is not a quotient of £~ or that separable quotients of (. are
separable.

Theorem. Let X be a Banach space. Then the following conditions are
equivalent:

1. X is a Grothendieck space
2. every operator T: X — ¢o is weakly compact;
3. for every separable space X, each operator 7T: X — Y is weakly compact.

Some properties:
— Duals of Grothendieck spaces are weakly sequentially complete (easy).

— Every Grothendieck space X has Pefczynski's property (V): for each Banach
space Y every unconditionally converging operator 7T: X — Y is weakly
compact!.

— Spaces with property (V) without complemented copies of ¢ are
Grothendieck (Rabiger 1984)

Theorem. (Petczynski 1962, Cembranos 1988). C(K)-spaces have property
(V). Consequently, a C(K)-space is Grothendieck if and only if it does not
contain complemented copies of ¢p.

1weakly compact operators are always unconditionally converging
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Diestel and Uhl wrote in their famous monograph [p. 180]:

Finally, there is some evidence (Akemann [1967], [1968]) that the
space Z(H; H) of bounded linear operators on a Hilbert space is

a Grothendieck space and that more generally the space Z(X; X) is
a Grothendieck space for any reflexive Banach space X.

Akemann was interested in conditional expectations (norm-one projections) from
A(H), the algebra of operators on a Hilbert space, onto separable sub-C*-algebras; he
proved that separable C*-algebras are never complemented in Z(H).

Theorem (Pfitzner 1994). C*-algebras have property (V). In particular, a

C*-algebra is a Grothendieck space if and only if it does not contain a

complemented copy of ¢p; von Neumann algebras (dual C*-algebras) are thus
Grothendieck.

Corollary. For any Hilbert space H, #(H) is a Grothendieck space.

Let us note that the question of the Grothendieck property is interesting only for E
reflexive; in the non-reflexive case #(E) is never Grothendieck.




Easy fact. Let £ be a Banach space. Then both E and E™ are isomorphic to
complemented subspaces of ZA(E).

Proof. Choose a norm-one elements xg € E and \g € E* such that

(x0, Ao) = 1. Consider the map x 3 E — x ® Ao, which is an isomorphic
embedding of E into A(E). It has a left inverse given by

HB(E)> T +— Txo € E. A similar proof works for E*. [J

Corollary. If #(E) is Grothendieck, then so are E and E™.

Proposition. A Banach space E is reflexive if and only if E and E™ are
Grothendieck.

Proof. Suppose that E is not reflexive. It follows from the Eberlein-Smulian
theorem that there is a bounded sequence (x,),=; in E such that {x,: n € N}
is not relatively weakly compact. By a result of Godefroy and Saab (1986);
since E is a subspace of a dual of Grothendieck space, we may find an infinite
set A C N such that the closed linear span of {x,: n € A} is complemented in
E and isomorphic to ¢;. []




We shall need the following fact (probably first observed by W. B. Johnson):

Lemma. The Banach space contains an (isometric)
complemented copy of /3.

A reflexive space E for which Z(E) is not Grothendieck. (K. 2013)

Let p € (1,00) and consider

E = (@e;’)%.
n=1

(We identify T € B(E) with a matrix (T;;)7%_; where Tj; € %(6’1,6’1)) To complete

the proof it is enough to embed / as a complemented subspace of Z(E).
Let us identify /7 with a 1-complemented subspace of Z(¢7) via the mapping

ex — e ®e; (k< n, neN),

where e; stands for the coordinate functional associated with e;.
The space D = (6D,, #(¢1))¢.. contains a complemented copy of . Let
A: D — HB(E) be the diagonal embedding, that is,

A((Tn)pz1) =diag(T1, T2,...) ((Ta)nz1 € D).

The map A is well-defined since the decomposition of E into the subspaces
01,43, ...is unconditional.
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It is enough to notice that A has a left-inverse =: Z(E) — D given by
=(Ty)ijen = (Ti)iZ1 ((Tij)ijen € B(E)),
which is bounded.

With each operator T = (Tjj)ijen € B(E) we shall associate a sequence
(5(M)22, of operators such that for each n € N we have ||S(™|| < || T|| and the
matrix of S(™ agrees with the matrix of the diagonal operator
diag(—T11,---,—Tan,0,0,...) at entries (/,;) with i < norj < n.

This will immediately yield that

IZ(T))| = sup || Tanll = sup || = S| < sup S < I TI.
N nEN ]

ne nc

Define operators Tk ,, Tr,n (n = 1) which have the same columns and rows as
T respectively, except the first n ones, where we instead set (T )i = — T and
(Te)ji = —Tji for j € {1,...,n} and i € N. Certainly, || T|| = || Tknl| = || T+,n||
for all n € N and the norm of S\ := (T, , + T;,,)/2 does not exceed the norm

of T. Consequently, (S™)° is the desired sequence. O




Observation. There is nothing really specific about this space; all we need are
the following ingredients:

- X is reflexive;
- X contains ¢7's uniformly complemented;

- X has an unconditional basis (or more generally, Z(X) = (o (A(X)) as
Banach spaces)

Theorem (Johnson 1974). Suppose that X is a Banach space with local
unconditional structure. Then either X is super-reflexive or X contains £2_'s
uniformly or X contains /7's uniformly complemented.

Example. Tsierlson’s space T (actually the dual of Tsirelson’s original
construction) — it has an unconditional basis and is easily seen that it is not
super-reflexive.




Observation. For E reflexive, (E) and Z(E™) are isomorphic, so A(E) is
Grothendieck if and only Z(E™) is.

Another observation. Suppose that E is a reflexive space with a basis. Then
H(E)™ =2 ZB(E). It cannot happen that #(E) is Grothendieck and J#(E) is
of finite codimension in Z(E).

Indeed, J# (E) is separable so would be #(E). The Grothendieck property of
A(E) would force to be reflexive, however Z(E) is reflexive if and only if E is
finite-dimensional.

Question. Is it true that if E is super-reflexive, then A(E) is Grothendieck?
What if E =/, for p #1,2,007

If yes, then there would be no super-reflexive analogues of the Argyros—Haydon
space.

A weaker question: |s Z(¢,)* weakly sequentially complete for p #£ 1,2, 007

Not sure if it helps, but by a result of Daws and Read, if E is super-reflexive
then Z(E)*™ is a 1-complemented subalgebra of A(F) for some super-reflexive
F; this however is another story...




Theorem (Argyros—Haydon 2011). There is a Banach space Xan which has the
following three remarkable properties:

(i) Xan has very few operators, in the sense that each operator on Xag is a
compact perturbation of a scalar multiple of the identity;

(ii) Xau has a Schauder basis;

(i) the dual space of Xag is isomorphic to /1.




