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> to explain how such stability results for vector measures may
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particular, to show that there exist non-trivial extensions of ¢y
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T.K., Stability of vector measures and twisted sums of Banach
spaces, J. Funct. Anal. 264 (2013), 2416-2456.

T.K., Stability of vector measures and non-trivial extensions
of ¢p, in preparation.
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Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant
v(X) < +oo (depending only on X) such that: for any set Q # 0,
any algebra F C 29, and any function v: F — X satisfying

lv(AUB) —v(A)—v(B)|| <1 for AABe F, AnB =1,
there exists a vector measure p: F — X such that

IV(A) — uw(A)|| < v(X) for A€ F.

If the above condition is valid, then we say that X has the SVM
property.
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The Kalton—Roberts theorem

N.J. Kalton, J.W. Roberts, Uniformly exhaustive submeasures and
nearly additive set functions, Trans. Amer. Math. Soc. 278
(1983), 803-816.

Theorem (Kalton & Roberts, 1983). There exists an absolute
constant K < 45 with the following property: for any set Q # (),
any algebra A C 2%, and any function v: A — R satisfying

W(AUB) —v(A)—v(B)| <1 for ABe A, ANB =10,
there exists an additive set function x: A — R such that
|V(A) — u(A)| < K for Ac A.

This means, in our terminology, that the space R has the SVM
property. As an obvious consequence, the finite-dimensional spaces
R", as well as the space /., (more generally, all injective spaces),
also have the SVM property.
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Let x be a cardinal number. We say that a Banach space X has
the k-SVM property if and only if there exists a constant
v(k, X) < oo (depending only on k and X) such that given any
algebra F C 29 of cardinality less than x, and any map

v: F — X satisfying

[v(AUB) —v(A)—v(B)| <1 for A,BeF, ANB =10,
there exists a vector measure y: F — X such that

|v(A) — p(A)|| < v(k, X) for Aec F.

If X is a Banach space which does not have the SVM property,
then by the SVM character of X we mean the minimal cardinal
number k such that X does not have the k-SVM property, and we
denote it by 7(X).

Remark. Note that 7(X) is properly defined for every Banach
space not enjoying the SVM property. (That is, if X has the
k-SVM property for each &, then X has the SVM property.)
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» If 7(X) > w and X is complemented in its bidual, then
X has the SVM property. Moreover, if there is
a projection of X** onto X with norm not exceeding ),
then v(X) < Av(w, X). [Proof] Let F be an arbitrary
algebra of sets and let I' be the set of all finite subalgebras of
F, directed by the inclusion. We use the assumption
7(X) > w and the compactness of the unit ball of X** with
respect to the w*-topology to produce an approximating
measure with values in X**. Next we just have to project it
onto X.
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» 7(c0) > w, i.e. ¢ satisfies the w-SVM property. [Proof]
Let F be a finite algebra. Choose any € € (0,1) and pick an
n € N such that |ef (v(A))| < ¢ for each j > nand A€ F.
For each jth coordinate (1 < j < n) there is an additive set
function y;: F — R satisfying |ef (v(A)) — p;(A)| < K for
A € F. Then the measure i: F — ¢p defined by
w(A) = (n1(A), ..., un(A),0,0,...) satisfies
lv(A) — u(A)|| < K for Ae F. We get v(w, ) = K.
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Let us recall our basic assumption on a given function
v: F—=X:

() IW(AUB)—v(A)—v(B)[[ <1 for A, BEF,ANB =10

» 7(X) > w for every Banach space X.

» If 7(X) > w and X is complemented in its bidual, then
X has the SVM property. Moreover, if there is
a projection of X** onto X with norm not exceeding A,
then v(X) < Av(w, X).

» 7(cp) > w, i.e. ¢y satisfies the w-SVM property.

» 7(C[0,1]) > w, i.e. C[0,1] satisfies the w-SVM
property. [Proof] We use the uniform continuity of
v(A) € C[0,1] (for A€ F).
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Let X, Y, Z be F-spaces. A short exact sequence is a diagram
(%) 0—vY-5z-%x—0,

where i: Y — Z is a one-to-one operator with a closed range
(embedding) and g: Z — X is a surjective operator such that
im(7) = ker(q).

In other words, Z contains a closed subspace Y; ~ Y
(isomorphically) such that the quotient space Z/Y; ~ X. We then
say that Z is a twisted sum of Y and X (in this order!), or that Z
is an extension of X by Y.
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In fact, twisted sums are identified via the following natural
equivalence relation:

We say that two exact sequences of F-spaces
0O Y—-24—-X—=>0and0—>Y 2 — X —0are
equivalent, if there exists an operator T: Z; — Z, such that the

diagram
0 Y V4] X 0
|
0 Y Z> X 0

is commutative.
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Splitting of exact sequences

For any two F-spaces X and Y we have always the trivial exact
sequence:

(@) 0=-Y—=>YaX—=>X—-0
produced by the direct sum, jointly with the natural embedding

and projection.

We say that exact sequence (x) splits if and only if it is equivalent
to (). Equivalently: the copy i(Y) of Y, inside Z, is
complemented in Z. In such a case we must have Z ~ X @ Y.
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Twisted sums machinery

Functor ‘Ext’

Now, we focus on the case where X and Y are Banach spaces.
The functor Ext assigns, to every pair (X, Y) of Banach spaces,
the class of all locally convex twisted sums of Y and X, modulo
the equivalence relation defined earlier.

In other words, Ext(X, Y) is the class of all Banach spaces Z
(identified by the equivalence relation defined earlier) which
produce an exact sequence of the form

() 0—-Y—=>Z—-X—=0.

We write Ext(X, Y) = 0 if every exact sequence (x), where Z is a
Banach space, splits. We say that the pair (X, Y) splits if (x) splits
for every locally bounded F-space Z (so, this is something
stronger).



Some classical results

> (l2,0>) does not split (Enflo, Lindenstrauss, Pisier, 1975).



Some classical results

> (l2,0>) does not split (Enflo, Lindenstrauss, Pisier, 1975).

» (¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.



Some classical results

> (l2,0>) does not split (Enflo, Lindenstrauss, Pisier, 1975).
» (¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach

theorem.

> {p is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).



Some classical results

> (l2,0>) does not split (Enflo, Lindenstrauss, Pisier, 1975).

» (¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.

> {p is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).

> (¢p,Lp) always fails to split, for 0 < p < oo (Kalton, Peck,
1979).



Some classical results

>

v

(¢2,¢>) does not split (Enflo, Lindenstrauss, Pisier, 1975).
(¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.

lp is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).
(¢p, £,) always fails to split, for 0 < p < oo (Kalton, Peck,
1979).

¢o and /o, as well as all Z.-spaces, are K-spaces (Kalton,
Roberts, 1983);



Some classical results

>

v

(¢2,¢>) does not split (Enflo, Lindenstrauss, Pisier, 1975).
(¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.

lp is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).
(¢p, £,) always fails to split, for 0 < p < oo (Kalton, Peck,
1979).

¢o and /o, as well as all Z.-spaces, are K-spaces (Kalton,
Roberts, 1983); this is why Kalton and Roberts proved their
theorem on stability of nearly additive real-valued set
functions!



Some classical results

>

v

(¢2,¢>) does not split (Enflo, Lindenstrauss, Pisier, 1975).
(¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.

lp is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).
(¢p, £,) always fails to split, for 0 < p < oo (Kalton, Peck,
1979).

¢o and /o, as well as all Z.-spaces, are K-spaces (Kalton,
Roberts, 1983); this is why Kalton and Roberts proved their
theorem on stability of nearly additive real-valued set
functions!

Ext(X,¢~) = 0 for any Banach space X (by the injectivity of
lo).



Some classical results

>

v

(¢2,¢>) does not split (Enflo, Lindenstrauss, Pisier, 1975).
(¢1,R) does not split, i.e. ¢1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(¢1,R) = 0 by the Hahn-Banach
theorem.

lp is a KC-space for any 0 < p < oo, p # 1 (Kalton, 1977).
(¢p, £,) always fails to split, for 0 < p < oo (Kalton, Peck,
1979).

¢o and /o, as well as all Z.-spaces, are K-spaces (Kalton,
Roberts, 1983); this is why Kalton and Roberts proved their
theorem on stability of nearly additive real-valued set
functions!

Ext(X,¢~) = 0 for any Banach space X (by the injectivity of
lo).

Ext(X, co) = 0 for every separable Banach space X
(Sobczyk's theorem).
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7(X) > w, then for every Banach space Y, which is a .Z,-space,
the pair (Y, X) splits.

Theorem 2

Let I be a cardinal number. If X is a Banach space which has

the (2r)+—SVM property (i.e. 7(X) > (2r)+), then the pair
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Corollary. 7(CJ[0,1]) = wy. [Proof] By a result of Cabello Sanchez,
Castillo, Kalton and Yost, we have Ext(c, C[0,1]) # 0, so 7(C[0,1]) < w;. On
the other hand, we have seen that 7(C[0,1]) > w.

Similarly, 7(C[0, w*]) = ws.
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Necessary conditions

Corollary. If X is a Banach space containing {£7}7; uniformly
complemented, for some 1 < p < oo, then 7(X) = w.
Consequently, for every .Z,,-space X, with 1 < p < 0o, we have
T(X) =w.

[Sketch of proof] First, we show that if Y is locally £ (for any family of
finite-dimensional spaces) and 7(Y) = w, then 7(Z) = w whenever Z contains
& uniformly complemented. Hence, it is enough to show that 7(¢,) = w for
1< p<oo.

By a result of Cabello Sanchez and Castillo, we have Ext(co, £1) # 0, thus
Theorem 2 implies that 7(¢1) < wy and so 7(¢1) = w because ¢; is certainly
complemented in its bidual. We have also Ext(¢2,¢1) # 0 and since for every
1 < p < oo the space £, contains {£5}72; uniformly complemented, this easily
implies that Ext(£,,¢1) # 0. By a result of Avilés, Cabello Sanchez, Castillo,
Gonzélez and Moreno, for any separable Banach space X the condition
Ext(X*, ¢1) # 0 implies Ext(co, X) # 0, thus Ext(co, £,) # 0 for 1 < p < oo

and again Theorem 2 gives the result.
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Is every cardinal number an SVM character of some Banach space?

We define a space mp(I') as follows:

» [ infinite cardinal number;
» G={ACT: |\ Al <T} filter of subsets of T;
» mo(l") is a subspace of o (I) given by

mo(T") = {x € loo(T): Iiénx = 0}.

Next, following the construction of the Johnson-Lindenstrauss
space, we build a non-splitting exact sequence of the form

0 — mo(l) = JLoo(I) — co(F") — 0.

Therefore, by our necessary condition, we infer that
7(mo(lN)) < T *+.
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Is every cardinal number an SVM character of some Banach space?

(mo(M)) < T+

On the other hand, using a generalisation of Sobczyk's theorem,
due to Hasanov, we may prove the following result.

Theorem 3
Let I' be an infinite cardinal number. Then the space mg(I') has
the cf(I)*-SVM property with v(cf(I)*, mo(lN)) < 16K < 720.

Consequently, cf(MN)*+ < 7(mo(T)) < T, In particular, if s
a regular cardinal, then we have 7(mg(l")) =T*+.

Corollary

For every infinite cardinal I we have

T(Co(r)) = Wy.
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Let x be a cardinal. A Banach space X is called k-injective if for
every Banach space E, with density character less than «, and
every subspace F C E, every operator t: F — X admits an
extension to an operator T: E — X. If for some A > 1 there is
always such an extension with || T|| < A||¢t||, then we say that X is
(A, K)-injective.

In the case k = w1 we say that X is separably injective.

A. Avilés, F. Cabello Sanchez, J.M.F. Castillo, M. Gonzalez,
Y. Moreno, On separably injective Banach spaces, Adv. Math. 234
(2013), 192-216.

Theorem 4

If X is a (A, k)-injective Banach space, then X has the k-SVM
property and v(k, X) < 24AK. For instance, if Q is compact
Hausdorff and of finite height n, then v(wi, C(2)) < 24(2n — 1)K.
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SVM property

Characterisation of the SVM property for X «— X**

Theorem 5
Let X be a Banach space complemented in its bidual. Then the
following assertions are equivalent:

() X has the SVM property;
i) Ext(X*,¢1) =0;

(i) Ext(loo, X**) = 0;

(iv) Ext(cp, X) = 0.

Corollary. X** has the SVM property if and only if

Ext(X*,¢1) = 0.

[Proof] The vector spaces Ext(Z, Y*) and Ext(Y, Z*) are isomorphic
(Jebreen, Jamjoom, Yost), so Ext(X™, ¢;) = 0 is equivalent to

Ext(co, X**) = 0 which in turn is equivalent to X™* having the SVM property.
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F. Cabello Sanchez, J.M.F. Castillo, Uniform boundedness and
twisted sums of Banach spaces, Houston J. Math. 30 (2004),
523-536.

EXt(Co, 52) #£0

Now, we shall explain how their construction may be strengthened
by using the following assertion:

Theorem 6
Every infinite-dimensional Banach space having the w;-SVM
property contains an isomorphic copy of ¢.



Sketch of the proof of Theorem 6

» Consider the pull-back diagram, where the first row is the
Kalton—Peck twisted sum and j*: L., — ¥5 is the adjoint to
the embedding j: ¢ — L; given by Rademacher functions:

0 Uy Zy 4y 0

Lk

0 Uy PB L 0

*f = (r/ )2, € Lo, where ri'f = fol ri(t)f(t)dt)



Sketch of the proof of Theorem 6

» Consider the pull-back diagram, where the first row is the
Kalton—Peck twisted sum and j*: L., — ¥5 is the adjoint to
the embedding j: ¢ — L; given by Rademacher functions:

0 b Zy %) 0
b
0 Uy PB L 0

*f = (r/ )2, € Lo, where ri'f = fol ri(t)f(t)dt)

» The space Z; is the completion of the direct sum ¢, & /5
under the quasi-norm given by ||(y, x)|| = ||x]| + [ly — ¢(x)]],
where ¢: lo — {5 is a quasi-linear map, that is, it is
homogeneous and satisfies

lp(x +y) —(x) = W) < c(llx]| +lyll) forall x,y € ¢,

where ¢ < oo is a constant.
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> ¢ may be given as a quasi-linear extension of a map
0: R — R defined by wo(x) = |[x|| F(x/|x]}) (0 for
x = 0), where F: R® — R is a quasi-additive map of the
form:

F(x)(k) = x(k) - 0(—log |x(k)|) (convention: 0- oo = 0),

where §: R — R is an (unbounded) Lipschitz function with
6(t) =0 for t < 0. We have

IF (x+y)=F(x)=F(y)ll < Llog2(||x|[+ly[l) for all x,y € R>,

where L = Lip(#), and hence it may be proved that the
constant of quasi-linearity of ¢ is at most 16L - log 2.
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» Let F ={ACN: |A| <wor |N\A <w}. We look for a
suitable sequence (f,)72; C Lo, equivalent to the canonical
basis of ¢y, for which we will define an ‘almost’ additive
measure v: F — {5 by the formula

v(A) = © (" Yneatfn) for Afinite
—v(N\ A)  for A cofinite.

» So, for finite A C N we have

V(AYK) = (rEfa) -6 (— jog um) ,

1(r )21 2

where fg =3 cafa
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» We choose f,'s so that they are disjointly supported
characteristic functions of some unions of ‘Rademacher’s
subintervals’ of [0, 1], and so that for each n € N we have:

> ()Rl ~ 5
> exactly |e"| of the coordinates ri'f, (j =1,2,...) are
non-zero, and for each of them |rfy| ~ e="/2||(r ;)52 2.

9(%n)
Then [[v{n}|| ~ —2Z7 for each n € N.
> In this way we define a function v: F — {5 satisfying the
following three conditions:
(i) v is 1-additive, that is, for every A, B € F with AN B =0, we
have ||[v(AUB) —v(A) —v(B)| < 1,
(ii) for each n € N we have |v{n}|| > M, where M is arbitrarily

fixed positive number;
(iii) v is bounded.
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» Now, suppose that an infinite-dimensional Banach space has
the w1-SVM property and take M (from the previous slide) to
be larger than v(wi, X). Use the Dvoretzky theorem (¢ is
finitely representable in X) to ‘pack’ the function v into X.

> There must exist a finitely additive vector measure p: F — X
which approximates v to within v(ws, X). But then the series
o0 1 u{n} certainly diverges.

» Consequently, we have produced a bounded and non-strongly
additive measure with values in X, and hence the
Diestel-Faires theorem tells us that X contains an isomorphic
copy of ¢p.



Non-trivial extensions of ¢

Corollary

For every infinite-dimensional Banach space X that is
complemented in its bidual and does not contain isomorphically ¢y
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Non-trivial extensions of ¢

Corollary

For every infinite-dimensional Banach space X that is
complemented in its bidual and does not contain isomorphically ¢y
(e.g. for any infinite-dimensional reflexive space) we have
Ext(co, X) # 0.

Proof. Combine Theorems 5 and 6.



