

Stability of vector measures and non-trivial twisted sums of c_0

Tomasz Kochanek

Institute of Mathematics
Polish Academy of Sciences
Warsaw, Poland

Integration, Vector Measures and Related Topics VI
Będlewo, June 15–21, 2014

Two main aims of the talk:

- ▶ to report on several results describing vector analogues of the Kalton–Roberts theorem on nearly additive set functions (for this we will need some background on twisted sums of Banach spaces);

Two main aims of the talk:

- ▶ to report on several results describing vector analogues of the Kalton–Roberts theorem on nearly additive set functions (for this we will need some background on twisted sums of Banach spaces);
- ▶ to explain how such stability results for vector measures may be used in order to produce new non-trivial twisted sums

Two main aims of the talk:

- ▶ to report on several results describing vector analogues of the Kalton–Roberts theorem on nearly additive set functions (for this we will need some background on twisted sums of Banach spaces);
- ▶ to explain how such stability results for vector measures may be used in order to produce new non-trivial twisted sums (in particular, to show that there exist non-trivial extensions of c_0 by any infinite-dimensional reflexive space).

Two main aims of the talk:

- ▶ to report on several results describing vector analogues of the Kalton–Roberts theorem on nearly additive set functions (for this we will need some background on twisted sums of Banach spaces);
- ▶ to explain how such stability results for vector measures may be used in order to produce new non-trivial twisted sums (in particular, to show that there exist non-trivial extensions of c_0 by any infinite-dimensional reflexive space).

T.K., *Stability of vector measures and twisted sums of Banach spaces*, J. Funct. Anal. **264** (2013), 2416–2456.

T.K., *Stability of vector measures and non-trivial extensions of c_0* , in preparation.

Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $v(X) < +\infty$ (depending only on X) such that:

Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $v(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \rightarrow X$ satisfying

Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $v(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $v(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(X) \quad \text{for } A \in \mathcal{F}.$$

Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $v(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(X) \quad \text{for } A \in \mathcal{F}.$$

If the above condition is valid, then we say that X has the **SVM property**.

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property:

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, A \cap B = \emptyset,$$

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$

This means, in our terminology, that the space \mathbb{R} has the SVM property.

Motivation

The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, *Uniformly exhaustive submeasures and nearly additive set functions*, Trans. Amer. Math. Soc. **278** (1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$

This means, in our terminology, that the space \mathbb{R} has the SVM property. As an obvious consequence, the finite-dimensional spaces \mathbb{R}^n , as well as the space ℓ_∞ (more generally, all injective spaces), also have the SVM property.

SVM character

Let κ be a cardinal number. We say that a Banach space X has the **κ -SVM property** if and only if there exists a constant $v(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ **of cardinality less than κ** , and any map $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

SVM character

Let κ be a cardinal number. We say that a Banach space X has the **κ -SVM property** if and only if there exists a constant $v(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ **of cardinality less than κ** , and any map $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

If X is a Banach space which does not have the SVM property, then by the **SVM character** of X we mean the minimal cardinal number κ such that X does not have the κ -SVM property, and we denote it by $\tau(X)$.

SVM character

Let κ be a cardinal number. We say that a Banach space X has the **κ -SVM property** if and only if there exists a constant $v(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ **of cardinality less than κ** , and any map $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

If X is a Banach space which does not have the SVM property, then by the **SVM character** of X we mean the minimal cardinal number κ such that X does not have the κ -SVM property, and we denote it by $\tau(X)$.

Remark. Note that $\tau(X)$ is properly defined for every Banach space not enjoying the SVM property.

SVM character

Let κ be a cardinal number. We say that a Banach space X has the **κ -SVM property** if and only if there exists a constant $v(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ **of cardinality less than κ** , and any map $\nu: \mathcal{F} \rightarrow X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \rightarrow X$ such that

$$\|\nu(A) - \mu(A)\| \leq v(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

If X is a Banach space which does not have the SVM property, then by the **SVM character** of X we mean the minimal cardinal number κ such that X does not have the κ -SVM property, and we denote it by $\tau(X)$.

Remark. Note that $\tau(X)$ is properly defined for every Banach space not enjoying the SVM property. (That is, if X has the κ -SVM property for each κ , then X has the SVM property.)

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

► $\tau(X) \geq \omega$ for every Banach space X .

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

► **$\tau(X) \geq \omega$ for every Banach space X .** [Proof] Let $\mathcal{F} \subset 2^\Omega$ be a finite algebra of sets and $\nu: \mathcal{F} \rightarrow X$ satisfy $(*)$. We may assume that $\mathcal{F} = 2^\Omega$ and let $n = |\Omega|$. By a simple induction we get the inequality

$$\left\| \nu(A) - \sum_{a \in A} \nu\{a\} \right\| \leq |A| - 1 \quad \text{for } A \in \mathcal{F},$$

thus the measure $\mu: \mathcal{F} \rightarrow X$, defined by $\mu\{a\} = \nu\{a\}$ for $a \in \Omega$, does the job. Consequently, for every Banach space X we have $\tau(X) \geq \omega$ and $\nu(2^n, X) \leq n - 1$ for each $n \in \mathbb{N}$.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$$\nu: \mathcal{F} \rightarrow X:$$

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$. [Proof] Let \mathcal{F} be an arbitrary algebra of sets and let Γ be the set of all finite subalgebras of \mathcal{F} , directed by the inclusion. We use the assumption $\tau(X) > \omega$ and the compactness of the unit ball of X^{**} with respect to the w^* -topology to produce an approximating measure with values in X^{**} . Next we just have to project it onto X .

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$.
- ▶ $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω -SVM property.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$.
- ▶ $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω -SVM property. [Proof]

Let \mathcal{F} be a finite algebra. Choose any $\varepsilon \in (0, 1)$ and pick an

$n \in \mathbb{N}$ such that $|e_j^*(\nu(A))| < \varepsilon$ for each $j > n$ and $A \in \mathcal{F}$.

For each j th coordinate ($1 \leq j \leq n$) there is an additive set function $\mu_j: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $|e_j^*(\nu(A)) - \mu_j(A)| \leq K$ for $A \in \mathcal{F}$. Then the measure $\mu: \mathcal{F} \rightarrow c_0$ defined by

$\mu(A) = (\mu_1(A), \dots, \mu_n(A), 0, 0, \dots)$ satisfies

$\|\nu(A) - \mu(A)\| \leq K$ for $A \in \mathcal{F}$. We get $\nu(\omega, c_0) = K$.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$$\nu: \mathcal{F} \rightarrow X:$$

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$.
- ▶ $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω -SVM property.
- ▶ $\tau(C[0, 1]) > \omega$, i.e. $C[0, 1]$ satisfies the ω -SVM property.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function

$\nu: \mathcal{F} \rightarrow X$:

$$(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- ▶ $\tau(X) \geq \omega$ for every Banach space X .
- ▶ If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ , then $\nu(X) \leq \lambda \nu(\omega, X)$.
- ▶ $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω -SVM property.
- ▶ $\tau(C[0, 1]) > \omega$, i.e. $C[0, 1]$ satisfies the ω -SVM property. [Proof] We use the uniform continuity of $\nu(A) \in C[0, 1]$ (for $A \in \mathcal{F}$).

Twisted sums machinery

Exact sequences

Let X, Y, Z be F -spaces. A short **exact sequence** is a diagram

$$(*) \quad 0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0,$$

where $i: Y \rightarrow Z$ is a one-to-one operator with a closed range (embedding) and $q: Z \rightarrow X$ is a surjective operator such that $\text{im}(i) = \ker(q)$.

Twisted sums machinery

Exact sequences

Let X, Y, Z be F -spaces. A short **exact sequence** is a diagram

$$(*) \quad 0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0,$$

where $i: Y \rightarrow Z$ is a one-to-one operator with a closed range (embedding) and $q: Z \rightarrow X$ is a surjective operator such that $\text{im}(i) = \ker(q)$.

In other words, Z contains a closed subspace $Y_1 \simeq Y$ (isomorphically) such that the quotient space $Z/Y_1 \simeq X$.

Twisted sums machinery

Exact sequences

Let X, Y, Z be F -spaces. A short **exact sequence** is a diagram

$$(*) \quad 0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0,$$

where $i: Y \rightarrow Z$ is a one-to-one operator with a closed range (embedding) and $q: Z \rightarrow X$ is a surjective operator such that $\text{im}(i) = \ker(q)$.

In other words, Z contains a closed subspace $Y_1 \simeq Y$ (isomorphically) such that the quotient space $Z/Y_1 \simeq X$. We then say that Z is a **twisted sum** of Y and X (in this order!), or that Z is an **extension** of X by Y .

Twisted sums machinery

Equivalence between exact sequences

In fact, twisted sums are identified via the following natural equivalence relation:

Twisted sums machinery

Equivalence between exact sequences

In fact, twisted sums are identified via the following natural equivalence relation:

We say that two exact sequences of F -spaces

$0 \rightarrow Y \rightarrow Z_1 \rightarrow X \rightarrow 0$ and $0 \rightarrow Y \rightarrow Z_2 \rightarrow X \rightarrow 0$ are

equivalent, if there exists an operator $T: Z_1 \rightarrow Z_2$ such that the diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & Y & \longrightarrow & Z_1 & \longrightarrow & X & \longrightarrow 0 \\ & & \parallel & & \downarrow T & & \parallel & \\ 0 & \longrightarrow & Y & \longrightarrow & Z_2 & \longrightarrow & X & \longrightarrow 0 \end{array}$$

is commutative.

Twisted sums machinery

Splitting of exact sequences

For any two F -spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$$

produced by the direct sum, jointly with the natural embedding and projection.

Twisted sums machinery

Splitting of exact sequences

For any two F -spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$$

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence $(*)$ **splits** if and only if it is equivalent to (\oplus) .

Twisted sums machinery

Splitting of exact sequences

For any two F -spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$$

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence $(*)$ **splits** if and only if it is equivalent to (\oplus) . Equivalently: the copy $i(Y)$ of Y , inside Z , is complemented in Z .

Twisted sums machinery

Splitting of exact sequences

For any two F -spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$$

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence $(*)$ **splits** if and only if it is equivalent to (\oplus) . Equivalently: the copy $i(Y)$ of Y , inside Z , is complemented in Z . In such a case we must have $Z \simeq X \oplus Y$.

Twisted sums machinery

Functor 'Ext'

Now, we focus on the case where X and Y are Banach spaces.

Twisted sums machinery

Functor 'Ext'

Now, we focus on the case where X and Y are Banach spaces.

The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all **locally convex** twisted sums of Y and X , modulo the equivalence relation defined earlier.

Twisted sums machinery

Functor 'Ext'

Now, we focus on the case where X and Y are Banach spaces.

The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all **locally convex** twisted sums of Y and X , modulo the equivalence relation defined earlier.

In other words, $\text{Ext}(X, Y)$ is the class of all **Banach spaces** Z (identified by the equivalence relation defined earlier) which produce an exact sequence of the form

$$(*) \quad 0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.$$

Twisted sums machinery

Functor 'Ext'

Now, we focus on the case where X and Y are Banach spaces.

The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all **locally convex** twisted sums of Y and X , modulo the equivalence relation defined earlier.

In other words, $\text{Ext}(X, Y)$ is the class of all **Banach spaces** Z (identified by the equivalence relation defined earlier) which produce an exact sequence of the form

$$(*) \quad 0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.$$

We write $\text{Ext}(X, Y) = 0$ if every exact sequence $(*)$, where Z is a Banach space, splits.

Twisted sums machinery

Functor 'Ext'

Now, we focus on the case where X and Y are Banach spaces.

The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all **locally convex** twisted sums of Y and X , modulo the equivalence relation defined earlier.

In other words, $\text{Ext}(X, Y)$ is the class of all **Banach spaces** Z (identified by the equivalence relation defined earlier) which produce an exact sequence of the form

$$(*) \quad 0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.$$

We write $\text{Ext}(X, Y) = 0$ if every exact sequence $(*)$, where Z is a Banach space, splits. We say that the pair (X, Y) splits if $(*)$ splits for every locally bounded F -space Z (so, this is something stronger).

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty, p \neq 1$ (Kalton, 1977).
- ▶ (ℓ_p, ℓ_p) **always fails** to split, for $0 < p < \infty$ (Kalton, Peck, 1979).

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).
- ▶ (ℓ_p, ℓ_p) **always fails** to split, for $0 < p < \infty$ (Kalton, Peck, 1979).
- ▶ c_0 and ℓ_∞ , as well as all \mathcal{L}_∞ -spaces, **are** \mathcal{K} -spaces (Kalton, Roberts, 1983);

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).
- ▶ (ℓ_p, ℓ_p) **always fails** to split, for $0 < p < \infty$ (Kalton, Peck, 1979).
- ▶ c_0 and ℓ_∞ , as well as all \mathcal{L}_∞ -spaces, **are** \mathcal{K} -spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).
- ▶ (ℓ_p, ℓ_p) **always fails** to split, for $0 < p < \infty$ (Kalton, Peck, 1979).
- ▶ c_0 and ℓ_∞ , as well as all \mathcal{L}_∞ -spaces, **are** \mathcal{K} -spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!
- ▶ $\text{Ext}(X, \ell_\infty) = 0$ **for any** Banach space X (by the injectivity of ℓ_∞).

Some classical results

- ▶ (ℓ_2, ℓ_2) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- ▶ (ℓ_1, \mathbb{R}) **does not** split, i.e. ℓ_1 is not a \mathcal{K} -space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ▶ ℓ_p **is** a \mathcal{K} -space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).
- ▶ (ℓ_p, ℓ_p) **always fails** to split, for $0 < p < \infty$ (Kalton, Peck, 1979).
- ▶ c_0 and ℓ_∞ , as well as all \mathcal{L}_∞ -spaces, **are** \mathcal{K} -spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!
- ▶ $\text{Ext}(X, \ell_\infty) = 0$ **for any** Banach space X (by the injectivity of ℓ_∞).
- ▶ $\text{Ext}(X, c_0) = 0$ **for every separable** Banach space X (Sobczyk's theorem).

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$ -SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits;

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$ -SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+ -SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$ -SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+ -SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary. $\tau(C[0, 1]) = \omega_1$.

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$ -SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+ -SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary. $\tau(C[0, 1]) = \omega_1$. [Proof] By a result of Cabello Sánchez, Castillo, Kalton and Yost, we have $\text{Ext}(c_0, C[0, 1]) \neq 0$, so $\tau(C[0, 1]) \leq \omega_1$. On the other hand, we have seen that $\tau(C[0, 1]) > \omega$.

SVM property

Necessary conditions

Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y , which is a \mathcal{L}_∞ -space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$ -SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+ -SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary. $\tau(C[0, 1]) = \omega_1$. [Proof] By a result of Cabello Sánchez, Castillo, Kalton and Yost, we have $\text{Ext}(c_0, C[0, 1]) \neq 0$, so $\tau(C[0, 1]) \leq \omega_1$. On the other hand, we have seen that $\tau(C[0, 1]) > \omega$.

Similarly, $\tau(C[0, \omega^\omega]) = \omega_1$.

SVM property

Necessary conditions

Corollary. If X is a Banach space containing $\{\ell_p^n\}_{n=1}^\infty$ uniformly complemented, for some $1 \leq p < \infty$, then $\tau(X) = \omega$.

Consequently, for every \mathcal{L}_p -space X , with $1 \leq p < \infty$, we have $\tau(X) = \omega$.

SVM property

Necessary conditions

Corollary. If X is a Banach space containing $\{\ell_p^n\}_{n=1}^\infty$ uniformly complemented, for some $1 \leq p < \infty$, then $\tau(X) = \omega$.

Consequently, for every \mathcal{L}_p -space X , with $1 \leq p < \infty$, we have $\tau(X) = \omega$.

[Sketch of proof] First, we show that if Y is locally \mathcal{E} (for any family of finite-dimensional spaces) and $\tau(Y) = \omega$, then $\tau(Z) = \omega$ whenever Z contains \mathcal{E} uniformly complemented. Hence, it is enough to show that $\tau(\ell_p) = \omega$ for $1 \leq p < \infty$.

SVM property

Necessary conditions

Corollary. If X is a Banach space containing $\{\ell_p^n\}_{n=1}^\infty$ uniformly complemented, for some $1 \leq p < \infty$, then $\tau(X) = \omega$.

Consequently, for every \mathcal{L}_p -space X , with $1 \leq p < \infty$, we have $\tau(X) = \omega$.

[Sketch of proof] First, we show that if Y is locally \mathcal{E} (for any family of finite-dimensional spaces) and $\tau(Y) = \omega$, then $\tau(Z) = \omega$ whenever Z contains \mathcal{E} uniformly complemented. Hence, it is enough to show that $\tau(\ell_p) = \omega$ for $1 \leq p < \infty$.

By a result of Cabello Sánchez and Castillo, we have $\text{Ext}(c_0, \ell_1) \neq 0$, thus Theorem 2 implies that $\tau(\ell_1) \leq \omega_1$ and so $\tau(\ell_1) = \omega$ because ℓ_1 is certainly complemented in its bidual.

SVM property

Necessary conditions

Corollary. If X is a Banach space containing $\{\ell_p^n\}_{n=1}^\infty$ uniformly complemented, for some $1 \leq p < \infty$, then $\tau(X) = \omega$.

Consequently, for every \mathcal{L}_p -space X , with $1 \leq p < \infty$, we have $\tau(X) = \omega$.

[Sketch of proof] First, we show that if Y is locally \mathcal{E} (for any family of finite-dimensional spaces) and $\tau(Y) = \omega$, then $\tau(Z) = \omega$ whenever Z contains \mathcal{E} uniformly complemented. Hence, it is enough to show that $\tau(\ell_p) = \omega$ for $1 \leq p < \infty$.

By a result of Cabello Sánchez and Castillo, we have $\text{Ext}(c_0, \ell_1) \neq 0$, thus Theorem 2 implies that $\tau(\ell_1) \leq \omega_1$ and so $\tau(\ell_1) = \omega$ because ℓ_1 is certainly complemented in its bidual. We have also $\text{Ext}(\ell_2, \ell_1) \neq 0$ and since for every $1 < p < \infty$ the space ℓ_p contains $\{\ell_2^n\}_{n=1}^\infty$ uniformly complemented, this easily implies that $\text{Ext}(\ell_p, \ell_1) \neq 0$.

SVM property

Necessary conditions

Corollary. If X is a Banach space containing $\{\ell_p^n\}_{n=1}^\infty$ uniformly complemented, for some $1 \leq p < \infty$, then $\tau(X) = \omega$.

Consequently, for every \mathcal{L}_p -space X , with $1 \leq p < \infty$, we have $\tau(X) = \omega$.

[Sketch of proof] First, we show that if Y is locally \mathcal{E} (for any family of finite-dimensional spaces) and $\tau(Y) = \omega$, then $\tau(Z) = \omega$ whenever Z contains \mathcal{E} uniformly complemented. Hence, it is enough to show that $\tau(\ell_p) = \omega$ for $1 \leq p < \infty$.

By a result of Cabello Sánchez and Castillo, we have $\text{Ext}(c_0, \ell_1) \neq 0$, thus Theorem 2 implies that $\tau(\ell_1) \leq \omega_1$ and so $\tau(\ell_1) = \omega$ because ℓ_1 is certainly complemented in its bidual. We have also $\text{Ext}(\ell_2, \ell_1) \neq 0$ and since for every $1 < p < \infty$ the space ℓ_p contains $\{\ell_2^n\}_{n=1}^\infty$ uniformly complemented, this easily implies that $\text{Ext}(\ell_p, \ell_1) \neq 0$. By a result of Avilés, Cabello Sánchez, Castillo, González and Moreno, for any separable Banach space X the condition $\text{Ext}(X^*, \ell_1) \neq 0$ implies $\text{Ext}(c_0, X) \neq 0$, thus $\text{Ext}(c_0, \ell_p) \neq 0$ for $1 < p < \infty$ and again Theorem 2 gives the result.

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- ▶ Γ infinite cardinal number;

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- ▶ Γ infinite cardinal number;
- ▶ $\mathcal{G} = \{A \subset \Gamma : |\Gamma \setminus A| < \Gamma\}$ filter of subsets of Γ ;

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- ▶ Γ infinite cardinal number;
- ▶ $\mathcal{G} = \{A \subset \Gamma : |\Gamma \setminus A| < \Gamma\}$ filter of subsets of Γ ;
- ▶ $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0\}.$$

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- ▶ Γ infinite cardinal number;
- ▶ $\mathcal{G} = \{A \subset \Gamma : |\Gamma \setminus A| < \Gamma\}$ filter of subsets of Γ ;
- ▶ $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0\}.$$

Next, following the construction of the Johnson-Lindenstrauss space, we build a non-splitting exact sequence of the form

$$0 \rightarrow m_0(\Gamma) \rightarrow \text{JL}_\infty(\Gamma) \rightarrow c_0(\Gamma^+) \rightarrow 0.$$

SVM property

Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- ▶ Γ infinite cardinal number;
- ▶ $\mathcal{G} = \{A \subset \Gamma : |\Gamma \setminus A| < \Gamma\}$ filter of subsets of Γ ;
- ▶ $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0\}.$$

Next, following the construction of the Johnson-Lindenstrauss space, we build a non-splitting exact sequence of the form

$$0 \rightarrow m_0(\Gamma) \rightarrow \text{JL}_\infty(\Gamma) \rightarrow c_0(\Gamma^+) \rightarrow 0.$$

Therefore, by our necessary condition, we infer that
 $\tau(m_0(\Gamma)) \leq \Gamma^{++}$.

SVM property

Is every cardinal number an SVM character of some Banach space?

$$\tau(m_0(\Gamma)) \leq \Gamma^{++}$$

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

SVM property

Is every cardinal number an SVM character of some Banach space?

$$\tau(m_0(\Gamma)) \leq \Gamma^{++}$$

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

Theorem 3

Let Γ be an infinite cardinal number. Then the space $m_0(\Gamma)$ has the $\text{cf}(\Gamma)^+$ -SVM property with $\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720$.

SVM property

Is every cardinal number an SVM character of some Banach space?

$$\tau(m_0(\Gamma)) \leq \Gamma^{++}$$

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

Theorem 3

Let Γ be an infinite cardinal number. Then the space $m_0(\Gamma)$ has the $\text{cf}(\Gamma)^+$ -SVM property with $\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720$.

Consequently, $\text{cf}(\Gamma)^{++} \leq \tau(m_0(\Gamma)) \leq \Gamma^{++}$. In particular, if Γ is a regular cardinal, then we have $\tau(m_0(\Gamma)) = \Gamma^{++}$.

SVM property

Is every cardinal number an SVM character of some Banach space?

$$\tau(m_0(\Gamma)) \leq \Gamma^{++}$$

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

Theorem 3

Let Γ be an infinite cardinal number. Then the space $m_0(\Gamma)$ has the $\text{cf}(\Gamma)^+$ -SVM property with $\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720$.

Consequently, $\text{cf}(\Gamma)^{++} \leq \tau(m_0(\Gamma)) \leq \Gamma^{++}$. In particular, if Γ is a regular cardinal, then we have $\tau(m_0(\Gamma)) = \Gamma^{++}$.

Corollary

For every infinite cardinal Γ we have

$$\tau(c_0(\Gamma)) = \omega_2.$$

κ -injectivity and κ -SVM property

Let κ be a cardinal. A Banach space X is called **κ -injective** if for every Banach space E , with density character less than κ , and every subspace $F \subset E$, every operator $t: F \rightarrow X$ admits an extension to an operator $T: E \rightarrow X$. If for some $\lambda \geq 1$ there is always such an extension with $\|T\| \leq \lambda \|t\|$, then we say that X is **(λ, κ) -injective**.

κ -injectivity and κ -SVM property

Let κ be a cardinal. A Banach space X is called **κ -injective** if for every Banach space E , with density character less than κ , and every subspace $F \subset E$, every operator $t: F \rightarrow X$ admits an extension to an operator $T: E \rightarrow X$. If for some $\lambda \geq 1$ there is always such an extension with $\|T\| \leq \lambda \|t\|$, then we say that X is **(λ, κ) -injective**.

In the case $\kappa = \omega_1$ we say that X is separably injective.

κ -injectivity and κ -SVM property

Let κ be a cardinal. A Banach space X is called **κ -injective** if for every Banach space E , with density character less than κ , and every subspace $F \subset E$, every operator $t: F \rightarrow X$ admits an extension to an operator $T: E \rightarrow X$. If for some $\lambda \geq 1$ there is always such an extension with $\|T\| \leq \lambda \|t\|$, then we say that X is **(λ, κ) -injective**.

In the case $\kappa = \omega_1$ we say that X is separably injective.

A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, *On separably injective Banach spaces*, Adv. Math. **234** (2013), 192–216.

κ -injectivity and κ -SVM property

Let κ be a cardinal. A Banach space X is called **κ -injective** if for every Banach space E , with density character less than κ , and every subspace $F \subset E$, every operator $t: F \rightarrow X$ admits an extension to an operator $T: E \rightarrow X$. If for some $\lambda \geq 1$ there is always such an extension with $\|T\| \leq \lambda \|t\|$, then we say that X is **(λ, κ) -injective**.

In the case $\kappa = \omega_1$ we say that X is separably injective.

A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, *On separably injective Banach spaces*, Adv. Math. **234** (2013), 192–216.

Theorem 4

If X is a (λ, κ) -injective Banach space, then X has the κ -SVM property and $v(\kappa, X) \leq 24\lambda K$.

κ -injectivity and κ -SVM property

Let κ be a cardinal. A Banach space X is called **κ -injective** if for every Banach space E , with density character less than κ , and every subspace $F \subset E$, every operator $t: F \rightarrow X$ admits an extension to an operator $T: E \rightarrow X$. If for some $\lambda \geq 1$ there is always such an extension with $\|T\| \leq \lambda \|t\|$, then we say that X is **(λ, κ) -injective**.

In the case $\kappa = \omega_1$ we say that X is separably injective.

A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, *On separably injective Banach spaces*, Adv. Math. **234** (2013), 192–216.

Theorem 4

If X is a (λ, κ) -injective Banach space, then X has the κ -SVM property and $v(\kappa, X) \leq 24\lambda K$. For instance, if Ω is compact Hausdorff and of finite height n , then $v(\omega_1, C(\Omega)) \leq 24(2n - 1)K$.

SVM property

Characterisation of the SVM property for $X \hookrightarrow_c X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

SVM property

Characterisation of the SVM property for $X \hookrightarrow_{c} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;

SVM property

Characterisation of the SVM property for $X \hookrightarrow_{c} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;
- (ii) $\text{Ext}(X^*, \ell_1) = 0$;

SVM property

Characterisation of the SVM property for $X \hookrightarrow_{c} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;
- (ii) $\text{Ext}(X^*, \ell_1) = 0$;
- (iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;

SVM property

Characterisation of the SVM property for $X \hookrightarrow_{c} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;
- (ii) $\text{Ext}(X^*, \ell_1) = 0$;
- (iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
- (iv) $\text{Ext}(c_0, X) = 0$.

SVM property

Characterisation of the SVM property for $X \hookrightarrow_{c} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;
- (ii) $\text{Ext}(X^*, \ell_1) = 0$;
- (iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
- (iv) $\text{Ext}(c_0, X) = 0$.

Corollary. X^{**} has the SVM property if and only if $\text{Ext}(X^*, \ell_1) = 0$.

SVM property

Characterisation of the SVM property for $X \xhookrightarrow{\text{c}} X^{**}$

Theorem 5

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

- (i) X has the SVM property;
- (ii) $\text{Ext}(X^*, \ell_1) = 0$;
- (iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
- (iv) $\text{Ext}(c_0, X) = 0$.

Corollary. X^{**} has the SVM property if and only if $\text{Ext}(X^*, \ell_1) = 0$.

[Proof] The vector spaces $\text{Ext}(Z, Y^*)$ and $\text{Ext}(Y, Z^*)$ are isomorphic (Jebreen, Jamjoom, Yost), so $\text{Ext}(X^*, \ell_1) = 0$ is equivalent to $\text{Ext}(c_0, X^{**}) = 0$ which in turn is equivalent to X^{**} having the SVM property.

Non-trivial extensions of c_0

F. Cabello Sánchez, J.M.F. Castillo, *Uniform boundedness and twisted sums of Banach spaces*, Houston J. Math. **30** (2004), 523–536.

Non-trivial extensions of c_0

F. Cabello Sánchez, J.M.F. Castillo, *Uniform boundedness and twisted sums of Banach spaces*, Houston J. Math. **30** (2004), 523–536.

$$\text{Ext}(c_0, \ell_2) \neq 0$$

Non-trivial extensions of c_0

F. Cabello Sánchez, J.M.F. Castillo, *Uniform boundedness and twisted sums of Banach spaces*, Houston J. Math. **30** (2004), 523–536.

$$\text{Ext}(c_0, \ell_2) \neq 0$$

Now, we shall explain how their construction may be strengthened by using the following assertion:

Theorem 6

Every infinite-dimensional Banach space having the ω_1 -SVM property contains an isomorphic copy of c_0 .

Sketch of the proof of Theorem 6

- ▶ Consider the pull-back diagram, where the first row is the Kalton–Peck twisted sum and $j^*: L_\infty \rightarrow \ell_2$ is the adjoint to the embedding $j: \ell_2 \hookrightarrow L_1$ given by Rademacher functions:

$$\begin{array}{ccccccc} 0 & \longrightarrow & \ell_2 & \longrightarrow & \mathcal{Z}_2 & \longrightarrow & \ell_2 & \longrightarrow & 0 \\ & & \parallel & & \uparrow & & \uparrow j^* & & \\ 0 & \longrightarrow & \ell_2 & \longrightarrow & \text{PB} & \longrightarrow & L_\infty & \longrightarrow & 0 \end{array}$$

$$(j^*f = (r_j^*f)_{j=1}^\infty \in \ell_2, \text{ where } r_j^*f = \int_0^1 r_j(t)f(t) \, dt)$$

Sketch of the proof of Theorem 6

- ▶ Consider the pull-back diagram, where the first row is the Kalton–Peck twisted sum and $j^*: L_\infty \rightarrow \ell_2$ is the adjoint to the embedding $j: \ell_2 \hookrightarrow L_1$ given by Rademacher functions:

$$\begin{array}{ccccccc} 0 & \longrightarrow & \ell_2 & \longrightarrow & \mathcal{Z}_2 & \longrightarrow & \ell_2 & \longrightarrow & 0 \\ & & \parallel & & \uparrow & & \uparrow j^* & & \\ 0 & \longrightarrow & \ell_2 & \longrightarrow & \text{PB} & \longrightarrow & L_\infty & \longrightarrow & 0 \end{array}$$

$$(j^*f = (r_j^*f)_{j=1}^\infty \in \ell_2, \text{ where } r_j^*f = \int_0^1 r_j(t)f(t) \, dt)$$

- ▶ The space \mathcal{Z}_2 is the completion of the direct sum $\ell_2 \oplus \ell_2$ under the quasi-norm given by $\|(y, x)\| = \|x\| + \|y - \varphi(x)\|$, where $\varphi: \ell_2 \rightarrow \ell_2$ is a *quasi-linear map*, that is, it is homogeneous and satisfies

$$\|\varphi(x + y) - \varphi(x) - \varphi(y)\| \leq c(\|x\| + \|y\|) \quad \text{for all } x, y \in \ell_2,$$

where $c < \infty$ is a constant.

Sketch of the proof of Theorem 6 continued

- ▶ φ may be given as a quasi-linear extension of a map $\varphi_0: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ defined by $\varphi_0(x) = \|x\|F(x/\|x\|)$ (0 for $x = 0$), where $F: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ is a quasi-additive map of the form:

Sketch of the proof of Theorem 6 continued

- ▶ φ may be given as a quasi-linear extension of a map $\varphi_0: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ defined by $\varphi_0(x) = \|x\|F(x/\|x\|)$ (0 for $x = 0$), where $F: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ is a quasi-additive map of the form:

$$F(x)(k) = x(k) \cdot \theta(-\log|x(k)|) \quad (\text{convention: } 0 \cdot \infty = 0),$$

where $\theta: \mathbb{R} \rightarrow \mathbb{R}$ is an (unbounded) Lipschitz function with $\theta(t) = 0$ for $t \leq 0$.

Sketch of the proof of Theorem 6 continued

- ▶ φ may be given as a quasi-linear extension of a map $\varphi_0: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ defined by $\varphi_0(x) = \|x\|F(x/\|x\|)$ (0 for $x = 0$), where $F: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ is a quasi-additive map of the form:

$$F(x)(k) = x(k) \cdot \theta(-\log|x(k)|) \quad (\text{convention: } 0 \cdot \infty = 0),$$

where $\theta: \mathbb{R} \rightarrow \mathbb{R}$ is an (unbounded) Lipschitz function with $\theta(t) = 0$ for $t \leq 0$. We have

$$\|F(x+y) - F(x) - F(y)\| \leq L \cdot \log 2(\|x\| + \|y\|) \quad \text{for all } x, y \in \mathbb{R}^\infty,$$

where $L = \text{Lip}(\theta)$,

Sketch of the proof of Theorem 6 continued

- ▶ φ may be given as a quasi-linear extension of a map $\varphi_0: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ defined by $\varphi_0(x) = \|x\|F(x/\|x\|)$ (0 for $x = 0$), where $F: \mathbb{R}^\infty \rightarrow \mathbb{R}^\infty$ is a quasi-additive map of the form:

$$F(x)(k) = x(k) \cdot \theta(-\log|x(k)|) \quad (\text{convention: } 0 \cdot \infty = 0),$$

where $\theta: \mathbb{R} \rightarrow \mathbb{R}$ is an (unbounded) Lipschitz function with $\theta(t) = 0$ for $t \leq 0$. We have

$$\|F(x+y) - F(x) - F(y)\| \leq L \cdot \log 2(\|x\| + \|y\|) \quad \text{for all } x, y \in \mathbb{R}^\infty,$$

where $L = \text{Lip}(\theta)$, and hence it may be proved that the constant of quasi-linearity of φ is at most $16L \cdot \log 2$.

Sketch of the proof of Theorem 6 continued

- ▶ Let $\mathcal{F} = \{A \subset \mathbb{N}: |A| < \omega \text{ or } |\mathbb{N} \setminus A| < \omega\}$. We look for a suitable sequence $(f_n)_{n=1}^{\infty} \subset L_{\infty}$, equivalent to the canonical basis of c_0 , for which we will define an ‘almost’ additive measure $\nu: \mathcal{F} \rightarrow \ell_2$ by the formula

$$\nu(A) = \begin{cases} \varphi(j^* \sum_{n \in A} f_n) & \text{for } A \text{ finite ,} \\ -\nu(\mathbb{N} \setminus A) & \text{for } A \text{ cofinite.} \end{cases}$$

Sketch of the proof of Theorem 6 continued

- ▶ Let $\mathcal{F} = \{A \subset \mathbb{N}: |A| < \omega \text{ or } |\mathbb{N} \setminus A| < \omega\}$. We look for a suitable sequence $(f_n)_{n=1}^{\infty} \subset L_{\infty}$, equivalent to the canonical basis of c_0 , for which we will define an ‘almost’ additive measure $\nu: \mathcal{F} \rightarrow \ell_2$ by the formula

$$\nu(A) = \begin{cases} \varphi(j^* \sum_{n \in A} f_n) & \text{for } A \text{ finite ,} \\ -\nu(\mathbb{N} \setminus A) & \text{for } A \text{ cofinite.} \end{cases}$$

- ▶ So, for finite $A \subset \mathbb{N}$ we have

$$\nu(A)(k) = (r_k^* f_A) \cdot \theta \left(-\log \frac{|r_k^* f_A|}{\|(r_j^* f_A)_{j=1}^{\infty}\|_2} \right),$$

where $f_A := \sum_{n \in A} f_n$.

Sketch of the proof of Theorem 6 continued

- We choose f_n 's so that they are disjointly supported characteristic functions of some unions of 'Rademacher's subintervals' of $[0, 1]$, and so that for each $n \in \mathbb{N}$ we have:
 - $\|(r_j^* f_n)_{j=1}^\infty\|_2 \sim \frac{1}{n};$

Sketch of the proof of Theorem 6 continued

- ▶ We choose f_n 's so that they are disjointly supported characteristic functions of some unions of 'Rademacher's subintervals' of $[0, 1]$, and so that for each $n \in \mathbb{N}$ we have:
 - ▶ $\|(r_j^* f_n)_{j=1}^{\infty}\|_2 \sim \frac{1}{n}$;
 - ▶ exactly $\lfloor e^n \rfloor$ of the coordinates $r_j^* f_n$ ($j = 1, 2, \dots$) are non-zero, and for each of them $|r_j^* f_n| \sim e^{-n/2} \|(r_j^* f_n)_{j=1}^{\infty}\|_2$.

Sketch of the proof of Theorem 6 continued

- We choose f_n 's so that they are disjointly supported characteristic functions of some unions of 'Rademacher's subintervals' of $[0, 1]$, and so that for each $n \in \mathbb{N}$ we have:
 - $\|(r_j^* f_n)_{j=1}^{\infty}\|_2 \sim \frac{1}{n}$;
 - exactly $\lfloor e^n \rfloor$ of the coordinates $r_j^* f_n$ ($j = 1, 2, \dots$) are non-zero, and for each of them $|r_j^* f_n| \sim e^{-n/2} \|(r_j^* f_n)_{j=1}^{\infty}\|_2$.

Then $\|\nu\{n\}\| \sim \frac{\theta(\frac{1}{2}n)}{n^{1/2}}$ for each $n \in \mathbb{N}$.

Sketch of the proof of Theorem 6 continued

- ▶ We choose f_n 's so that they are disjointly supported characteristic functions of some unions of 'Rademacher's subintervals' of $[0, 1]$, and so that for each $n \in \mathbb{N}$ we have:
 - ▶ $\|(r_j^* f_n)_{j=1}^{\infty}\|_2 \sim \frac{1}{n}$;
 - ▶ exactly $\lfloor e^n \rfloor$ of the coordinates $r_j^* f_n$ ($j = 1, 2, \dots$) are non-zero, and for each of them $|r_j^* f_n| \sim e^{-n/2} \|(r_j^* f_n)_{j=1}^{\infty}\|_2$.

Then $\|\nu\{n\}\| \sim \frac{\theta(\frac{1}{2}n)}{n^{1/2}}$ for each $n \in \mathbb{N}$.

- ▶ In this way we define a function $\nu: \mathcal{F} \rightarrow \ell_2$ satisfying the following three conditions:

Sketch of the proof of Theorem 6 continued

- We choose f_n 's so that they are disjointly supported characteristic functions of some unions of 'Rademacher's subintervals' of $[0, 1]$, and so that for each $n \in \mathbb{N}$ we have:

- $\|(r_j^* f_n)_{j=1}^{\infty}\|_2 \sim \frac{1}{n};$
- exactly $\lfloor e^n \rfloor$ of the coordinates $r_j^* f_n$ ($j = 1, 2, \dots$) are non-zero, and for each of them $|r_j^* f_n| \sim e^{-n/2} \|(r_j^* f_n)_{j=1}^{\infty}\|_2$.

Then $\|\nu\{n\}\| \sim \frac{\theta(\frac{1}{2}n)}{n^{1/2}}$ for each $n \in \mathbb{N}$.

- In this way we define a function $\nu: \mathcal{F} \rightarrow \ell_2$ satisfying the following three conditions:
 - (i) ν is 1-additive, that is, for every $A, B \in \mathcal{F}$ with $A \cap B = \emptyset$, we have $\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1$;
 - (ii) for each $n \in \mathbb{N}$ we have $\|\nu\{n\}\| \geq M$, where M is arbitrarily fixed positive number;
 - (iii) ν is bounded.

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $v(\omega_1, X)$.

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $v(\omega_1, X)$. Use the Dvoretzky theorem (ℓ_2 is finitely representable in X) to ‘pack’ the function ν into X .

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $\nu(\omega_1, X)$. Use the Dvoretzky theorem (ℓ_2 is finitely representable in X) to ‘pack’ the function ν into X .
- ▶ There must exist a finitely additive vector measure $\mu: \mathcal{F} \rightarrow X$ which approximates ν to within $\nu(\omega_1, X)$.

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $v(\omega_1, X)$. Use the Dvoretzky theorem (ℓ_2 is finitely representable in X) to ‘pack’ the function ν into X .
- ▶ There must exist a finitely additive vector measure $\mu: \mathcal{F} \rightarrow X$ which approximates ν to within $v(\omega_1, X)$. But then the series $\sum_{n=1}^{\infty} \mu\{n\}$ certainly diverges.

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $v(\omega_1, X)$. Use the Dvoretzky theorem (ℓ_2 is finitely representable in X) to ‘pack’ the function ν into X .
- ▶ There must exist a finitely additive vector measure $\mu: \mathcal{F} \rightarrow X$ which approximates ν to within $v(\omega_1, X)$. But then the series $\sum_{n=1}^{\infty} \mu\{n\}$ certainly diverges.
- ▶ Consequently, we have produced a bounded and non-strongly additive measure with values in X ,

Sketch of the proof of Theorem 6 continued

- ▶ Now, suppose that an infinite-dimensional Banach space has the ω_1 -SVM property and take M (from the previous slide) to be larger than $v(\omega_1, X)$. Use the Dvoretzky theorem (ℓ_2 is finitely representable in X) to ‘pack’ the function ν into X .
- ▶ There must exist a finitely additive vector measure $\mu: \mathcal{F} \rightarrow X$ which approximates ν to within $v(\omega_1, X)$. But then the series $\sum_{n=1}^{\infty} \mu\{n\}$ certainly diverges.
- ▶ Consequently, we have produced a bounded and non-strongly additive measure with values in X , and hence the Diestel–Faires theorem tells us that X contains an isomorphic copy of c_0 .

Non-trivial extensions of c_0

Corollary

For every infinite-dimensional Banach space X that is complemented in its bidual and does not contain isomorphically c_0 (e.g. for any infinite-dimensional reflexive space) we have $\text{Ext}(c_0, X) \neq 0$.

Non-trivial extensions of c_0

Corollary

For every infinite-dimensional Banach space X that is complemented in its bidual and does not contain isomorphically c_0 (e.g. for any infinite-dimensional reflexive space) we have $\text{Ext}(c_0, X) \neq 0$.

Proof. Combine Theorems 5 and 6.