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Two main aims of the talk:

I to report on several results describing vector analogues of the
Kalton–Roberts theorem on nearly additive set functions (for
this we will need some background on twisted sums of Banach
spaces);

I to explain how such stability results for vector measures may
be used in order to produce new non-trivial twisted sums (in
particular, to show that there exist non-trivial extensions of c0
by any infinite-dimensional reflexive space).

T.K., Stability of vector measures and twisted sums of Banach
spaces, J. Funct. Anal. 264 (2013), 2416–2456.
T.K., Stability of vector measures and non-trivial extensions
of c0, in preparation.
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Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant
v(X ) < +∞ (depending only on X ) such that:

for any set Ω 6= ∅,
any algebra F ⊂ 2Ω, and any function ν : F → X satisfying

‖ν(A ∪ B)− ν(A)− ν(B)‖ ≤ 1 for A,B ∈ F , A ∩ B = ∅,

there exists a vector measure µ : F → X such that

‖ν(A)− µ(A)‖ ≤ v(X ) for A ∈ F .

If the above condition is valid, then we say that X has the SVM
property.
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Motivation
The Kalton–Roberts theorem

N.J. Kalton, J.W. Roberts, Uniformly exhaustive submeasures and
nearly additive set functions, Trans. Amer. Math. Soc. 278
(1983), 803–816.

Theorem (Kalton & Roberts, 1983). There exists an absolute
constant K < 45 with the following property:

for any set Ω 6= ∅,
any algebra A ⊂ 2Ω, and any function ν : A → R satisfying

|ν(A ∪ B)− ν(A)− ν(B)| ≤ 1 for A,B ∈ A, A ∩ B = ∅,

there exists an additive set function µ : A → R such that

|ν(A)− µ(A)| ≤ K for A ∈ A.

This means, in our terminology, that the space R has the SVM
property. As an obvious consequence, the finite-dimensional spaces
Rn, as well as the space `∞ (more generally, all injective spaces),
also have the SVM property.
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SVM character

Let κ be a cardinal number. We say that a Banach space X has
the κ-SVM property if and only if there exists a constant
v(κ,X ) <∞ (depending only on κ and X ) such that given any
algebra F ⊂ 2Ω of cardinality less than κ, and any map
ν : F → X satisfying

‖ν(A ∪ B)− ν(A)− ν(B)‖ ≤ 1 for A,B ∈ F , A ∩ B = ∅,

there exists a vector measure µ : F → X such that

‖ν(A)− µ(A)‖ ≤ v(κ,X ) for A ∈ F .

If X is a Banach space which does not have the SVM property,
then by the SVM character of X we mean the minimal cardinal
number κ such that X does not have the κ-SVM property, and we
denote it by τ(X ).
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v(κ,X ) <∞ (depending only on κ and X ) such that given any
algebra F ⊂ 2Ω of cardinality less than κ, and any map
ν : F → X satisfying
‖ν(A ∪ B)− ν(A)− ν(B)‖ ≤ 1 for A,B ∈ F , A ∩ B = ∅,

there exists a vector measure µ : F → X such that
‖ν(A)− µ(A)‖ ≤ v(κ,X ) for A ∈ F .

If X is a Banach space which does not have the SVM property,
then by the SVM character of X we mean the minimal cardinal
number κ such that X does not have the κ-SVM property, and we
denote it by τ(X ).
Remark. Note that τ(X ) is properly defined for every Banach
space not enjoying the SVM property. (That is, if X has the
κ-SVM property for each κ, then X has the SVM property.)



Basic observations concerning the SVM character

Let us recall our basic assumption on a given function
ν : F → X :

(∗) ‖ν(A∪B)− ν(A)− ν(B)‖ ≤ 1 for A,B ∈ F ,A∩B = ∅

I τ (X) ≥ ω for every Banach space X.
I If τ (X) > ω and X is complemented in its bidual, then

X has the SVM property. Moreover, if there is
a projection of X∗∗ onto X with norm not exceeding λ,
then v(X) ≤ λv(ω,X).

I τ (c0) > ω, i.e. c0 satisfies the ω-SVM property.
I τ (C[0, 1]) > ω, i.e. C[0, 1] satisfies the ω-SVM property.
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Twisted sums machinery
Exact sequences

Let X , Y , Z be F -spaces. A short exact sequence is a diagram

(∗) 0 −→ Y i−→ Z q−→ X −→ 0,

where i : Y → Z is a one-to-one operator with a closed range
(embedding) and q : Z → X is a surjective operator such that
im(i) = ker(q).

In other words, Z contains a closed subspace Y1 ' Y
(isomorphically) such that the quotient space Z/Y1 ' X . We then
say that Z is a twisted sum of Y and X (in this order!), or that Z
is an extension of X by Y .
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Twisted sums machinery
Equivalence between exact sequences

In fact, twisted sums are identified via the following natural
equivalence relation:

We say that two exact sequences of F -spaces
0→ Y → Z1 → X → 0 and 0→ Y → Z2 → X → 0 are
equivalent, if there exists an operator T : Z1 → Z2 such that the
diagram

0 // Y // Z1 //

T
��

X // 0

0 // Y // Z2 // X // 0

is commutative.
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Twisted sums machinery
Splitting of exact sequences

For any two F -spaces X and Y we have always the trivial exact
sequence:

(⊕) 0→ Y → Y ⊕ X → X → 0

produced by the direct sum, jointly with the natural embedding
and projection.

We say that exact sequence (∗) splits if and only if it is equivalent
to (⊕). Equivalently: the copy i(Y ) of Y , inside Z , is
complemented in Z . In such a case we must have Z ' X ⊕ Y .
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Twisted sums machinery
Functor ‘Ext’

Now, we focus on the case where X and Y are Banach spaces.

The functor Ext assigns, to every pair (X ,Y ) of Banach spaces,
the class of all locally convex twisted sums of Y and X , modulo
the equivalence relation defined earlier.
In other words, Ext(X ,Y ) is the class of all Banach spaces Z
(identified by the equivalence relation defined earlier) which
produce an exact sequence of the form

(∗) 0→ Y → Z → X → 0.

We write Ext(X ,Y ) = 0 if every exact sequence (∗), where Z is a
Banach space, splits. We say that the pair (X ,Y ) splits if (∗) splits
for every locally bounded F -space Z (so, this is something
stronger).
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Some classical results

I (`2, `2) does not split (Enflo, Lindenstrauss, Pisier, 1975).

I (`1,R) does not split, i.e. `1 is not a K-space (Kalton, Ribe,
Roberts, 1977-79). Obviously, Ext(`1,R) = 0 by the Hahn-Banach
theorem.

I `p is a K-space for any 0 < p <∞, p 6= 1 (Kalton, 1977).
I (`p, `p) always fails to split, for 0 < p <∞ (Kalton, Peck,

1979).
I c0 and `∞, as well as all L∞-spaces, are K-spaces (Kalton,

Roberts, 1983); this is why Kalton and Roberts proved their
theorem on stability of nearly additive real-valued set
functions!

I Ext(X , `∞) = 0 for any Banach space X (by the injectivity of
`∞).

I Ext(X , c0) = 0 for every separable Banach space X
(Sobczyk’s theorem).
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SVM property
Necessary conditions

Theorem 1
If X is a Banach space complemented in its bidual such that
τ(X ) > ω, then for every Banach space Y , which is a L∞-space,
the pair (Y ,X ) splits.

Theorem 2
Let Γ be a cardinal number. If X is a Banach space which has
the

(
2Γ
)+-SVM property (i.e. τ (X) >

(
2Γ
)+), then the pair

(`∞(Γ),X ) splits; if X is assumed only to have the Γ+-SVM
property (i.e. τ (X) > Γ+), then (c0(Γ),X ) splits.
Corollary. τ(C [0, 1]) = ω1. [Proof] By a result of Cabello Sánchez,
Castillo, Kalton and Yost, we have Ext(c0,C [0, 1]) 6= 0, so τ(C [0, 1]) ≤ ω1. On
the other hand, we have seen that τ(C [0, 1]) > ω.
Similarly, τ(C [0, ωω]) = ω1.
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SVM property
Necessary conditions

Corollary. If X is a Banach space containing {`np}∞n=1 uniformly
complemented, for some 1 ≤ p <∞, then τ(X ) = ω.
Consequently, for every Lp-space X , with 1 ≤ p <∞, we have
τ(X ) = ω.

[Sketch of proof] First, we show that if Y is locally E (for any family of
finite-dimensional spaces) and τ(Y ) = ω, then τ(Z) = ω whenever Z contains
E uniformly complemented. Hence, it is enough to show that τ(`p) = ω for
1 ≤ p <∞.
By a result of Cabello Sánchez and Castillo, we have Ext(c0, `1) 6= 0, thus
Theorem 2 implies that τ(`1) ≤ ω1 and so τ(`1) = ω because `1 is certainly
complemented in its bidual. We have also Ext(`2, `1) 6= 0 and since for every
1 < p <∞ the space `p contains {`n

2}∞n=1 uniformly complemented, this easily
implies that Ext(`p , `1) 6= 0. By a result of Avilés, Cabello Sánchez, Castillo,
González and Moreno, for any separable Banach space X the condition
Ext(X∗, `1) 6= 0 implies Ext(c0,X) 6= 0, thus Ext(c0, `p) 6= 0 for 1 < p <∞
and again Theorem 2 gives the result.
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SVM property
Is every cardinal number an SVM character of some Banach space?

We define a space m0(Γ) as follows:

I Γ infinite cardinal number;
I G = {A ⊂ Γ: |Γ \ A| < Γ} filter of subsets of Γ;
I m0(Γ) is a subspace of `∞(Γ) given by

m0(Γ) = {x ∈ `∞(Γ) : lim
G

x = 0}.

Next, following the construction of the Johnson-Lindenstrauss
space, we build a non-splitting exact sequence of the form

0→ m0(Γ)→ JL∞(Γ)→ c0(Γ+)→ 0.

Therefore, by our necessary condition, we infer that
τ(m0(Γ)) ≤ Γ++.
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SVM property
Is every cardinal number an SVM character of some Banach space?

τ(m0(Γ)) ≤ Γ++

On the other hand, using a generalisation of Sobczyk’s theorem,
due to Hasanov, we may prove the following result.

Theorem 3
Let Γ be an infinite cardinal number. Then the space m0(Γ) has
the cf(Γ)+-SVM property with v(cf(Γ)+,m0(Γ)) ≤ 16K < 720.
Consequently, cf(Γ)++ ≤ τ(m0(Γ)) ≤ Γ++. In particular, if Γ is
a regular cardinal, then we have τ(m0(Γ)) = Γ++.

Corollary
For every infinite cardinal Γ we have

τ(c0(Γ)) = ω2.
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κ-injectivity and κ-SVM property

Let κ be a cardinal. A Banach space X is called κ-injective if for
every Banach space E , with density character less than κ, and
every subspace F ⊂ E , every operator t : F → X admits an
extension to an operator T : E → X . If for some λ ≥ 1 there is
always such an extension with ‖T‖ ≤ λ‖t‖, then we say that X is
(λ, κ)-injective.

In the case κ = ω1 we say that X is separably injective.
A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González,
Y. Moreno, On separably injective Banach spaces, Adv. Math. 234
(2013), 192–216.

Theorem 4
If X is a (λ, κ)-injective Banach space, then X has the κ-SVM
property and v(κ,X ) ≤ 24λK . For instance, if Ω is compact
Hausdorff and of finite height n, then v(ω1,C(Ω)) ≤ 24(2n − 1)K .
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SVM property
Characterisation of the SVM property for X ↪→

c
X∗∗

Theorem 5
Let X be a Banach space complemented in its bidual. Then the
following assertions are equivalent:

(i) X has the SVM property;
(ii) Ext(X ∗, `1) = 0;
(iii) Ext(`∞,X ∗∗) = 0;
(iv) Ext(c0,X ) = 0.

Corollary. X ∗∗ has the SVM property if and only if
Ext(X ∗, `1) = 0.
[Proof] The vector spaces Ext(Z ,Y ∗) and Ext(Y ,Z∗) are isomorphic
(Jebreen, Jamjoom, Yost), so Ext(X∗, `1) = 0 is equivalent to
Ext(c0,X∗∗) = 0 which in turn is equivalent to X∗∗ having the SVM property.
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Non-trivial extensions of c0

F. Cabello Sánchez, J.M.F. Castillo, Uniform boundedness and
twisted sums of Banach spaces, Houston J. Math. 30 (2004),
523–536.

Ext(c0, `2) 6= 0

Now, we shall explain how their construction may be strengthened
by using the following assertion:

Theorem 6
Every infinite-dimensional Banach space having the ω1-SVM
property contains an isomorphic copy of c0.
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Sketch of the proof of Theorem 6

I Consider the pull-back diagram, where the first row is the
Kalton–Peck twisted sum and j∗ : L∞ → `2 is the adjoint to
the embedding j : `2 ↪→ L1 given by Rademacher functions:

0 // `2 // Z2 // `2 // 0

0 // `2 // PB //

OO

L∞ //

j∗
OO

0

(j∗f = (r∗j f )∞j=1 ∈ `2, where r∗j f =
∫ 1

0 rj(t)f (t) dt)

I The space Z2 is the completion of the direct sum `2 ⊕ `2
under the quasi-norm given by ‖(y , x)‖ = ‖x‖+ ‖y − ϕ(x)‖,
where ϕ : `2 → `2 is a quasi-linear map, that is, it is
homogeneous and satisfies

‖ϕ(x + y)− ϕ(x)− ϕ(y)‖ ≤ c(‖x‖+ ‖y‖) for all x , y ∈ `2,

where c <∞ is a constant.
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Sketch of the proof of Theorem 6 continued

I ϕ may be given as a quasi-linear extension of a map
ϕ0 : R∞ → R∞ defined by ϕ0(x) = ‖x‖F (x/‖x‖) (0 for
x = 0), where F : R∞ → R∞ is a quasi-additive map of the
form:

F (x)(k) = x(k) · θ
(
− log |x(k)|

)
(convention: 0 · ∞ = 0),

where θ : R→ R is an (unbounded) Lipschitz function with
θ(t) = 0 for t ≤ 0. We have

‖F (x+y)−F (x)−F (y)‖ ≤ L·log 2
(
‖x‖+‖y‖

)
for all x , y ∈ R∞,

where L = Lip(θ), and hence it may be proved that the
constant of quasi-linearity of ϕ is at most 16L · log 2.
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Sketch of the proof of Theorem 6 continued

I Let F = {A ⊂ N : |A| < ω or |N \ A| < ω}. We look for a
suitable sequence (fn)∞n=1 ⊂ L∞, equivalent to the canonical
basis of c0, for which we will define an ‘almost’ additive
measure ν : F → `2 by the formula

ν(A) =

{
ϕ (j∗

∑
n∈A fn) for A finite ,

−ν(N \ A) for A cofinite.

I So, for finite A ⊂ N we have

ν(A)(k) = (r∗k fA) · θ
(
− log |r∗k fA|

‖(r∗j fA)∞j=1‖2

)
,

where fA :=
∑

n∈A fn.
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Sketch of the proof of Theorem 6 continued

I We choose fn’s so that they are disjointly supported
characteristic functions of some unions of ‘Rademacher’s
subintervals’ of [0, 1], and so that for each n ∈ N we have:

I ‖(r∗j fn)∞j=1‖2 ∼ 1
n ;

I exactly benc of the coordinates r∗j fn (j = 1, 2, . . .) are
non-zero, and for each of them |r∗j fn| ∼ e−n/2‖(r∗j fn)∞j=1‖2.

Then ‖ν{n}‖ ∼ θ( 1
2 n)

n1/2 for each n ∈ N.
I In this way we define a function ν : F → `2 satisfying the

following three conditions:
(i) ν is 1-additive, that is, for every A,B ∈ F with A ∩ B = ∅, we

have ‖ν(A ∪ B)− ν(A)− ν(B)‖ ≤ 1;
(ii) for each n ∈ N we have ‖ν{n}‖ ≥ M, where M is arbitrarily

fixed positive number;
(iii) ν is bounded.
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Sketch of the proof of Theorem 6 continued

I Now, suppose that an infinite-dimensional Banach space has
the ω1-SVM property and take M (from the previous slide) to
be larger than v(ω1,X ).

Use the Dvoretzky theorem (`2 is
finitely representable in X ) to ‘pack’ the function ν into X .

I There must exist a finitely additive vector measure µ : F → X
which approximates ν to within v(ω1,X ). But then the series∑∞

n=1 µ{n} certainly diverges.
I Consequently, we have produced a bounded and non-strongly

additive measure with values in X , and hence the
Diestel–Faires theorem tells us that X contains an isomorphic
copy of c0.
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I Consequently, we have produced a bounded and non-strongly

additive measure with values in X , and hence the
Diestel–Faires theorem tells us that X contains an isomorphic
copy of c0.



Non-trivial extensions of c0

Corollary
For every infinite-dimensional Banach space X that is
complemented in its bidual and does not contain isomorphically c0
(e.g. for any infinite-dimensional reflexive space) we have
Ext(c0,X ) 6= 0.

Proof. Combine Theorems 5 and 6.
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