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Motivation: the ideal structure of Z(X)

For a Banach space X, consider the Banach algebra
AB(X)={T: X — X:Tis bounded and linear}.

Overall aim: to understand the lattice of (closed, two-sided) ideals of Z(X).
This is a very difficult problem; the only known complete classifications are:

» dim X < o0;

> X =4p(I) for 1 < p < oo and X = ¢o(l), where I is an arbitrary infinite
index set (Calkin 1941; Gohberg—Markus—Feldman 1960; Gramsch 1967/
Luft 1968; Daws 2006);

> X = (B,en 82),, (L-Loy-Read 2004) and its dual X = (D, 43),,
(L=Schlumprecht-Zsak 2006);

» Argyros and Haydon's Banach space with very few operators (2011), and
some variants of it (Tarbard 2012; Kania—L 2014);

» X = C(K), where K is the ‘Mréwka space’ constructed by Koszmider
(2005), assuming CH (Brooker (unpublished)/Kania—Kochanek 2014).



Maximal ideals of Z(X)

Easier goal: to understand the maximal ideals of #(X) for a Banach space X.
Note: ZA(X) is unital = the maximal ideals of Z(X) are automatically closed.

Observation (Dosev—Johnson 2010). The set
Mx ={T € B(X):VR,S € B(X):1#STR}

is the unique maximal ideal of Z(X) if (and only if) it is closed under addition.

Note: #(X) always contains a unique minimal non-zero ideal: % (X).



Banach spaces X such that .#Zx is the unique maximal ideal of Z(X)

Recall: Mx ={T € B(X):VR,S € B(X):1+#STR}.

> £y for 1< p < oo, co, (Den2),, and (B,en2),,;
> (B, en? ) (L—Odell-Schlumprecht-Zsak 2012), its dual (EBHENE’;O)e
(Leung 2014) and (P, £- )e for 1 < p < oo (Kania-L 2014);

> (By Eq)g for 1 < g < p < oo (Chen—Johnson—Zheng 2011);
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» Lorentz sequence spaces (Kaminska—Popov—-Spinu—Tcaciuc—Troitsky
2011);

» certain Orlicz sequence spaces (Lin—Sari-Zheng 2014);
» the quasi-reflexive James spaces J, for 1 < p < o0;
» Edgar’s long James spaces J,(w1) for 1 < p < oo (Kania—Kochanek 2014);

> the James tree space and the James function space (Apatsidis—Argyros—
Kanellopoulos 2008).



Banach spaces X such that .#Zx is the unique max. ideal of Z(X) (cont.)

Recall: Mx ={T € B(X):VR,S € B(X):1+#STR}.

» L,[0,1] for 1 < p < oo (Dosev—Johnson—Schechtman 2011);
» [[0,1] =2 ¢ (L-Loy 2005, using Petczynski and Rosenthal);
» ls/co (using Drewnowski—Roberts 1991);

» ([0, 1] (Brooker 2010, using Petczynski and Rosenthal);

» C[0,w”] and C[0, a], where « is a countable ordinal satisfying o = w®
(Brooker, using Bourgain and Petczynski);

» C[0,ws1] (Kania—L 2012);
> (B, C[O,oz])co (Kania—L 2014).




C(K)-spaces

For a compact Hausdorff space K, consider the Banach space
C(K)={f: K — C: f is continuous}.

Fact. C(K) separable <= K metrizable.

Classification. Let K be a compact metric space. Then:
» K has n € N elements <— C(K)=X=/5;
» (Milutin) K is uncountable <= C(K) = C[0,1];

» (Bessaga and Petczynski) K is countably infinite <=
C(K) = C[0,w® ] for a unique countable ordinal «.

Here, for an ordinal o, the interval [0, 0] = {« ordinal : @ < o} is equipped
with the order topology, which is determined by the basis

[0, B), (a, B), (a, o] (0<a< B <o)

Note: C[0,w1], where w; is the first uncountable ordinal, is the “next”
C(K)-space after the separable ones C[0,w® | for countable a.

Theorem (Semadeni 1960). C[0,w1] 2 C[0,w1] ® C[0, w1].
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The topological dichotomy

For convenience, consider the hyperplane

Co[O,wl) = {f & C[O,wl] : f(wl) = 0}
instead of C[0,w1].

Theorem (Kania—Koszmider-L). Let K be a weak™-compact subset of
Co[0,w1)™. Then exactly one of the following two alternatives holds:

» K is uniformly Eberlein compact, in the sense that K is homeomorphic to
a weakly compact subset of a Hilbert space;

» K contains a homeomorphic copy of [0,w1] of the form
{p+ Ao : € D} U{p},
where p € Go[0,w1)™, A € C\ {0}, 0o is the Dirac measure at o, and D is
a closed and unbounded subset of [0, w1).

Note:

(i) [0,w1] is not contained in any uniformly Eberlein compact space;
(i1) the unit ball of Co[0,w1)” in the weak™ top. contains a homeomorphic
copy of every uniformly Eberlein compact space of density at most Nj.

Operator-theoretic application: consider K = T*(the unit ball of Co[0,w1)™)
for T € B(Co[0,w1)).
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Characterizations of the unique maximal ideal of Z( ([0, w1))

Theorem (Kania—Koszmider-L). Let T € #((o[0,w1)). Then TFAE:
(a) T e (/lco[o,wl) (that is, | 75 STR for all R,S € %(Co[o,wl)));
(b) T does not fix a copy of (Co[0,w1);

(c) T is a Semadeni operator, in the sense that T** maps the subspace

{A € Gol0,w1)™ : (An,A) = 0 as n =

for every weak™-null sequence (An) in Co[0,w1)"}

into the canonical copy of Co[0,w1) in its bidual;
(d) there is a closed, unbounded subset D of [0,w1) such that

(TF)(a) =0 (f € Go[0,w1), @ € D);

C[O,a])

(f) the range of T is contained in a Hilbert-generated subspace of ([0, w1);
that is, there exist a Hilbert space H and an operator U: H — (5[0, w1)
such that T(Co[0,w1)) C U(H);

(g) the range of T is contained in a weakly compactly generated subspace of
Co[0,w1); that is, there exist a reflexive Banach space X and an operator
V: X — Co[O,wl) such that T(Co[o,wl)) C V(X)
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(e) T factors through the Banach space (P, .. o’



The Szlenk index

Let X be an Asplund space (that is, every separable subspace of X has
separable dual), and let K C X™ be weak™-compact.
Szlenk associated an ordinal Sz K with K, its Szlenk index.

Set
Sz X = Sz(the unit ball of X™).

(We extend this to all Banach spaces by Sz X := oo when X is not Asplund.)
Theorem (Samuel 1983). Sz C[0,w*" | = w®*?! for each countable ordinal c.

More generally, for an operator T: X — Y, define
Sz T = Sz(T7"(the unit ball of Y™)).
(This may also be c0.) For an ordinal «, set
L X, Y)={T € B(X,Y):SzT <w™}.

Theorem (Brooker 2012). The class /% ., is a closed, injective and surjective
operator ideal in the sense of Pietsch for every ordinal .



The second-largest proper ideal of Z((,[0,w1))

Set E,, = (EBole C[O,a])co, and recall that

T € Mcyo,w,) < T factors through E.,.

Theorem (Kania-L). Let T € #((o[0,w1)). Then TFAE:
(a) T fixes a copy of E.,;
(b) the identity operator on E,, factors through T,

(c) the Szlenk index of T is uncountable.
Corollary. The set
S0y (Col0,w1)) = {T € #B(Co[0,wr)) : T does not fix a copy of E., }

= {T € #(Co[0,w1)) : the identity operator on E.,
does not factor through T}

:{TE%(C()[O,LU1))ZSZT<W1}: U yffa(Co[O,wl))

a<wiy

is the second-largest proper closed ideal of AB(Co[0,w1)): for each proper
ideal .9 of %(Co[0,w1)), either I = Mcy0,.,) or I C TE,, (Co[0,w1)).
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Partial structure of the lattice of closed ideals of Z = Z(([0,w1))

X X+ Y 1) U colen, €ka)) —> Ty & M =Y,

J 4 J 4

; ; B
G Cc(Kos) = Y C(Kops1)Deo(w1) = Deo(wr, C(Ku 1)) —= I a2
gC(Ka)C% gC(Ka)EBco(wl)CH gco(w;l C(Ky)) — yga—l—l
Y Y \j\ )
G (k) = G c(ky)peo(w) = Deo(un, C(ia)) ——= T2
gco( gf-‘o(uu) ‘5;:@?1
K {0} Ko =[0,0*"], @ < w1
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Conventions

» We suppress Co[0,w1) everywhere, thus writing J# instead of
K (Co[0,w1)) for the ideal of compact operators on (o[0,w1), etc.;

» #C—> 7 means that the ideal .# is properly contained in the

ideal ¢#;
» #C—> 7 indicates that there are no closed ideals between .# and #;

> 9Yx denotes the set of operators that factor through the Banach space X
and ¥ x its closure;

> co(w1, X) denotes the cp-direct sum of w1 copies of the Banach space X,
and Co(wl) = Co(wl,c);

» 2 denotes the ideal of operators with separable range.
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Background: the automatic continuity of derivations from %(C[0,w1])

Definition. A linear mapping 6 from a Banach algebra ./ into a Banach
o/-bimodule is a derivation if

d(ab) =a-d(b)+46(a) b (a,b € o).

Theorem (Johnson 1967). Let X be a Banach space such that X = X @ X.
Then every derivation from %(X) into a Banach 2(X)-bimodule is
automatically continuous.

Question: what happens when X 2 X & X?

Theorem (Loy-Willis 1989). Every derivation from %(C|[0,w1]) into a Banach
P(C[0,w1])-bimodule is automatically continuous.

Remark. Around the same time, Read constructed a Banach space X such that
there is a discontinuous derivation from %(X) into a Banach #(X)-bimodule.
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Bounded approximate identities in the Loy—Willis ideal

Loy and Willis’ starting point: Z(C[0,w1]) contains a maximal ideal .# of
codimension one.

Note: our work shows that . # = #co,.,,]- We call .# the Loy-Willis ideal.

Loy and Willis” key step: .# has a bounded right approximate identity, that is,
a norm-bounded net (U;) such that TU; — T for each T € /.

Question: does .# also have a bounded left approximate identity, that is, a
norm-bounded net (U;) such that U;T — T for each T € .7

Answer: Yes! — In fact more is true:

Theorem (Kania—Koszmider-L). .# contains a net (Q;) of projections with
| Q; || < 2 such that

VT e IjoVj>jo: QT =T.

Corollary (using Dixon 1973). .# has a bounded two-sided approximate
identity.
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