

The variation
and semivariations
of a vector measure

Zbigniew Lipecki (Wrocław)

Będlewo, June, 2014

The main body of the talk falls into three parts, each of them being based on a separate paper of mine. We start with some notation and definitions to be used throughout the talk.

S – nonempty set

Σ – σ -algebra of subsets of S

$\nu: \Sigma \rightarrow [0, \infty]$ – (positive) measure, i.e., σ -additive and $\nu(\emptyset) = 0$

Def. $A \in \Sigma$ is a ν -atom if $\nu(A) > 0$ and for every $E \in \Sigma$ with $E \subset A$ we have $\nu(E) = 0$ or $\nu(A \setminus E) = 0$.

Def. ν is *nonatomic* if it has no atom.

For a measure $\mu: \Sigma \rightarrow [0, \infty]$ we write $\nu \ll \mu$ if for every $E \in \Sigma$ with $\mu(E) = 0$ we have $\nu(E) = 0$, and $\nu \equiv \mu$ if both $\nu \ll \mu$ and $\mu \ll \nu$ hold.

$(X, \|\cdot\|)$ – Banach space (real or complex)

$ca(\Sigma, X) := \{\varphi: \Sigma \rightarrow X : \varphi \text{ is } \sigma\text{-additive}\}$

$\|\varphi\| = \sup \{\|\varphi(E)\| : E \in \Sigma\}$

$cca(\Sigma, X) := \{\varphi \in ca(\Sigma, X) : \varphi(\Sigma) \text{ is relatively compact}\}$

$|\varphi|$ stands for the variation of φ . In particular, $|\varphi|$ is a measure on Σ .

Thm. (Bartle–Dunford–Schwartz (1955)). *For every $\varphi \in ca(\Sigma, X)$ there exists $\lambda \in ca_+(\Sigma)$ with $\lambda \equiv |\varphi|$.*

$\mathcal{E}_\nu(X) := \{\varphi \in ca(\Sigma, X) : |\varphi| = \nu\}$

Part I. Variation

Thm. 1. *For a nonatomic measure $\nu: \Sigma \rightarrow [0, \infty]$ the following conditions are equivalent:*

- (i) *there exists $\lambda \in ca_+(\Sigma)$ with $\lambda \equiv \nu$;*
- (ii) *there exists a Banach space Z such that $\mathcal{E}_\nu(Z) \neq \emptyset$;*
- (iii) *given an infinite-dimensional Banach space X , we have $\mathcal{E}_\nu(X) \cap cca(\Sigma, X) \neq \emptyset$.*

Cor. 1. *Let X and Z be Banach spaces and let X be infinite-dimensional. For every nonatomic $\psi \in ca(\Sigma, Z)$ there exists $\varphi \in cca(\Sigma, X)$ with $|\varphi| = |\psi|$.*

The proof of Thm. 1, (i) \implies (iii), is based on the following lemma.

Lemma 1. *Let $\lambda \in ca_+(\Sigma)$ be nonatomic and let X be an infinite-dimensional Banach space.*

Then

- (a) *for every $\varepsilon > 0$ there exists $\varphi_\varepsilon \in ca(\Sigma, X)$ with $\varphi_\varepsilon(\Sigma)$ finite-dimensional, $\|\varphi_\varepsilon\| < \varepsilon$ and $|\varphi_\varepsilon| = \lambda$;*
- (b) *there exists $\varphi \in cca(\Sigma, X)$ with $|\varphi| = \infty \cdot \lambda$.*

(a) is a simple consequence of the Dvoretzky–Rogers lemma. It is implicit in Janicka–Kalton (1977).

(b) is due essentially to E. Thomas (1974) (for λ Lebesgue measure on $[0, 1]$). A new proof, based on (a) and the closed graph theorem, was subsequently given by Janicka–Kalton. Still another proof of (b) is due to Drewnowski–ZL (1995). We define φ rather explicitly as the sum of a series of λ -simple measures, avoiding the closed graph theorem.

Another ingredient of the proof of Thm. 1, (i) \implies (iii), is a Σ -partition $\{S_0, S_1, S_2, \dots\}$ of S such that $\nu(S_0 \cap E) = 0$ or ∞ for $E \in \Sigma$ and $\nu(S_i) < \infty$ for $i \geq 1$.

Def. A measure $\nu: \Sigma \rightarrow [0, \infty]$ has *property* (a_0) if the following conditions hold:

- (1) there exists $\lambda \in ca_+(\Sigma)$ with $\lambda \equiv \nu$;
- (2) $\nu(A) < \infty$ for every ν -atom A ;
- (3) $(\nu(A_i)) \in c_0$ whenever (A_i) is a sequence of pairwise disjoint ν -atoms.

It is plain that $|\varphi|$, where $\varphi \in ca(\Sigma, X)$, has property (a_0) .

Thm. 2. *For a measure $\nu: \Sigma \rightarrow [0, \infty]$ the following conditions are equivalent:*

- (i) ν has property (a_0) ;
- (ii) there exists a Banach space Z such that $\mathcal{E}_\nu(Z) \neq \emptyset$;
- (iii) $\mathcal{E}_\nu(c_0) \cap cca(\Sigma, c_0) \neq \emptyset$.

Clearly, (iii) implies (ii). As mentioned above, (ii) implies (i). That (i) implies (iii) is a simple consequence of the corresponding implication of Thm. 1 and the decomposition of ν into its nonatomic and atomic parts. The appearance of c_0 in (iii) is due, of course, to the atomic part.

Cor. 2. *Let Z be a Banach space. For every $\psi \in ca(\Sigma, Z)$ there exists $\varphi \in cca(\Sigma, c_0)$ with $|\varphi| = |\psi|$.*

Thus, c_0 is “variation universal” in the class of Banach spaces.

Part II. Borel complexity and denseness of $\mathcal{E}_\nu(X)$

S , Σ , ν and X are the same as in Part I.

$$ca(\Sigma, \nu, X) := \{\varphi \in ca(\Sigma, X) : |\varphi| \ll \nu\}$$

This is, clearly, a closed subspace of $ca(\Sigma, X)$ and we have $\mathcal{E}_\nu(X) \subset ca(\Sigma, \nu, X)$.

In a special case where $\nu = \infty \cdot \lambda$ and λ is Lebesgue measure on $[0, 1]$, the set $\mathcal{E}_\nu(X) \cap cca(\Sigma, X)$ was first studied by Anantharaman–Garg (1983). They showed that it is a dense G_δ -set in an appropriate subspace of $ca(\Sigma, X)$ provided X is infinite-dimensional. This result was generalized by Drewnowski–ZL. Namely, we replaced Lebesgue measure by an arbitrary nonatomic finite measure and $cca(\Sigma, X)$ by a more general subspace of $ca(\Sigma, X)$. We shall now present some extensions of those results, joint with Drewnowski. We shall also answer the question of when $\mathcal{E}_\nu(X)$ is an F_σ -set in $ca(\Sigma, X)$.

Thm. 3. $\mathcal{E}_\nu(X)$ is a G_δ -set in $ca(\Sigma, X)$.

Thm. 4. The following conditions are equivalent:

- (i) $\mathcal{E}_\nu(X)$ is dense in $ca(\Sigma, \nu, X)$;
- (ii) $\mathcal{E}_\nu(X)$ is not nowhere dense in $ca(\Sigma, \nu, X)$;
- (iii) $\mathcal{E}_\nu(X)$ is of second category in $ca(\Sigma, \nu, X)$;
- (iv) $\nu = 0$ or $\nu = \infty \cdot \lambda$ for some nonatomic $\lambda \in ca_+(\Sigma)$ and X is infinite-dimensional.

About the proof of Thm. 4. (i) \Rightarrow (iii) by Thm. 3 and the Baire category theorem.

The nontrivial part of (iv) \Rightarrow (i) is due to Drewnowski and myself.

(i) \Rightarrow (ii) and (iii) \Rightarrow (ii) are obvious.

(ii) \Rightarrow (iv) uses BDS but is otherwise elementary. In particular, one shows as a lemma that $\mathcal{E}_\nu(X)$ is always closed in $ca(\Sigma, X)$ if X is finite-dimensional.

Thm. 5. *The following conditions are equivalent:*

- (i) $\mathcal{E}_\nu(X)$ is an F_σ -set in $ca(\Sigma, \nu, X)$;
- (ii) $\mathcal{E}_\nu(X)$ is closed in $ca(\Sigma, \nu, X)$;
- (iii) $\mathcal{E}_\nu(X)$ is empty or ν is atomic or X is finite-dimensional.

About the proof. (ii) \Rightarrow (i) is obvious; (iii) \Rightarrow (ii) is elementary. (A part has been just mentioned.) The main ingredient of the proof of (i) \Rightarrow (iii) is the following lemma.

Lemma 2. *Let $\lambda \in ca_+(\Sigma)$ be nonatomic and $\lambda \neq 0$, and let X be infinite-dimensional. Then*

- (a) $\mathcal{E}_\lambda(X)$ is not an F_σ -set in $ca(\Sigma, X)$;
- (b) $\mathcal{E}_{\infty \cdot \lambda}$ is not an F_σ -set in $ca(\Sigma, X)$.

Part (b) is a simple consequence of Thms. 3 and 4 and the Baire category theorem.

The proof of part (a) also applies the Baire category theorem, but in another space.

Let $\lambda \in ca_+(\Sigma)$, and set

$$ca_\sigma(\Sigma, \lambda, X) = \{\varphi \in ca(\Sigma, \lambda, X) : |\varphi| \text{ is } \sigma\text{-finite}\}.$$

Denote by τ the Janicka-Kalton topology on $ca_\sigma(\Sigma, \lambda, X)$. A base of neighbourhoods of zero for τ consists of the sets \mathcal{U}_ε , $\varepsilon > 0$, where $\varphi \in ca_\sigma(\Sigma, \lambda, X)$ is in \mathcal{U}_ε if and only if $\|\varphi\| \leq \varepsilon$ and there exists $E \in \Sigma$ with $\lambda(E) \leq \varepsilon$ and $|\varphi|(S \setminus E) \leq \varepsilon$. This is a complete metrizable linear topology on $ca_\sigma(\Sigma, \lambda, X)$.

Lemma 3. *For every $\lambda \in ca_+(\Sigma)$ the set $\mathcal{E}_\lambda(X)$ is τ -closed in $ca_\sigma(\Sigma, \lambda, X)$.*

In the proof of Lemma 2(a), we denote by τ_0 the restriction of τ to $\mathcal{E}_\lambda(X)$. We show that every $\mathcal{G} \subset \mathcal{E}_\lambda(X)$ with nonempty τ_0 -interior is non-closed in $ca(\Sigma, \lambda, X)$, which is again elementary. The Baire category theorem applied to τ_0 then yields the assertion.

Part III. Semivariations

As before, Σ stands for a σ -algebra of subsets of a set S .

Def. $\eta: \Sigma \rightarrow [0, \infty)$ is a *submeasure* if it is increasing, subadditive, and order continuous (at \emptyset), i.e., $\eta(E_n) \rightarrow 0$ whenever (E_n) is a decreasing sequence of sets in Σ with empty intersection. The submeasure η is *separable* if Σ equipped with the Fréchet–Nikodym semimetric d_η , defined by

$$d_\eta(E, F) = \eta(E \triangle F) \text{ for } E, F \in \Sigma,$$

is separable.

Def. (G. G. Lorentz (1952)). $\eta: \Sigma \rightarrow [0, \infty)$ is *multiply subadditive* (m.s. for short) if, given $E, E_1, \dots, E_n \in \Sigma$ and $k \in \mathbb{N}$ with $k1_E = \sum_{i=1}^n 1_{E_i}$, we have $k\eta(E) \leq \sum_{i=1}^n \eta(E_i)$.

It is a special case of a result of Lorentz that a submeasure η on Σ is m.s. if and only if there exists $\Gamma \subset ca_+(\Sigma)$ such that

$$\eta(E) = \sup_{\mu \in \Gamma} \mu(E) \text{ for all } E \in \Sigma.$$

The semivariations of $\varphi \in ca(\Sigma, X)$, where X is a Banach space, are defined in the usual way:

$$\begin{aligned} \tilde{\varphi}(E) &= \sup \left\{ \left\| \sum_{i=1}^n t_i \varphi(E_i) \right\| : |t_i| \leq 1, \right. \\ &\quad E_i \in \Sigma \text{ are pairwise disjoint} \\ &\quad \left. \text{and } \bigcup_{i=1}^n E_i = E \right\}; \end{aligned}$$

$$\bar{\varphi}(E) = \sup \{ \|\varphi(F)\| : F \in \Sigma \text{ and } F \subset E \}.$$

Lemma 4. Let $\varphi \in ca(\Sigma, X)$. Then

- (a) $\tilde{\varphi} = \sup\{|x^* \varphi| : x^* \in X^* \text{ and } \|x^*\| \leq 1\}$;
- (b) $\tilde{\varphi}$ and $\bar{\varphi}$ are m.s. submeasures on Σ .

Part (a) is well known, and so is (b) up to multiple subadditivity. As for $\tilde{\varphi}$, this property is a direct consequence of (a) and Lorentz' result mentioned above. As for $\bar{\varphi}$, we can use the formula

$\bar{\varphi} = \sup\{(x^* \varphi)_+, (x^* \varphi)_- : x^* \in X^* \text{ and } \|x^*\| \leq 1\}$ if X is real, and if X is complex, we consider it to be real with the same norm.

We note that for $\varphi, \psi \in ca(\Sigma, X)$ the following implications hold:

$$\tilde{\varphi} = \tilde{\psi} \implies |\varphi| = |\psi| \quad \text{and} \quad \bar{\varphi} = \bar{\psi} \implies |\varphi| = |\psi|,$$

and none of them can be reversed.

Thm. 6. For $\eta: \Sigma \rightarrow [0, \infty)$ the following conditions are equivalent:

- (i) η is a m.s. submeasure;
- (ii) there exists a uniformly σ -additive $\Gamma \subset ca_+(\Sigma)$ such that $\sup \Gamma = \eta$;
- (iii) there exist a Banach space X and $\varphi \in ca(\Sigma, X)$ such that $\tilde{\varphi} = \eta$;
- (iv) there exist a Banach space X and $\varphi \in ca(\Sigma, X)$ such that $\bar{\varphi} = \eta$;
- (v) there exist a Banach space X and $\varphi \in ca(\Sigma, X)$ such that $\tilde{\varphi} = \bar{\varphi} = \eta$.

Sketch of proof. (i) \iff (ii) is a simple consequence of the result of Lorentz mentioned above. Clearly, (v) \implies (iii), (iv). By Lemma 4(b), (iii) \implies (i) and (iv) \implies (i).

Finally, let (ii) hold, and define $\varphi: \Sigma \rightarrow l_\infty(\Gamma)$ by

$$\varphi(E)(\gamma) = \gamma(E) \text{ for } E \in \Sigma \text{ and } \gamma \in \Gamma.$$

The uniform σ -additivity of Γ implies that φ is in $ca(\Sigma, l_\infty(\Gamma))$, while the equalities of (v) follow from $\sup \Gamma = \eta$.

Thm. 7. *For $\eta: \Sigma \rightarrow [0, \infty)$ the following conditions are equivalent:*

- (i) *there exists a relatively compact $\Gamma \subset ca_+(\Sigma)$ such that $\sup \Gamma = \eta$;*
- (ii) *there exist a Banach space X and $\varphi \in cca(\Sigma, X)$ such that $\tilde{\varphi} = \eta$;*
- (iii) *there exist a Banach space X and $\varphi \in cca(\Sigma, X)$ such that $\bar{\varphi} = \eta$;*
- (iv) *there exist a Banach space X and $\varphi \in cca(\Sigma, X)$ such that $\tilde{\varphi} = \bar{\varphi} = \eta$.*

The proof is similar to that of Thm. 6. A new element is the following lemma: *for $\varphi \in ca(\Sigma, X)$ we have φ is in $cca(\Sigma, X)$ if and only if $\{x^* \varphi : x^* \in X^* \text{ and } \|x^*\| \leq 1\}$ is relatively compact in $ca(\Sigma)$.*

Remark. In general, it is not possible to decide whether $\varphi \in ca(\Sigma, X)$ has relatively compact range knowing only its semivariations $\tilde{\varphi}$ and $\bar{\varphi}$. Indeed, if Σ admits a nonatomic probability measure λ , then, setting $\varphi(E) = 1_E$ for $E \in \Sigma$, we obtain $\varphi \in ca(\Sigma, L_1(\lambda))$ such that

$\tilde{\varphi} = \bar{\varphi} = \lambda$ and $\varphi(\Sigma)$ is *not* relatively compact.

The first part of the following result also follows from a theorem of Curbera (1994).

Thm. 8. *If X is a Banach space and $\varphi \in ca(\Sigma, X)$ [resp., $\varphi \in cca(\Sigma, X)$] is separable and nonatomic, then there exists $\psi \in ca(\Sigma, c_0)$ [resp., $\psi \in cca(\Sigma, c_0)$] such that $\tilde{\psi} = \tilde{\varphi}$.*

Both separability and nonatomicity of φ are essential for the validity of Thm. 8.

Problems.

1. Can we dispense with the separability assumption in the first part of Thm. 8 at the cost of replacing c_0 by $c_0(\Gamma)$ for Γ large enough?
2. Does Thm. 8 hold for the bar semivariation of a vector measure?