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The main body of the talk falls into three parts,
each of them being based on a separate paper
of mine. We start with some notation and
definitions to be used throughout the talk.

S — nonempty set
), — o-algebra of subsets of S

v: ) > [0,0] — (positive) measure, i.e.,
o-additive and v(@) =0

Def. Ae ) is a v-atom if v(A) > 0 and for
every ¢ ) with Ec A we have v(E) =0 or
v(ANFE)=0.

Def. v is nonatomic if it has no atom.



For a measure u:} — [0,00] we write v « p if
for every E ¢ ) with u(F)=0 we have v(F) =0,
and v=yu if both v« u and u <« v hold.

(X,| - |) — Banach space (real or complex)
ca(X, X)={p: X - X : ¢ is o-additive}

loll =sup{le(E)|: Ee X}

cca(X, X)) ={peca(X,X):p(X) is
relatively compact}

|| stands for the variation of . In particular,
|| is @ measure on V.

Thm. (Bartle-Dunford—Schwartz (1955)). For
every g e ca(X,X) there exists \ € car(X) with

A= ol

Ev(X)={peca(X,X):|p|l =r}



Part I. Variation

Thm. 1. For a nonatomic measure v:) — [0, 00]
the following conditions are equivalent:

(i) there exists A e car(X) with A=v;

(ii) there exists a Banach space Z such that
ENZ) + @,

(iii) given an infinite-dimensional Banach space
X, we have £,(X)ncca(X,X) = @.

Cor. 1. Let X and Z be Banach spaces and let
X beinfinite-dimensional. For every nonatomic
Weca(X,Z) there exists ¢ € cca(X, X) with |p| =
[4].

The proof of Thm. 1, (i)==(iii), is based on
the following lemma.



Lemma 1. Let X\ € car(X) be nonatomic and
let X be an infinite-dimensional Banach space.
Then

(a) for every € > 0 there exists oz € ca(X,X)
with p:(X) finite-dimensional, |p:| <€

and |oe| = A,

(b) there exists ¢ € cca(X, X) with || =00 A,

(a) is a simple consequence of the Dvoretzky—
Rogers lemma. It is implicit in Janicka—Kalton
(1977).

(b) is due essentially to E. Thomas (1974) (for
A Lebesgue measure on [0,1]). A new proof,
based on (a) and the closed graph theorem,
was subsequently given by Janicka—Kalton. Still
another proof of (b) is due to Drewnowski—ZL
(1995). We define ¢ rather explicitly as the
sum of a series of A-simple measures, avoiding
the closed graph theorem.



Another ingredient of the proof of Thm. 1,
(i)=(iii), is a X-partition {5y, S51,S55,...} of S
such that v(SgnFE) =0 or « for EF ¢ 2 and
v(S;) < oo for i> 1.

Def. A measure v:) - [0,00]| has property (ag)
if the following conditions hold:

(1) there exists A€ car (X)) with A=v;
(2) v(A) < oo for every v-atom A;

(3) (v(A4A;)) € co whenever (A;) is a sequence of
pairwise disjoint v-atoms.

It is plain that |p|, where ¢ € ca(X, X), has prop-
erty (ag).



Thm. 2. For a measure v:3 — [0,00] the fol-
lowing conditions are equivalent:

(i) v has property (ag);

(ii) there exists a Banach space Z such that
ENZ) + @,

(iii) E,(co) ncca(X,cp) + 3.

Clearly, (iii) implies (ii). As mentioned above,
(ii) implies (i). That (i) implies (iii) is a simple
consequence of the corresponding implication
of Thm. 1 and the decomposition of v into its
nonatomic and atomic parts. The appearance
of ¢g in (iii) is due, of course, to the atomic
part.

Cor. 2. Let Z be a Banach space. For every
Weca(X,Z) there exists ¢ e cca(X,cq) with |p| =
4]

Thus, cg is “variation universal'’’ in the class of
Banach spaces.



Part II. Borel complexity and denseness of
Ev(X)

S, Y, v and X are the same as in Part I.
ca(X,v, X)={peca(X,X):|p <v}

This is, clearly, a closed subspace of ca(}, X)
and we have &£,(X) cca(X,v,X).

In a special case where v = c0o-X and )\ is Lebesgue
measure on [0, 1], the set £,(X)ncca(X, X) was
first studied by Anantharaman—Garg (1983).
They showed that it is a dense Gg-set in an
appropriate subspace of ca(2', X) provided X is
infinite-dimensional. This result was general-
ized by Drewnowski—ZL. Namely, we replaced
Lebesgue measure by an arbitrary nonatomic
finite measure and cca(X, X) by a more general
subspace of ca(X,X). We shall now present
some extensions of those results, joint with
Drewnowski. We shall also answer the ques-
tion of when &£,(X) is an Fg-set in ca(X, X).



Thm. 3. £,(X) is a Gg-set in ca(X, X).

Thm. 4. The following conditions are equiva-
lent:

(i) E,(X) is dense in ca(X,v, X);

(ii) £,(X) is not nowhere dense in ca(X,v, X);
(iii) £,(X) is of second category in ca(X,v,X);
(iv) v =0 or v = co- XA for some nonatomic
Aecar(X) and X is infinite-dimensional.

About the proof of Thm. 4. (i)==(iii) by
Thm. 3 and the Baire category theorem.

The nontrivial part of (iv)==(i) is due to Drew-
nowski and myself.

(i)==(ii) and (iii)==(ii) are obvious.

(ii)=(iv) uses BDS but is otherwise elemen-
tary. In particular, one shows as a lemma that
Ey(X) is always closed in ca(X, X) if X is finite-
dimensional.



Thm. 5. The following conditions are equiva-
lent:

(i) £,(X) is an Fy-set in ca(X,v,X);

(ii) E,(X) is closed in ca(X,v,X);

(iii) £,(X) is empty or v is atomic or X is finite-
dimensional.

About the proof. (ii)==(i) is obvious; (iii)==(ii)
is elementary. (A part has been just men-

tioned.) The main ingredient of the proof of

(i)==(iii) is the following lemma.

Lemma 2. Let \e€ cai(r) be nonatomic and
A+ 0, and let X be infinite-dimensional. Then
(a) (X)) is not an Fsy-set in ca(X, X);

(b) ..\ IS not an Fy-set in ca(X, X).

Part (b) is a simple consequence of Thms. 3
and 4 and the Baire category theorem.

The proof of part (a) also applies the Baire
category theorem, but in another space.



Let Aecas()), and set
cag(X A, X)={peca(X, )\, X):|p| is o-finite}.

Denote by 7 the Janicka-Kalton topology on
cas(2, A, X). A base of neighbourhoods of zero
for © consists of the sets U, € > 0, where ¢ ¢
cag(X, )\, X) is in Uz if and only if |¢| <& and
there exists E € X with A(F) <e and |p|(S\FE) <.
This is a complete metrizable linear topology
on cag (X, A\, X).

Lemma 3. For every X e cai(L) the set £,(X)
is T-closed in cas (X, )\, X).

In the proof of Lemma 2(a), we denote by g
the restriction of 7 to £,(X). We show that ev-
ery G c &, (X) with nonempty mg-interior is non-
closed in ca(X', A\, X'), which is again elementary.
The Baire category theorem applied to 79 then
yields the assertion.



Part III. Semivariations

As before, ) stands for a o-algebra of subsets
of a set S.

Def. n:)X - [0,0) is @ submeasure if it is in-
creasing, subadditive, and order continuous (at
@), i.e., n(Ey) - 0 whenever (Ey,) is a decreas-
ing sequence of sets in 2 with empty inter-
section. The submeasure n is separable if X
equipped with the Fréchet—Nikodym semimet-
ric dy, defined by

dp(E,F)=n(EAF) for E,Fel,

IS separable.



Def. (G. G. Lorentz (1952)). n:X - [0,) is
multiply subadditive (m.s. for short) if, given
E,Eq,...,EpeX and keN with klg=3",1p,
we have kn(E) < Y 1 n(E;).

It is a special case of a result of Lorentz that a
submeasure n on X is m.s. if and only if there
exists I' c ca+(2') such that

n(E) =supu(F) for all Ee ).
uel’

The semivariations of g e ca(X,X), where X is
a Banach space, are defined in the usual way:

mn
G(E) =sup{| ), tip(E;)|l « [ts| < 1,
i=1
E; € )’ are pairwise disjoint

and U?:]_ EZ'ZE};
o(F) =sup{|e(F)||: FeX and F c E}.



Lemma 4. Let peca(X,X). Then
(a) p=sup{|z*p|:xz* e X* and |x*| <1},
(b) ¢ and ¢ are m.s. submeasures on ..

Part (a) is well known, and so is (b) up to
multiple subadditivity. As for ¢, this property
is a direct consequence of (a) and Lorentz’
result mentioned above. As for ¢, we can use
the formula

@ =sup{(z*p)+, (z*p)-:x* e X* and |z*| <1} if X
is real, and if X is complex, we consider it to
be real with the same norm.

We note that for ¢, ¥ € ca(X, X) the following
implications hold:

=0 = |p|=lY| and g=¢Y = |g|=|¢

!

and none of them can be reversed.



Thm. 6. For n:X - [0,0) the following condi-
tions are equivalent:

(i) m is a m.s. submeasure;

(ii) there exists a uniformly o-additive I' c ca, (X))
such that supl'=n;

(iii) there exist a Banach space X and ¢ ¢
ca(X,X) such that ¢ =n;

(iv) there exist a Banach space X and ¢ ¢
ca(X, X) such that ¢ =n;

(v) there exist a Banach space X and p € ca(X, X)
such that ¢ =p=n.

Sketch of proof. (i)«<=(ii) is a simple con-
sequence of the result of Lorentz mentioned
above. Clearly, (v)=(iii), (iv). By Lemma 4(b),
(iii)=(i) and (iv)=(i).

Finally, let (ii) hold, and define ¢: X - [ (I") by

o(E)(v)=~(F) for E€) and yel'.



The uniform c-additivity of I' implies that ¢
is in ca(X,lw(I")), while the equalities of (v)
follow from sup ' =n.

Thm. 7. For n:X - [0,0) the following condi-
tions are equivalent:

(i) there exists a relatively compact I' c ca (X))
such that supl'=n;

(ii) there exist a Banach space X and p € cca(X, X)
such that ¢ =n;

(iii) there exist a Banach space X and ¢ ¢
cca(X, X) such that ¢ =n;

(iv) there exist a Banach space X and ¢ ¢
cca(X,X) such that g=p=n.

The proof is similar to that of Thm. 6. A
new element is the following lemma: for ¢ €
ca(X,X) we have ¢ is in cca(X,X) if and only
if {x*p:x* e X* and |x*| <1} is relatively com-
pact in ca(2)).



Remark. In general, it is not possible to de-
cide whether ¢ € ca(X, X) has relatively com-
pact range knowing only its semivariations ¢
and . Indeed, if 2 admits a nonatomic prob-
ability measure A, then, setting ¢(F) = 1 for
E €)', we obtain peca(X,L1(\)) such that

¢ ==X and ¢(X) is not relatively compact.

The first part of the following result also fol-
lows from a theorem of Curbera (1994).

Thm. 8 If X is a Banach space and ¢ ¢
ca(X,X) [resp., ¢ € cca(X,X)] is separable and
nonatomic, then there exists € ca(X, co) [resp.,
Y e cca(X,co)] such that o = &.

Both separability and nonatomicity of ¢ are
essential for the validity of Thm. 8.



Problems. 1. Can we dispense with the sepa-
rability assumption in the first part of Thm. 8
at the cost of replacing cg by co(I") for I' large
enough?

2. Does Thm. 8 hold for the bar semivariation
of a vector measure?



