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The main body of the talk falls into three parts,
each of them being based on a separate paper
of mine. We start with some notation and
definitions to be used throughout the talk.

S – nonempty set

Σ – σ-algebra of subsets of S

ν ∶Σ → [0,∞] – (positive) measure, i.e.,
σ-additive and ν(∅) = 0

Def. A ∈ Σ is a ν-atom if ν(A) > 0 and for
every E ∈ Σ with E ⊂ A we have ν(E) = 0 or
ν(A ∖E) = 0.

Def. ν is nonatomic if it has no atom.



For a measure µ∶Σ → [0,∞] we write ν ≪ µ if
for every E ∈ Σ with µ(E) = 0 we have ν(E) = 0,
and ν ≡ µ if both ν ≪ µ and µ≪ ν hold.

(X, ∥ ⋅ ∥) – Banach space (real or complex)

ca(Σ ,X) ∶= {ϕ∶Σ →X ∶ ϕ is σ-additive}

∥ϕ∥ = sup{∥ϕ(E)∥ ∶ E ∈ Σ}

cca(Σ ,X) ∶={ϕ ∈ ca(Σ ,X) ∶ ϕ(Σ) is
relatively compact}

∣ϕ∣ stands for the variation of ϕ. In particular,
∣ϕ∣ is a measure on Σ .

Thm. (Bartle–Dunford–Schwartz (1955)). For
every ϕ ∈ ca(Σ ,X) there exists λ ∈ ca+(Σ) with
λ ≡ ∣ϕ∣.

Eν(X) ∶= {ϕ ∈ ca(Σ ,X) ∶ ∣ϕ∣ = ν}



Part I. Variation

Thm. 1. For a nonatomic measure ν ∶Σ → [0,∞]
the following conditions are equivalent:
(i) there exists λ ∈ ca+(Σ) with λ ≡ ν;
(ii) there exists a Banach space Z such that
Eν(Z) ≠ ∅;
(iii) given an infinite-dimensional Banach space
X, we have Eν(X) ∩ cca(Σ ,X) ≠ ∅.

Cor. 1. Let X and Z be Banach spaces and let
X be infinite-dimensional. For every nonatomic
ψ ∈ ca(Σ ,Z) there exists ϕ ∈ cca(Σ ,X) with ∣ϕ∣ =
∣ψ∣.

The proof of Thm. 1, (i)Ô⇒(iii), is based on
the following lemma.



Lemma 1. Let λ ∈ ca+(Σ) be nonatomic and
let X be an infinite-dimensional Banach space.
Then
(a) for every ε > 0 there exists ϕε ∈ ca(Σ ,X)
with ϕε(Σ) finite-dimensional, ∥ϕε∥ < ε
and ∣ϕε∣ = λ;
(b) there exists ϕ ∈ cca(Σ ,X) with ∣ϕ∣ = ∞ ⋅ λ.

(a) is a simple consequence of the Dvoretzky–
Rogers lemma. It is implicit in Janicka–Kalton
(1977).

(b) is due essentially to E. Thomas (1974) (for
λ Lebesgue measure on [0,1]). A new proof,
based on (a) and the closed graph theorem,
was subsequently given by Janicka–Kalton. Still
another proof of (b) is due to Drewnowski–ZL
(1995). We define ϕ rather explicitly as the
sum of a series of λ-simple measures, avoiding
the closed graph theorem.



Another ingredient of the proof of Thm. 1,
(i)Ô⇒(iii), is a Σ -partition {S0, S1, S2, ...} of S
such that ν(S0 ∩ E) = 0 or ∞ for E ∈ Σ and
ν(Si) < ∞ for i ≥ 1.

Def. A measure ν ∶Σ → [0,∞] has property (a0)
if the following conditions hold:

(1) there exists λ ∈ ca+(Σ) with λ ≡ ν;

(2) ν(A) < ∞ for every ν-atom A;

(3) (ν(Ai)) ∈ c0 whenever (Ai) is a sequence of
pairwise disjoint ν-atoms.

It is plain that ∣ϕ∣, where ϕ ∈ ca(Σ ,X), has prop-
erty (a0).



Thm. 2. For a measure ν ∶Σ → [0,∞] the fol-
lowing conditions are equivalent:
(i) ν has property (a0);
(ii) there exists a Banach space Z such that
Eν(Z) ≠ ∅;
(iii) Eν(c0) ∩ cca(Σ , c0) ≠ ∅.

Clearly, (iii) implies (ii). As mentioned above,
(ii) implies (i). That (i) implies (iii) is a simple
consequence of the corresponding implication
of Thm. 1 and the decomposition of ν into its
nonatomic and atomic parts. The appearance
of c0 in (iii) is due, of course, to the atomic
part.

Cor. 2. Let Z be a Banach space. For every
ψ ∈ ca(Σ ,Z) there exists ϕ ∈ cca(Σ , c0) with ∣ϕ∣ =
∣ψ∣.

Thus, c0 is “variation universal” in the class of
Banach spaces.



Part II. Borel complexity and denseness of
Eν(X)

S, Σ , ν and X are the same as in Part I.

ca(Σ , ν,X) ∶= {ϕ ∈ ca(Σ ,X) ∶ ∣ϕ∣ ≪ ν}

This is, clearly, a closed subspace of ca(Σ ,X)
and we have Eν(X) ⊂ ca(Σ , ν,X).
In a special case where ν = ∞⋅λ and λ is Lebesgue
measure on [0, 1], the set Eν(X)∩cca(Σ ,X) was
first studied by Anantharaman–Garg (1983).
They showed that it is a dense Gδ-set in an
appropriate subspace of ca(Σ ,X) provided X is
infinite-dimensional. This result was general-
ized by Drewnowski–ZL. Namely, we replaced
Lebesgue measure by an arbitrary nonatomic
finite measure and cca(Σ ,X) by a more general
subspace of ca(Σ ,X). We shall now present
some extensions of those results, joint with
Drewnowski. We shall also answer the ques-
tion of when Eν(X) is an Fσ-set in ca(Σ ,X).



Thm. 3. Eν(X) is a Gδ-set in ca(Σ ,X).

Thm. 4. The following conditions are equiva-
lent:
(i) Eν(X) is dense in ca(Σ , ν,X);
(ii) Eν(X) is not nowhere dense in ca(Σ , ν,X);
(iii) Eν(X) is of second category in ca(Σ , ν,X);
(iv) ν = 0 or ν = ∞ ⋅ λ for some nonatomic
λ ∈ ca+(Σ) and X is infinite-dimensional.

About the proof of Thm. 4. (i)Ô⇒(iii) by
Thm. 3 and the Baire category theorem.

The nontrivial part of (iv)Ô⇒(i) is due to Drew-
nowski and myself.

(i)Ô⇒(ii) and (iii)Ô⇒(ii) are obvious.

(ii)Ô⇒(iv) uses BDS but is otherwise elemen-
tary. In particular, one shows as a lemma that
Eν(X) is always closed in ca(Σ ,X) if X is finite-
dimensional.



Thm. 5. The following conditions are equiva-
lent:
(i) Eν(X) is an Fσ-set in ca(Σ , ν,X);
(ii) Eν(X) is closed in ca(Σ , ν,X);
(iii) Eν(X) is empty or ν is atomic or X is finite-
dimensional.

About the proof. (ii)Ô⇒(i) is obvious; (iii)Ô⇒(ii)
is elementary. (A part has been just men-
tioned.) The main ingredient of the proof of
(i)Ô⇒(iii) is the following lemma.

Lemma 2. Let λ ∈ ca+(Σ) be nonatomic and
λ ≠ 0, and let X be infinite-dimensional. Then
(a) Eλ(X) is not an Fσ-set in ca(Σ ,X);
(b) E∞⋅λ is not an Fσ-set in ca(Σ ,X).

Part (b) is a simple consequence of Thms. 3
and 4 and the Baire category theorem.

The proof of part (a) also applies the Baire
category theorem, but in another space.



Let λ ∈ ca+(Σ), and set

caσ(Σ , λ,X) = {ϕ ∈ ca(Σ , λ,X) ∶ ∣ϕ∣ is σ-finite}.

Denote by τ the Janicka-Kalton topology on
caσ(Σ , λ,X). A base of neighbourhoods of zero
for τ consists of the sets Uε, ε > 0, where ϕ ∈
caσ(Σ , λ,X) is in Uε if and only if ∥ϕ∥ ≤ ε and
there exists E ∈ Σ with λ(E) ≤ ε and ∣ϕ∣(S∖E) ≤ ε.
This is a complete metrizable linear topology
on caσ(Σ , λ,X).

Lemma 3. For every λ ∈ ca+(Σ) the set Eλ(X)
is τ-closed in caσ(Σ , λ,X).

In the proof of Lemma 2(a), we denote by τ0

the restriction of τ to Eλ(X). We show that ev-
ery G ⊂ Eλ(X) with nonempty τ0-interior is non-
closed in ca(Σ , λ,X), which is again elementary.
The Baire category theorem applied to τ0 then
yields the assertion.



Part III. Semivariations

As before, Σ stands for a σ-algebra of subsets
of a set S.

Def. η∶Σ → [0,∞) is a submeasure if it is in-
creasing, subadditive, and order continuous (at
∅), i.e., η(En) → 0 whenever (En) is a decreas-
ing sequence of sets in Σ with empty inter-
section. The submeasure η is separable if Σ

equipped with the Fréchet–Nikodym semimet-
ric dη, defined by

dη(E,F ) = η(E △F ) for E,F ∈ Σ ,

is separable.



Def. (G. G. Lorentz (1952)). η∶Σ → [0,∞) is
multiply subadditive (m.s. for short) if, given
E,E1, . . . ,En ∈ Σ and k ∈ N with k1E = ∑ni=1 1Ei,
we have kη(E) ≤ ∑ni=1 η(Ei).

It is a special case of a result of Lorentz that a
submeasure η on Σ is m.s. if and only if there
exists Γ ⊂ ca+(Σ) such that

η(E) = sup
µ∈Γ

µ(E) for all E ∈ Σ .

The semivariations of ϕ ∈ ca(Σ ,X), where X is
a Banach space, are defined in the usual way:

ϕ̃(E) = sup{∥
n

∑
i=1

tiϕ(Ei)∥ ∶ ∣ti∣ ≤ 1,

Ei ∈ Σ are pairwise disjoint

and ⋃ni=1Ei = E};

ϕ̄(E) = sup{∥ϕ(F )∥ ∶ F ∈ Σ and F ⊂ E}.



Lemma 4. Let ϕ ∈ ca(Σ ,X). Then
(a) ϕ̃ = sup{∣x∗ϕ∣ ∶ x∗ ∈X∗ and ∥x∗∥ ≤ 1};
(b) ϕ̃ and ϕ̄ are m.s. submeasures on Σ .

Part (a) is well known, and so is (b) up to
multiple subadditivity. As for ϕ̃, this property
is a direct consequence of (a) and Lorentz’
result mentioned above. As for ϕ̄, we can use
the formula

ϕ̄ = sup{(x∗ϕ)+, (x∗ϕ)− ∶ x∗ ∈X∗ and ∥x∗∥ ≤ 1} if X
is real, and if X is complex, we consider it to
be real with the same norm.

We note that for ϕ, ψ ∈ ca(Σ ,X) the following
implications hold:

ϕ̃ = ψ̃ Ô⇒ ∣ϕ∣ = ∣ψ∣ and ϕ̄ = ψ̄ Ô⇒ ∣ϕ∣ = ∣ψ∣,

and none of them can be reversed.



Thm. 6. For η∶Σ → [0,∞) the following condi-
tions are equivalent:
(i) η is a m.s. submeasure;
(ii) there exists a uniformly σ-additive Γ ⊂ ca+(Σ)
such that sup Γ = η;
(iii) there exist a Banach space X and ϕ ∈
ca(Σ ,X) such that ϕ̃ = η;
(iv) there exist a Banach space X and ϕ ∈
ca(Σ ,X) such that ϕ̄ = η;
(v) there exist a Banach space X and ϕ ∈ ca(Σ ,X)
such that ϕ̃ = ϕ̄ = η.

Sketch of proof. (i)⇐⇒(ii) is a simple con-
sequence of the result of Lorentz mentioned
above. Clearly, (v)Ô⇒(iii), (iv). By Lemma 4(b),
(iii)Ô⇒(i) and (iv)Ô⇒(i).

Finally, let (ii) hold, and define ϕ∶Σ → l∞(Γ ) by

ϕ(E)(γ) = γ(E) for E ∈ Σ and γ ∈ Γ .



The uniform σ-additivity of Γ implies that ϕ
is in ca(Σ , l∞(Γ )), while the equalities of (v)
follow from sup Γ = η.

Thm. 7. For η∶Σ → [0,∞) the following condi-
tions are equivalent:
(i) there exists a relatively compact Γ ⊂ ca+(Σ)
such that sup Γ = η;
(ii) there exist a Banach space X and ϕ ∈ cca(Σ ,X)
such that ϕ̃ = η;
(iii) there exist a Banach space X and ϕ ∈
cca(Σ ,X) such that ϕ̄ = η;
(iv) there exist a Banach space X and ϕ ∈
cca(Σ ,X) such that ϕ̃ = ϕ̄ = η.

The proof is similar to that of Thm. 6. A
new element is the following lemma: for ϕ ∈
ca(Σ ,X) we have ϕ is in cca(Σ ,X) if and only
if {x∗ϕ ∶ x∗ ∈ X∗ and ∥x∗∥ ≤ 1} is relatively com-
pact in ca(Σ).



Remark. In general, it is not possible to de-
cide whether ϕ ∈ ca(Σ ,X) has relatively com-
pact range knowing only its semivariations ϕ̃
and ϕ̄. Indeed, if Σ admits a nonatomic prob-
ability measure λ, then, setting ϕ(E) = 1E for
E ∈ Σ , we obtain ϕ ∈ ca(Σ ,L1(λ)) such that

ϕ̃ = ϕ̄ = λ and ϕ(Σ) is not relatively compact.

The first part of the following result also fol-
lows from a theorem of Curbera (1994).

Thm. 8. If X is a Banach space and ϕ ∈
ca(Σ ,X) [resp., ϕ ∈ cca(Σ ,X)] is separable and
nonatomic, then there exists ψ ∈ ca(Σ , c0) [resp.,
ψ ∈ cca(Σ , c0)] such that ψ̃ = ϕ̃.

Both separability and nonatomicity of ϕ are
essential for the validity of Thm. 8.



Problems. 1. Can we dispense with the sepa-
rability assumption in the first part of Thm. 8
at the cost of replacing c0 by c0(Γ ) for Γ large
enough?

2. Does Thm. 8 hold for the bar semivariation
of a vector measure?


