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Domination Theorems

Domination theorems have proved to be relevant tools in the theory of operators
between Banach spaces. For instance, they play a fundamental role in the theory
of summability in Banach spaces thanks to:

∙ The Pietsch Domination Theorem An operator T : X → Y between Banach
spaces is p-summing (1 ¬ p <∞), i.e., there exists C > 0 such that

( n∑
j=1
‖Txj‖p

Y

)1/p
¬ C sup

x∗∈BX∗

( n∑
j=1
|x∗(xj)|p

)1/p

for every finite set {x1, ..., xn} ⊂ X , if and only if there exists a regular Borel
probability measure µ on (BX∗ ,w∗) such that

‖Tx‖Y ¬ C
(∫

BX∗

|x∗(x)|p dµ
)1/p

, x ∈ X .
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Domination Theorems

∙ The Grothendieck Theorem Let K1 and K2 be compact Hausdorff spaces,
and let T be a scalar-valued bounded bilinear form on C(K1)× C(K2). Then
there exist probability measures µ1 and µ2, on K1, K2, respectively, such that

|T (f , g)| ¬ K ‖T‖
(∫

K1

|f |2 dµ1

)1/2 (∫
K2

|g |2 dµ2

)1/2

for every f ∈ C(K1) and g ∈ C(K2), where K is an absolute constant.

Remark The smallest value constant K is called the Grothendieck constant
and is denoted by KG .
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Domination Theorems

∙ Corollary Let T be as before. Let (fj)n
j=1, (gj)

n
j=1 be finite sequences in C(K1)

and C(K2), respectively. We then have∣∣∣ n∑
j=1

T (fj , gj)
∣∣∣ ¬ KG ‖T‖

∥∥∥( n∑
j=1
|fj |2

)1/2∥∥∥
C(K1)

∥∥∥( n∑
j=1
|gj |2

)1/2∥∥∥
C(K2)

.

∙ Corollary Let K = ℝ or K = ℂ. Let [aij ] be an n × n matrix such that for all
(s1, ..., sn) ∈ Kn, (t1, ..., tn) ∈ Kn

∣∣∣ n∑
i,j=1

si tjaij

∣∣∣ ¬ sup
i
|si | sup

j
|tj |.

We then have, for all sequences (x1, ..., xn) and (y1, ..., yn) in an arbitrary
Hilbert space H, ∣∣∣ n∑

i,j=1
aij〈xi , yj〉

∣∣∣ ¬ KG sup
i
‖xi‖H sup

j
‖yj‖H .
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Banach envelope

Let X := (X , ‖ · ‖) be a quasi-normed space.

∙ Definitions The Mackey semi-norm ‖ · ‖c on X is the Minkowski functional of
the convex hull conv(BX ) of the unit ball BX := {x ∈ X ; ‖x‖ ¬ 1},

‖x‖c = inf
{
λ > 0; x ∈ λ conv(BX )

}
, x ∈ X .

∙ If the topological dual X∗ of X separates the points of X , then it is a Banach
space under the norm

‖x∗‖X∗ = sup
x∈BX

|x∗(x)|

and it is easy to check that X∗ = (X , ‖ · ‖c)∗ with equality of norms; the
completion of (X , ‖ · ‖c) is called the Banach envelope of X and is denoted
by X̂ .

∙ Remark If κ : X → X∗∗ is the canonical embedding defined by
κx(x∗) = x∗(x) for all x ∈ X , x∗ ∈ X∗, then

‖κx‖X∗∗ = sup
‖x∗‖X∗¬1

|x∗(x)| = ‖x‖c .
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Banach envelope

Given f ∈ L0(µ) := L0(Ω,Σ, µ). The distribution function µf : (0,∞)→ [0,∞]

is given by
µf {x ∈ Ω; |f (x)| > λ}, λ > 0.

∙ The decreasing rearrangement f ∗ of f is defined by

f ∗(t) = inf{λ > 0; µf (λ) ¬ t}, t > 0.

∙ A quasi-Banach space (X , ‖ · ‖) ⊂ L0(µ) is said to be rearrangement invariant
(r.i.) on (Ω,Σ, µ) provided(

f ∈ L0(µ), g ∈ X and µf ¬ µg
)
⇒
(
f ∈ X and ‖f ‖ ¬ ‖g‖

)
.

∙ If (Ω,Σ, µ) is a nonatomic measure space. An r.i. space X on (Ω,Σ, µ) is
said to be generated by a quasi-Banach lattice E on I = (0, µ(Ω)) equipped
with the Lebesgue measure provided that the following condition is satisfied:

f ∈ X if and only if f ∗ ∈ E and ‖f ‖X = ‖f ∗‖E .
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Banach envelope

Theorem (A. Kamińska & M. M.)

If X is an r.i. quasi-Banach space on a non-atomic measure space (Ω,Σ, µ)

generated by an r.i. quasi-Banach space E on I = (0, µ(Ω)), which is 1-concave
on the cone Q of decreasing simple functions, i.e., there exists C > 0 such that for
f1, . . . , fn ∈ Q,

C ‖f1 + · · ·+ fn‖E ­ ‖f1‖E + · · ·+ ‖fn‖E ,

and ψ(t) := ‖χ(0,t)‖E for all t ∈ I denotes the fundamental function of E , then

(i) X ′ = Mψ and X ′ 6= {0} if and only if ψ̂(t) > 0 for all t ∈ I, where

ψ̂(t) = t inf{ψ(s)/s; 0 < s ¬ t}, t ∈ I.

(ii) If E is order continuous and ψ̂(t) > 0 for all t ∈ I, then the Banach envelope
X̂ of X coincides up to equivalence of norms with the Lorentz space Λ

ψ̂
.
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The generalized Orlicz spaces

∙ Definitions Φ denote the set of all increasing, continuous functions
ϕ : [0,∞)→ [0,∞) such that ϕ(0) = 0. A function ϕ ∈ Φ is said to satisfy
the Δ2-condition (ϕ ∈ (Δ2) for short) provided there exists C > 0 such that
ϕ(2t) ¬ Cϕ(t) for all t > 0.

∙ For any quasi-normed function lattice X on a measure space (Ω,Σ, µ) and
ϕ ∈ Φ, we define an order ideal in L0(µ),

Xϕ =
{

f ∈ L0(µ); ∃λ > 0, ϕ(λ|f |) ∈ X
}
,

and the functional ‖ · ‖Xϕ : Xϕ → [0,∞) by

‖f ‖Xϕ = inf
{
λ > 0; ‖ϕ(|f |/λ)‖X ¬ 1

}
, f ∈ Xϕ.

Clearly, ‖f ‖Xϕ = 0 if and only if f = 0 and ‖λf ‖Xϕ = |λ| ‖f ‖Xϕ for every
λ ∈ ℝ, f ∈ Xϕ.

M. Mastyło (UAM) Factorization theorems for multilinear operators 12 / 34



The generalized Orlicz spaces

∙ Remarks If ϕ is a convex function and X is a Banach function lattice, Xϕ is
a Banach function lattice. In the case when X = L1(µ) and ϕ ∈ Φ, Xϕ is the
Orlicz space denoted as usual by Lϕ(µ). This fact motivates to call Xϕ the
generalized Orlicz space provided Xϕ is a quasi-Banach space.

∙ If 0 < p <∞ and ϕ(t) = tp for all t ­ 0, the space Xϕ is known as the
p-convexification Xp of X whose quasi-norm is given by

‖f ‖Xp = ‖|f |p‖1/p
X , f ∈ Xp.

∙ Definition For a given function ϕ ∈ Φ and a quasi-Banach function lattice X ,
X is said to be ϕ-admissible provided that ‖ · ‖Xϕ is a quasi-norm on Xϕ. If in
addition the topological dual (Xϕ)∗ separates the points of Xϕ, then X is
called strongly ϕ-admissible. For the case ϕ(t) = tp, we simply say that the
space X is strongly p-admissible.
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Main results

∙ Let φ, ϕ1, ϕ2 ∈ Φ and let X , Y be quasi-Banach function lattices on
(Ω1,Σ1, µ1) and (Ω2,Σ2, µ2), respectively, such that X is strongly
ϕ−1

1 -admissible and Y is strongly ϕ−1
2 -admissible. Suppose that T is

a bilinear operator from X × Y into a quasi-Banach space E . Assume
0 < C1,C2 <∞ and that A ⊂ X , B ⊂ Y are non-empty sets.
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Main results

Theorem (M. M. & E. A. Sánchez Pérez)

Consider the following statements:

(i) For any finite set of positive scalars {αk}n
k=1 with

∑n
k=1 αk = 1 and any finite

sets {fk}n
k=1 in A and {gk}n

k=1 in B, n ∈ ℕ, the following inequality holds:

n∑
k=1

αkφ
(
‖T (fk , gk)‖E

)
¬ C1

∥∥∥ n∑
k=1

αkϕ1(|fk |)
∥∥∥c

X
ϕ
−1
1

+ C2

∥∥∥ n∑
k=1

αkϕ2(|gk |)
∥∥∥c

Y
ϕ
−1
2

.

(ii) There exist positive functionals x∗ ∈ (Xϕ−1
1

)∗ and y∗ ∈ (Yϕ−1
2

)∗ such that

φ
(
‖T (f , g)‖E

)
¬ C1 x∗(ϕ1(|f |)) + C2 y∗(ϕ2(|g |)), (f , g) ∈ A× B.
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Main results

(iii) There exist 0 ¬ u ∈ B(X
ϕ
−1
1

)′ and 0 ¬ v ∈ B(Y
ϕ
−1
2

)′ such that

φ
(
‖T (f , g)‖E

)
¬ C1

∫
Ω1

ϕ1(|f |)udµ1 + C2

∫
Ω2

ϕ2(|g |)vdµ2, (f , g) ∈ A×B.

Then (i) is equivalent to (ii). If Xϕ−1
1

and Yϕ−1
2

are order continuous, then all
three statements are equivalent.

∙ Remark Under the adequate requirements, order continuity of Xϕ is often
inherited from X ; if an order continuous Banach function lattice X is
ϕ-admissible and ϕ ∈ (Δ2), then ‖fn‖Xϕ → 0 if and only if ‖ϕ(|fn|)‖X → 0.
This implies that Xϕ is order continuous if and only if X is order continuous
(i.e., 0 ¬ xn ↓ 0 =⇒ ‖xn‖X → 0).
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Main results

∙ If ϕ1, ϕ2 ∈ Φ, then ϕ1 ⊕ ϕ2 : [0,∞)→ [0,∞) is defined by

(ϕ1 ⊕ ϕ2)(t) := inf
s>0

(
ϕ1(s) + ϕ2(t/s)

)
, t ­ 0.

Theorem (M. M. & E. A. Sánchez Pérez)
For j = 0, 1 let Lϕj = (Lϕj (µj), ‖ · ‖ϕj ) be Orlicz spaces on a measure space
(Ωj ,Σj , µj) generated by ϕj ∈ Φ satisfying ϕj(s)ϕj(t) ¬ Cjϕj(st) for some
Cj > 0 and all s, t > 0. If T is a bilinear operator from Lϕ1 × Lϕ2 into
a quasi-Banach space E with ‖T‖ ¬ 1, then for φ = ϕ1 ⊕ ϕ2 we have

φ(‖T (f , g)‖E ) ¬ C1

∫
Ω1

ϕ1(|f |) dµ1 + C2

∫
Ω2

ϕ2(|g |) dµ2

for all (f , g) ∈ Lϕ1 × Lϕ2 .
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Main results

Theorem (M. M. & E. A. Sánchez Pérez)

Let 0 < p, q <∞ and let X and Y be quasi-Banach lattices such that both
duals (X1/p)∗ and (Y1/q)∗ separates the points of X1/p and Y1/q, respectively.
Assume φ ∈ Φ, 0 < C1,C2 <∞ and that A ⊂ X , B ⊂ Y are non-empty sets.
The following are equivalent statements about a bilinear operator T from
X × Y to a quasi-Banach space E .

(i) For any set of positive scalars {αk}n
k=1 with

∑n
k=1 αk = 1 and any sets

{fk}n
k=1 in A and {gk}n

k=1 in B, n ∈ ℕ,

n∑
k=1

αkφ(‖T (fk , gk)‖E ) ¬ C1

∥∥∥ n∑
k=1

αk |fk |p
∥∥∥c

X1/p
+ C2

∥∥∥ n∑
k=1

αk |gk |q
∥∥∥c

Y1/q
.

(ii) There exist positive functionals x∗ ∈ B(X1/p)∗ and y∗ ∈ B(Y1/q)∗ such that

φ
(
‖T (f , g)‖E

)
¬ C1 x∗(|f |p) + C2 y∗(|g |q), (f , g) ∈ A× B.
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Main results

∙ Definition A quasi-Banach lattice X is p-convex, where 0 < p <∞, if there
is a constant C > 0 so that∥∥∥( n∑

k=1
|xk |p

)1/p∥∥∥
X
¬ C

( n∑
k=1
‖xk‖p

)1/p
, x1, ..., xn ∈ X .

The smallest value of the constant C is denoted by M(p)(X ).

∙ Remark We notice the well-known easily verified fact that X is p-convex if
and only if X1/p is normable.
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Main results

Theorem (M. M. & E. A. Sánchez Pérez)

Let 0 < p, q <∞ and let 1/r = 1/p + 1/q. Assume that X and Y are
quasi-Banach lattices such that X is strongly 1/p-admissible and Y is strongly
1/q-admissible. Assume 0 < C <∞. The following are equivalent statements
about a bilinear operator T from X × Y to a quasi-Banach space E .

(i) For each couple of finite sets {fk}n
k=1 and {gk}n

k=1 of elements of X and Y ,
respectively,( n∑

k=1
‖T (xk , yk)‖r

E

)1/r
¬ C

(∥∥∥( n∑
k=1
|xk |p

)∥∥∥c

X1/p

)1/p (∥∥∥( n∑
k=1
|yk |q

)∥∥∥c

Y1/q

)1/q
.

(ii) There are positive functionals x∗ ∈ B(X1/p)∗ and y∗ ∈ B(Y1/q)∗ such that

‖T (x , y)‖E ¬ C
(
x∗(|x |p)

)1/p(x∗(|y |q)
)1/q

, (x , y) ∈ X × Y .
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Main results

∙ If X is p-convex, Y is q-convex with M(p)(X ) = M(q)(Y ) = 1, then both
X1/p and Y1/q are Banach spaces and so

(X1/p)c = X1/p, (Y1/q)c = Y1/q

with equality of norms. As a consequence we obtain a remarkable result
for bilinear forms due to A. Defant (2001).

∙ The following variant of Grothendieck’s theorem was proved by R. Blei.
It is a consequence of the multilinear version of the above Theorem in
combination with the Riesz Representation Theorem and the fact that
C(K )-spaces are p-convex for every 0 < p <∞.
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Main results

Theorem (R. Blei, 1988)

Suppose that K1,...,Kn are compact Hausdorff spaces and let 1 ¬ pj <∞, for
j = 1, ..., n. Let 0 < C <∞ and

∑n
j=1 1/pj = 1. The following are equivalent

statements about an n-linear functional U on C(K1)× ...× C(Kn):

(i) For any set
{

f (k)
j
}m

j=1 in C(Kk) with k = 1, ..., n

m∑
j=1

∣∣U(f (1)
j , ..., f (n)

j )
∣∣ ¬ C

∥∥∥( m∑
j=1
|f (1)

j |
p1
)1/p1

∥∥∥
C(K1)

· · ·
∥∥∥( m∑

j=1
|f (n)

j |
pn
)1/pn

∥∥∥
C(Kn)

.

(ii) There exist probability Borel measures µ1, ..., µn on K1, ...,Kn, respectively, so
that

|U(f1, ..., fn)| ¬ C
(∫

K1

|f1|p1 dµ1

)1/p1
· · ·
(∫

Kn

|fn|pn dµn

)1/pn

for all f1 ∈ C(K1),...,fn ∈ C(Kn).
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Main results

∙ Definition A Banach lattice E if p-concave for 1 < p <∞ if there is
a constant C > 0 so that( n∑

k=1
‖xk‖p

E

)1/p
¬ C

∥∥∥( n∑
k=1
|xk |p

)1/p∥∥∥
E
, x1, ..., xn ∈ E .

Theorem (M. M. & E. A. Sánchez Pérez) Let 1 < p <∞, 1 < pi <∞ for
i = 1, ..., n be such that 1/p = 1/p1 + . . .+ 1/pn. Assume that Xk is
a pk -convex Banach lattice for each k = 1, ..., n, and let E be a p-concave
Banach lattice. For any n-linear positive operator T : X1 × . . .× Xn → E
there exist a constant C > 0 and positive functionals x∗k ∈ B(X1/pk )∗ so that

∥∥T (x1, ..., xn)
∥∥

E ¬ C
(
x∗1 (|x1|p1 )

)1/p1 · · ·
(
x∗n (|xn|1/pn )

)1/pn

for every (x1, ..., xn) ∈ X1 × · · · × Xn.
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Main results

Theorem (M. M. & E. A. Sánchez Pérez)

Let ϕ1, ϕ2 ∈ Φ with ϕ1, ϕ2 ∈ (Δ2), and let X , Y be order continuous Banach
function lattices on (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2), respectively, such that X is
strongly ϕ−1

1 -admissible and Y is strongly ϕ−1
2 -admissible. Suppose

0 < C1,C2 <∞ and consider an operator S : X → Y ′, where Y ′ is the Köthe dual
of Y . The following statements about the bilinear form T : X ×Y → ℝ defined by

T (f , g) =

∫
Ω2

g S(f ) dµ2, (f , g) ∈ X × Y

are equivalent:
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Main results

(i) For every finite sequence of positive scalars {αk}n
k=1 with

∑n
k=1 αk = 1 and

every finite sequences {fk}n
k=1 in X and {gk}n

k=1 in Y ,

n∑
k=1

αk |T (fk , gk)| ¬ C1

∥∥∥ n∑
k=1

αkϕ1(|fk |)
∥∥∥c

X
ϕ
−1
1

+ C2

∥∥∥ n∑
k=1

αkϕ2(|gk |)
∥∥∥c

Y
ϕ
−1
2

.

(ii) There exist functions 0 ¬ u ∈ B(X
ϕ
−1
1

)′ and 0 ¬ v ∈ B(X
ϕ
−1
2

)′ such that

|T (f , g)| ¬ C1

(∫
Ω1

ϕ1(|f |)udµ1

)
+ C2

(∫
Ω2

ϕ2(|g |)vdµ2

)
, (f , g) ∈ X × Y .
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Main results

Pisier’s factorization Theorem

Theorem (Pisier, 1986) An operator T from a C(K )-space to a Banach space Y
is (q, p)-summing with 1 ¬ p < q <∞ if and only if there is a probability Borel
measure µ on K such that T factors as follows:

T : C(K )
j−→ Lq,1(µ)

S−→ Y ,

where j is the inclusion map. Here Lq,1(µ) is the Lorentz space on the measure
space (K ,B(K ), µ) equipped with the norm

‖f ‖ :=

∫ 1

0
f ∗(t)t1/q−1 dt,

where B(K ) is the σ-algebra of the Borel sets in K and

f ∗(t) = inf{s > 0;µ({|f | > s}) ¬ t}, t ∈ [0, 1]

is the decreasing rearrangement of |f |.
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Main results

∙ Remark. Notice that Pisier’s theorem is a cornerstone in the theory of
(q, p)-concave operators, which is deeply connected with the linear theory of
(q, p)-summing operators.

∙ Definition Let X1, . . . ,Xn, Y be Banach spaces, and let 1 ¬ q, p <∞.
An n-linear operator T : X1 × · · · × Xn → Y is said to be factorable
(q, p)-summing if for every each positive integers M, N and all M × N
matrices

(
x (1)

jk
)
, . . . ,

(
x (n)

jk
)

in X1, . . . ,Xn, respectively, we have

( M∑
j=1

∥∥∥ N∑
k=1

T (x (1)
jk , . . . , x (n)

jk )
∥∥∥q

Y

)1/q

¬ C sup
x∗1 ∈BX∗1

,...,x∗n ∈BX∗n

( M∑
j=1

∣∣∣ N∑
k=1
〈x (1)

jk , x∗1 〉 . . . 〈x
(n)
jk , x∗n 〉

∣∣∣p)1/p
.
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Main results

∙ Definition Let L be a space of real or complex-valued functions defined on the
product K1 × · · · × Kn of compact Hausdorff spaces K1, . . . ,Kn (n ­ 2). We
denote by � the map from C(K1 × · · · × Kn) into L given by

�(f1, . . . , fn)(t1, . . . , tn) := f1(t1) · · · fn(tn)

for all fi ∈ C(Ki ), ti ∈ Ki and each 1 ¬ i ¬ n.
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Main results

The bilinear version of Pisier’s Theorem (M. M. &
E. A. Sánchez Pérez)

Let 1 ¬ p < q <∞. The following assertions are equivalent for a Banach space
valued bilinear map T : C(K1)× C(K2)→ Y .

(i) T is factorable (q, p)-summing.
(ii) For each positive integers M, N and all M × N matrices (fjk) and (gjk) in

C(K1) and C(K2), respectively, the following inequality holds

( M∑
j=1

∥∥∥ N∑
k=1

T (fjk , gjk)
∥∥∥q

Y

)1/q
¬ C

∥∥∥( M∑
j=1

∣∣∣ N∑
k=1
�(fjk , gjk)

∣∣∣p)1/p∥∥∥
C(K1×K2)

.

(iii) There is a probability Borel measure µ on K1 × K2 such that T admits
a factorization:

T : C(K1)× C(K2)
�−→ Lq,1(µ)

T̃−→ Y
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Main results

Theorem (M. M. & E. A. Sánchez Pérez)

Let 1 ¬ p, q, r <∞ satisfy 1/r ¬ 1/p + 1/q. The following are equivalent
statements about a Banach space valued bilinear operator

T : C(K1)× C(K2)→ Y .

(i) There are probability Borel measures µ1 and µ2 on K1 and K2 and a constant
C > 0 such that for every f ∈ BC(K1) and g ∈ BC(K2),

‖T (f , g)‖r ¬ C
(∫

K1

|f |p dµ1 +

∫
K2

|g |qd µ2

)
.

M. Mastyło (UAM) Factorization theorems for multilinear operators 31 / 34



Main results

(ii) For every finite sequence of positive scalars {αk}n
k=1 with

∑n
k=1 αk = 1 and

for any finite sequences {fk}n
k=1 in BC(K1) and {gk}n

k=1 in BC(K2), the
following inequality holds

n∑
k=1

αk‖T (fk , gk)‖r ¬ C1

∥∥∥ n∑
k=1

αk |fk |p
∥∥∥

C(K1)
+ C2

∥∥∥ n∑
k=1

αk |gk |q
∥∥∥

C(K2)
.

Moreover, each of the above conditions implies
(iii) T is (r ; p, q)-summing operator.

All conditions are equivalent whenever T is a positive operator.
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Appendix

∙ Ky-Fan’s Lemma Let E be a Hausdorff topological vector space, and let K be
a compact convex subset of E . Let Ψ be a set of functions on K with values
in (−∞,∞] having the following properties:
(a) each f ∈ Ψ is convex and lower semicontinuous,
(b) Ψ is concave, i.e., if g ∈ conv(Ψ), there is an f ∈ Ψ with g(x) ¬ f (x), for

every x ∈ K ,
(c) there is an r ∈ ℝ such that each f ∈ Ψ has a value not greater than r .

Then there is an x0 ∈ K such that f (x0) ¬ r for all f ∈ Ψ.
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