

# Factorization theorems for multilinear operators

Mieczysław Mastyło

Adam Mickiewicz University, and Institute of Mathematics,  
Polish Academy of Sciences (Poznań branch)

Integration, Vector Measures and Related Topics VI  
Będlewo, June 15–21, 2014

Based on a joint work with Enrique A. Sánchez Pérez

# Outline

- ① Domination Theorems
- ② Banach envelope
- ③ The generalized Orlicz spaces
- ④ Main results
- ⑤ Appendix

Domination theorems have proved to be relevant tools in the theory of operators between Banach spaces. For instance, they play a fundamental role in the theory of summability in Banach spaces thanks to:

- **The Pietsch Domination Theorem** An operator  $T: X \rightarrow Y$  between Banach spaces is  $p$ -summing ( $1 \leq p < \infty$ ), i.e., there exists  $C > 0$  such that

$$\left( \sum_{j=1}^n \|Tx_j\|_Y^p \right)^{1/p} \leq C \sup_{x^* \in B_{X^*}} \left( \sum_{j=1}^n |x^*(x_j)|^p \right)^{1/p}$$

for every finite set  $\{x_1, \dots, x_n\} \subset X$ , if and only if there exists a regular Borel probability measure  $\mu$  on  $(B_{X^*}, w^*)$  such that

$$\|Tx\|_Y \leq C \left( \int_{B_{X^*}} |x^*(x)|^p d\mu \right)^{1/p}, \quad x \in X.$$

- **The Grothendieck Theorem** Let  $K_1$  and  $K_2$  be compact Hausdorff spaces, and let  $T$  be a scalar-valued bounded bilinear form on  $C(K_1) \times C(K_2)$ . Then there exist probability measures  $\mu_1$  and  $\mu_2$ , on  $K_1$ ,  $K_2$ , respectively, such that

$$|T(f, g)| \leq K \|T\| \left( \int_{K_1} |f|^2 d\mu_1 \right)^{1/2} \left( \int_{K_2} |g|^2 d\mu_2 \right)^{1/2}$$

for every  $f \in C(K_1)$  and  $g \in C(K_2)$ , where  $K$  is an absolute constant.

**Remark** The smallest value constant  $K$  is called the **Grothendieck constant** and is denoted by  $K_G$ .

- **Corollary** Let  $T$  be as before. Let  $(f_j)_{j=1}^n, (g_j)_{j=1}^n$  be finite sequences in  $C(K_1)$  and  $C(K_2)$ , respectively. We then have

$$\left| \sum_{j=1}^n T(f_j, g_j) \right| \leq K_G \|T\| \left\| \left( \sum_{j=1}^n |f_j|^2 \right)^{1/2} \right\|_{C(K_1)} \left\| \left( \sum_{j=1}^n |g_j|^2 \right)^{1/2} \right\|_{C(K_2)}.$$

- **Corollary** Let  $\mathbb{K} = \mathbb{R}$  or  $\mathbb{K} = \mathbb{C}$ . Let  $[a_{ij}]$  be an  $n \times n$  matrix such that for all  $(s_1, \dots, s_n) \in \mathbb{K}^n, (t_1, \dots, t_n) \in \mathbb{K}^n$

$$\left| \sum_{i,j=1}^n s_i t_j a_{ij} \right| \leq \sup_i |s_i| \sup_j |t_j|.$$

We then have, for all sequences  $(x_1, \dots, x_n)$  and  $(y_1, \dots, y_n)$  in an arbitrary Hilbert space  $H$ ,

$$\left| \sum_{i,j=1}^n a_{ij} \langle x_i, y_j \rangle \right| \leq K_G \sup_i \|x_i\|_H \sup_j \|y_j\|_H.$$

Let  $X := (X, \|\cdot\|)$  be a quasi-normed space.

- **Definitions** The **Mackey semi-norm**  $\|\cdot\|^c$  on  $X$  is the Minkowski functional of the convex hull  $\text{conv}(B_X)$  of the unit ball  $B_X := \{x \in X; \|x\| \leq 1\}$ ,

$$\|x\|^c = \inf \{\lambda > 0; x \in \lambda \text{conv}(B_X)\}, \quad x \in X.$$

- If the topological dual  $X^*$  of  $X$  separates the points of  $X$ , then it is a Banach space under the norm

$$\|x^*\|_{X^*} = \sup_{x \in B_X} |x^*(x)|$$

and it is easy to check that  $X^* = (X, \|\cdot\|^c)^*$  with equality of norms; the completion of  $(X, \|\cdot\|^c)$  is called the **Banach envelope** of  $X$  and is denoted by  $\widehat{X}$ .

- **Remark** If  $\kappa: X \rightarrow X^{**}$  is the canonical embedding defined by  $\kappa x(x^*) = x^*(x)$  for all  $x \in X, x^* \in X^*$ , then

$$\|\kappa x\|_{X^{**}} = \sup_{\|x^*\|_{X^*} \leq 1} |x^*(x)| = \|x\|^c.$$

Given  $f \in L^0(\mu) := L^0(\Omega, \Sigma, \mu)$ . The **distribution function**  $\mu_f: (0, \infty) \rightarrow [0, \infty]$  is given by

$$\mu_f\{x \in \Omega; |f(x)| > \lambda\}, \quad \lambda > 0.$$

- The **decreasing rearrangement**  $f^*$  of  $f$  is defined by

$$f^*(t) = \inf\{\lambda > 0; \mu_f(\lambda) \leq t\}, \quad t > 0.$$

- A quasi-Banach space  $(X, \|\cdot\|) \subset L^0(\mu)$  is said to be **rearrangement invariant** (r.i.) on  $(\Omega, \Sigma, \mu)$  provided

$$(f \in L^0(\mu), g \in X \text{ and } \mu_f \leq \mu_g) \Rightarrow (f \in X \text{ and } \|f\| \leq \|g\|).$$

- If  $(\Omega, \Sigma, \mu)$  is a nonatomic measure space. An r.i. space  $X$  on  $(\Omega, \Sigma, \mu)$  is said to be generated by a quasi-Banach lattice  $E$  on  $I = (0, \mu(\Omega))$  equipped with the Lebesgue measure provided that the following condition is satisfied:

$$f \in X \text{ if and only if } f^* \in E \text{ and } \|f\|_X = \|f^*\|_E.$$

# Theorem (A. Kamińska & M. M.)

If  $X$  is an r.i. quasi-Banach space on a non-atomic measure space  $(\Omega, \Sigma, \mu)$  generated by an r.i. quasi-Banach space  $E$  on  $I = (0, \mu(\Omega))$ , which is 1-concave on the cone  $Q$  of decreasing simple functions, i.e., there exists  $C > 0$  such that for  $f_1, \dots, f_n \in Q$ ,

$$C \|f_1 + \dots + f_n\|_E \geq \|f_1\|_E + \dots + \|f_n\|_E,$$

and  $\psi(t) := \|\chi_{(0,t)}\|_E$  for all  $t \in I$  denotes the fundamental function of  $E$ , then

(i)  $X' = M_\psi$  and  $X' \neq \{0\}$  if and only if  $\widehat{\psi}(t) > 0$  for all  $t \in I$ , where

$$\widehat{\psi}(t) = t \inf\{\psi(s)/s; 0 < s \leq t\}, \quad t \in I.$$

(ii) If  $E$  is order continuous and  $\widehat{\psi}(t) > 0$  for all  $t \in I$ , then the Banach envelope  $\widehat{X}$  of  $X$  coincides up to equivalence of norms with the Lorentz space  $\Lambda_\psi^\widehat{\psi}$ .

- **Definitions**  $\Phi$  denote the set of all increasing, continuous functions  $\varphi: [0, \infty) \rightarrow [0, \infty)$  such that  $\varphi(0) = 0$ . A function  $\varphi \in \Phi$  is said to satisfy the  $\Delta_2$ -condition ( $\varphi \in (\Delta_2)$  for short) provided there exists  $C > 0$  such that  $\varphi(2t) \leq C\varphi(t)$  for all  $t > 0$ .
- For any quasi-normed function lattice  $X$  on a measure space  $(\Omega, \Sigma, \mu)$  and  $\varphi \in \Phi$ , we define an order ideal in  $L^0(\mu)$ ,

$$X_\varphi = \{f \in L^0(\mu); \exists \lambda > 0, \varphi(\lambda|f|) \in X\},$$

and the functional  $\|\cdot\|_{X_\varphi}: X_\varphi \rightarrow [0, \infty)$  by

$$\|f\|_{X_\varphi} = \inf \{\lambda > 0; \|\varphi(|f|/\lambda)\|_X \leq 1\}, \quad f \in X_\varphi.$$

Clearly,  $\|f\|_{X_\varphi} = 0$  if and only if  $f = 0$  and  $\|\lambda f\|_{X_\varphi} = |\lambda| \|f\|_{X_\varphi}$  for every  $\lambda \in \mathbb{R}$ ,  $f \in X_\varphi$ .

- **Remarks** If  $\varphi$  is a convex function and  $X$  is a Banach function lattice,  $X_\varphi$  is a Banach function lattice. In the case when  $X = L_1(\mu)$  and  $\varphi \in \Phi$ ,  $X_\varphi$  is the **Orlicz space** denoted as usual by  $L_\varphi(\mu)$ . This fact motivates to call  $X_\varphi$  the generalized Orlicz space provided  $X_\varphi$  is a quasi-Banach space.
- If  $0 < p < \infty$  and  $\varphi(t) = t^p$  for all  $t \geq 0$ , the space  $X_\varphi$  is known as the  **$p$ -convexification**  $X_p$  of  $X$  whose quasi-norm is given by

$$\|f\|_{X_p} = \||f|^p\|_X^{1/p}, \quad f \in X_p.$$

- **Definition** For a given function  $\varphi \in \Phi$  and a quasi-Banach function lattice  $X$ ,  $X$  is said to be  **$\varphi$ -admissible** provided that  $\|\cdot\|_{X_\varphi}$  is a quasi-norm on  $X_\varphi$ . If in addition the topological dual  $(X_\varphi)^*$  separates the points of  $X_\varphi$ , then  $X$  is called **strongly  $\varphi$ -admissible**. For the case  $\varphi(t) = t^p$ , we simply say that the space  $X$  is **strongly  $p$ -admissible**.

- Let  $\phi, \varphi_1, \varphi_2 \in \Phi$  and let  $X, Y$  be quasi-Banach function lattices on  $(\Omega_1, \Sigma_1, \mu_1)$  and  $(\Omega_2, \Sigma_2, \mu_2)$ , respectively, such that  $X$  is strongly  $\varphi_1^{-1}$ -admissible and  $Y$  is strongly  $\varphi_2^{-1}$ -admissible. Suppose that  $T$  is a bilinear operator from  $X \times Y$  into a quasi-Banach space  $E$ . Assume  $0 < C_1, C_2 < \infty$  and that  $A \subset X$ ,  $B \subset Y$  are non-empty sets.

# Theorem (M. M. & E. A. Sánchez Pérez)

Consider the following statements:

(i) For any finite set of positive scalars  $\{\alpha_k\}_{k=1}^n$  with  $\sum_{k=1}^n \alpha_k = 1$  and any finite sets  $\{f_k\}_{k=1}^n$  in  $A$  and  $\{g_k\}_{k=1}^n$  in  $B$ ,  $n \in \mathbb{N}$ , the following inequality holds:

$$\sum_{k=1}^n \alpha_k \phi(\|T(f_k, g_k)\|_E) \leq C_1 \left\| \sum_{k=1}^n \alpha_k \varphi_1(|f_k|) \right\|_{X_{\varphi_1^{-1}}}^c + C_2 \left\| \sum_{k=1}^n \alpha_k \varphi_2(|g_k|) \right\|_{Y_{\varphi_2^{-1}}}^c.$$

(ii) There exist positive functionals  $x^* \in (X_{\varphi_1^{-1}})^*$  and  $y^* \in (Y_{\varphi_2^{-1}})^*$  such that

$$\phi(\|T(f, g)\|_E) \leq C_1 x^*(\varphi_1(|f|)) + C_2 y^*(\varphi_2(|g|)), \quad (f, g) \in A \times B.$$

(iii) There exist  $0 \leq u \in B_{(X_{\varphi_1^{-1}})'}$  and  $0 \leq v \in B_{(Y_{\varphi_2^{-1}})'}$  such that

$$\phi(\|T(f, g)\|_E) \leq C_1 \int_{\Omega_1} \varphi_1(|f|) u d\mu_1 + C_2 \int_{\Omega_2} \varphi_2(|g|) v d\mu_2, \quad (f, g) \in A \times B.$$

Then (i) is equivalent to (ii). If  $X_{\varphi_1^{-1}}$  and  $Y_{\varphi_2^{-1}}$  are order continuous, then all three statements are equivalent.

- **Remark** Under the adequate requirements, order continuity of  $X_\varphi$  is often inherited from  $X$ ; if an order continuous Banach function lattice  $X$  is  $\varphi$ -admissible and  $\varphi \in (\Delta_2)$ , then  $\|f_n\|_{X_\varphi} \rightarrow 0$  if and only if  $\|\varphi(|f_n|)\|_X \rightarrow 0$ . This implies that  $X_\varphi$  is order continuous if and only if  $X$  is order continuous (i.e.,  $0 \leq x_n \downarrow 0 \implies \|x_n\|_X \rightarrow 0$ ).

- If  $\varphi_1, \varphi_2 \in \Phi$ , then  $\varphi_1 \oplus \varphi_2: [0, \infty) \rightarrow [0, \infty)$  is defined by

$$(\varphi_1 \oplus \varphi_2)(t) := \inf_{s>0} (\varphi_1(s) + \varphi_2(t/s)), \quad t \geq 0.$$

### Theorem (M. M. & E. A. Sánchez Pérez)

For  $j = 0, 1$  let  $L_{\varphi_j} = (L_{\varphi_j}(\mu_j), \|\cdot\|_{\varphi_j})$  be Orlicz spaces on a measure space  $(\Omega_j, \Sigma_j, \mu_j)$  generated by  $\varphi_j \in \Phi$  satisfying  $\varphi_j(s)\varphi_j(t) \leq C_j\varphi_j(st)$  for some  $C_j > 0$  and all  $s, t > 0$ . If  $T$  is a bilinear operator from  $L_{\varphi_1} \times L_{\varphi_2}$  into a quasi-Banach space  $E$  with  $\|T\| \leq 1$ , then for  $\phi = \varphi_1 \oplus \varphi_2$  we have

$$\phi(\|T(f, g)\|_E) \leq C_1 \int_{\Omega_1} \varphi_1(|f|) d\mu_1 + C_2 \int_{\Omega_2} \varphi_2(|g|) d\mu_2$$

for all  $(f, g) \in L_{\varphi_1} \times L_{\varphi_2}$ .

# Theorem (M. M. & E. A. Sánchez Pérez)

Let  $0 < p, q < \infty$  and let  $X$  and  $Y$  be quasi-Banach lattices such that both duals  $(X_{1/p})^*$  and  $(Y_{1/q})^*$  separates the points of  $X_{1/p}$  and  $Y_{1/q}$ , respectively. Assume  $\phi \in \Phi$ ,  $0 < C_1, C_2 < \infty$  and that  $A \subset X$ ,  $B \subset Y$  are non-empty sets. The following are equivalent statements about a bilinear operator  $T$  from  $X \times Y$  to a quasi-Banach space  $E$ .

(i) For any set of positive scalars  $\{\alpha_k\}_{k=1}^n$  with  $\sum_{k=1}^n \alpha_k = 1$  and any sets  $\{f_k\}_{k=1}^n$  in  $A$  and  $\{g_k\}_{k=1}^n$  in  $B$ ,  $n \in \mathbb{N}$ ,

$$\sum_{k=1}^n \alpha_k \phi(\|T(f_k, g_k)\|_E) \leq C_1 \left\| \sum_{k=1}^n \alpha_k |f_k|^p \right\|_{X_{1/p}}^c + C_2 \left\| \sum_{k=1}^n \alpha_k |g_k|^q \right\|_{Y_{1/q}}^c.$$

(ii) There exist positive functionals  $x^* \in B_{(X_{1/p})^*}$  and  $y^* \in B_{(Y_{1/q})^*}$  such that

$$\phi(\|T(f, g)\|_E) \leq C_1 x^*(|f|^p) + C_2 y^*(|g|^q), \quad (f, g) \in A \times B.$$

- **Definition** A quasi-Banach lattice  $X$  is  $p$ -convex, where  $0 < p < \infty$ , if there is a constant  $C > 0$  so that

$$\left\| \left( \sum_{k=1}^n |x_k|^p \right)^{1/p} \right\|_X \leq C \left( \sum_{k=1}^n \|x_k\|^p \right)^{1/p}, \quad x_1, \dots, x_n \in X.$$

The smallest value of the constant  $C$  is denoted by  $M^{(p)}(X)$ .

- **Remark** We notice the well-known easily verified fact that  $X$  is  $p$ -convex if and only if  $X_{1/p}$  is normable.

# Theorem (M. M. & E. A. Sánchez Pérez)

Let  $0 < p, q < \infty$  and let  $1/r = 1/p + 1/q$ . Assume that  $X$  and  $Y$  are quasi-Banach lattices such that  $X$  is strongly  $1/p$ -admissible and  $Y$  is strongly  $1/q$ -admissible. Assume  $0 < C < \infty$ . The following are equivalent statements about a bilinear operator  $T$  from  $X \times Y$  to a quasi-Banach space  $E$ .

(i) For each couple of finite sets  $\{f_k\}_{k=1}^n$  and  $\{g_k\}_{k=1}^n$  of elements of  $X$  and  $Y$ , respectively,

$$\left( \sum_{k=1}^n \|T(x_k, y_k)\|_E^r \right)^{1/r} \leq C \left( \left\| \left( \sum_{k=1}^n |x_k|^p \right) \right\|_{X_{1/p}}^c \right)^{1/p} \left( \left\| \left( \sum_{k=1}^n |y_k|^q \right) \right\|_{Y_{1/q}}^c \right)^{1/q}.$$

(ii) There are positive functionals  $x^* \in B_{(X_{1/p})^*}$  and  $y^* \in B_{(Y_{1/q})^*}$  such that

$$\|T(x, y)\|_E \leq C (x^*(|x|^p))^{1/p} (y^*(|y|^q))^{1/q}, \quad (x, y) \in X \times Y.$$

- If  $X$  is  $p$ -convex,  $Y$  is  $q$ -convex with  $M^{(p)}(X) = M^{(q)}(Y) = 1$ , then both  $X_{1/p}$  and  $Y_{1/q}$  are Banach spaces and so

$$(X_{1/p})^c = X_{1/p}, \quad (Y_{1/q})^c = Y_{1/q}$$

with equality of norms. As a consequence we obtain a remarkable result for bilinear forms due to **A. Defant** (2001).

- The following variant of **Grothendieck's theorem** was proved by **R. Blei**. It is a consequence of the multilinear version of the above Theorem in combination with the Riesz Representation Theorem and the fact that  $C(K)$ -spaces are  $p$ -convex for every  $0 < p < \infty$ .

# Theorem (R. Blei, 1988)

Suppose that  $K_1, \dots, K_n$  are compact Hausdorff spaces and let  $1 \leq p_j < \infty$ , for  $j = 1, \dots, n$ . Let  $0 < C < \infty$  and  $\sum_{j=1}^n 1/p_j = 1$ . The following are equivalent statements about an  $n$ -linear functional  $U$  on  $C(K_1) \times \dots \times C(K_n)$ :

(i) For any set  $\{f_j^{(k)}\}_{j=1}^m$  in  $C(K_k)$  with  $k = 1, \dots, n$

$$\sum_{j=1}^m |U(f_j^{(1)}, \dots, f_j^{(n)})| \leq C \left\| \left( \sum_{j=1}^m |f_j^{(1)}|^{p_1} \right)^{1/p_1} \right\|_{C(K_1)} \dots \left\| \left( \sum_{j=1}^m |f_j^{(n)}|^{p_n} \right)^{1/p_n} \right\|_{C(K_n)}$$

(ii) There exist probability Borel measures  $\mu_1, \dots, \mu_n$  on  $K_1, \dots, K_n$ , respectively, so that

$$|U(f_1, \dots, f_n)| \leq C \left( \int_{K_1} |f_1|^{p_1} d\mu_1 \right)^{1/p_1} \dots \left( \int_{K_n} |f_n|^{p_n} d\mu_n \right)^{1/p_n}$$

for all  $f_1 \in C(K_1), \dots, f_n \in C(K_n)$ .

- **Definition** A Banach lattice  $E$  if  $p$ -concave for  $1 < p < \infty$  if there is a constant  $C > 0$  so that

$$\left( \sum_{k=1}^n \|x_k\|_E^p \right)^{1/p} \leq C \left\| \left( \sum_{k=1}^n |x_k|^p \right)^{1/p} \right\|_E, \quad x_1, \dots, x_n \in E.$$

**Theorem (M. M. & E. A. Sánchez Pérez)** Let  $1 < p < \infty$ ,  $1 < p_i < \infty$  for  $i = 1, \dots, n$  be such that  $1/p = 1/p_1 + \dots + 1/p_n$ . Assume that  $X_k$  is a  $p_k$ -convex Banach lattice for each  $k = 1, \dots, n$ , and let  $E$  be a  $p$ -concave Banach lattice. For any  $n$ -linear positive operator  $T: X_1 \times \dots \times X_n \rightarrow E$  there exist a constant  $C > 0$  and positive functionals  $x_k^* \in B_{(X_1/p_k)^*}$  so that

$$\|T(x_1, \dots, x_n)\|_E \leq C (x_1^*(|x_1|^{p_1}))^{1/p_1} \cdots (x_n^*(|x_n|^{1/p_n}))^{1/p_n}$$

for every  $(x_1, \dots, x_n) \in X_1 \times \dots \times X_n$ .

# Theorem (M. M. & E. A. Sánchez Pérez)

Let  $\varphi_1, \varphi_2 \in \Phi$  with  $\varphi_1, \varphi_2 \in (\Delta_2)$ , and let  $X, Y$  be order continuous Banach function lattices on  $(\Omega_1, \Sigma_1, \mu_1)$  and  $(\Omega_2, \Sigma_2, \mu_2)$ , respectively, such that  $X$  is strongly  $\varphi_1^{-1}$ -admissible and  $Y$  is strongly  $\varphi_2^{-1}$ -admissible. Suppose  $0 < C_1, C_2 < \infty$  and consider an operator  $S: X \rightarrow Y'$ , where  $Y'$  is the Köthe dual of  $Y$ . The following statements about the bilinear form  $T: X \times Y \rightarrow \mathbb{R}$  defined by

$$T(f, g) = \int_{\Omega_2} g S(f) d\mu_2, \quad (f, g) \in X \times Y$$

are equivalent:

(i) For every finite sequence of positive scalars  $\{\alpha_k\}_{k=1}^n$  with  $\sum_{k=1}^n \alpha_k = 1$  and every finite sequences  $\{f_k\}_{k=1}^n$  in  $X$  and  $\{g_k\}_{k=1}^n$  in  $Y$ ,

$$\sum_{k=1}^n \alpha_k |T(f_k, g_k)| \leq C_1 \left\| \sum_{k=1}^n \alpha_k \varphi_1(|f_k|) \right\|_{X_{\varphi_1^{-1}}}^c + C_2 \left\| \sum_{k=1}^n \alpha_k \varphi_2(|g_k|) \right\|_{Y_{\varphi_2^{-1}}}^c.$$

(ii) There exist functions  $0 \leq u \in B_{(X_{\varphi_1^{-1}})'}^*$  and  $0 \leq v \in B_{(X_{\varphi_2^{-1}})'}^*$  such that

$$|T(f, g)| \leq C_1 \left( \int_{\Omega_1} \varphi_1(|f|) u d\mu_1 \right) + C_2 \left( \int_{\Omega_2} \varphi_2(|g|) v d\mu_2 \right), \quad (f, g) \in X \times Y.$$

# Pisier's factorization Theorem

**Theorem (Pisier, 1986)** An operator  $T$  from a  $C(K)$ -space to a Banach space  $Y$  is  $(q, p)$ -summing with  $1 \leq p < q < \infty$  if and only if there is a probability Borel measure  $\mu$  on  $K$  such that  $T$  factors as follows:

$$T: C(K) \xrightarrow{j} L_{q,1}(\mu) \xrightarrow{s} Y,$$

where  $j$  is the inclusion map. Here  $L_{q,1}(\mu)$  is the Lorentz space on the measure space  $(K, \mathcal{B}(K), \mu)$  equipped with the norm

$$\|f\| := \int_0^1 f^*(t) t^{1/q-1} dt,$$

where  $\mathcal{B}(K)$  is the  $\sigma$ -algebra of the Borel sets in  $K$  and

$$f^*(t) = \inf\{s > 0; \mu(\{|f| > s\}) \leq t\}, \quad t \in [0, 1]$$

is the decreasing rearrangement of  $|f|$ .

- **Remark.** Notice that Pisier's theorem is a cornerstone in the theory of  $(q, p)$ -concave operators, which is deeply connected with the linear theory of  $(q, p)$ -summing operators.
- **Definition** Let  $X_1, \dots, X_n, Y$  be Banach spaces, and let  $1 \leq q, p < \infty$ . An  $n$ -linear operator  $T: X_1 \times \dots \times X_n \rightarrow Y$  is said to be factorable  $(q, p)$ -summing if for every each positive integers  $M, N$  and all  $M \times N$  matrices  $(x_{jk}^{(1)}), \dots, (x_{jk}^{(n)})$  in  $X_1, \dots, X_n$ , respectively, we have

$$\begin{aligned} & \left( \sum_{j=1}^M \left\| \sum_{k=1}^N T(x_{jk}^{(1)}, \dots, x_{jk}^{(n)}) \right\|_Y^q \right)^{1/q} \\ & \leq C \sup_{x_1^* \in B_{X_1^*}, \dots, x_n^* \in B_{X_n^*}} \left( \sum_{j=1}^M \left| \sum_{k=1}^N \langle x_{jk}^{(1)}, x_1^* \rangle \dots \langle x_{jk}^{(n)}, x_n^* \rangle \right|^p \right)^{1/p}. \end{aligned}$$

- **Definition** Let  $L$  be a space of real or complex-valued functions defined on the product  $K_1 \times \cdots \times K_n$  of compact Hausdorff spaces  $K_1, \dots, K_n$  ( $n \geq 2$ ). We denote by  $\odot$  the map from  $C(K_1 \times \cdots \times K_n)$  into  $L$  given by

$$\odot(f_1, \dots, f_n)(t_1, \dots, t_n) := f_1(t_1) \cdots f_n(t_n)$$

for all  $f_i \in C(K_i)$ ,  $t_i \in K_i$  and each  $1 \leq i \leq n$ .

# The bilinear version of Pisier's Theorem (M. M. & E. A. Sánchez Pérez)

Let  $1 \leq p < q < \infty$ . The following assertions are equivalent for a Banach space valued bilinear map  $T: C(K_1) \times C(K_2) \rightarrow Y$ .

- (i)  $T$  is factorable  $(q, p)$ -summing.
- (ii) For each positive integers  $M, N$  and all  $M \times N$  matrices  $(f_{jk})$  and  $(g_{jk})$  in  $C(K_1)$  and  $C(K_2)$ , respectively, the following inequality holds

$$\left( \sum_{j=1}^M \left\| \sum_{k=1}^N T(f_{jk}, g_{jk}) \right\|_Y^q \right)^{1/q} \leq C \left\| \left( \sum_{j=1}^M \left| \sum_{k=1}^N \odot(f_{jk}, g_{jk}) \right|^p \right)^{1/p} \right\|_{C(K_1 \times K_2)}.$$

- (iii) There is a probability Borel measure  $\mu$  on  $K_1 \times K_2$  such that  $T$  admits a factorization:

$$T: C(K_1) \times C(K_2) \xrightarrow{\odot} L_{q,1}(\mu) \xrightarrow{\widetilde{T}} Y$$

# Theorem (M. M. & E. A. Sánchez Pérez)

Let  $1 \leq p, q, r < \infty$  satisfy  $1/r \leq 1/p + 1/q$ . The following are equivalent statements about a Banach space valued bilinear operator

$$T: C(K_1) \times C(K_2) \rightarrow Y.$$

(i) There are probability Borel measures  $\mu_1$  and  $\mu_2$  on  $K_1$  and  $K_2$  and a constant  $C > 0$  such that for every  $f \in B_{C(K_1)}$  and  $g \in B_{C(K_2)}$ ,

$$\|T(f, g)\|^r \leq C \left( \int_{K_1} |f|^p d\mu_1 + \int_{K_2} |g|^q d\mu_2 \right).$$

(ii) For every finite sequence of positive scalars  $\{\alpha_k\}_{k=1}^n$  with  $\sum_{k=1}^n \alpha_k = 1$  and for any finite sequences  $\{f_k\}_{k=1}^n$  in  $B_{C(K_1)}$  and  $\{g_k\}_{k=1}^n$  in  $B_{C(K_2)}$ , the following inequality holds

$$\sum_{k=1}^n \alpha_k \|T(f_k, g_k)\|^r \leq C_1 \left\| \sum_{k=1}^n \alpha_k |f_k|^p \right\|_{C(K_1)} + C_2 \left\| \sum_{k=1}^n \alpha_k |g_k|^q \right\|_{C(K_2)}.$$

Moreover, each of the above conditions implies

(iii)  $T$  is  $(r; p, q)$ -summing operator.

All conditions are equivalent whenever  $T$  is a positive operator.

- **Ky-Fan's Lemma** Let  $E$  be a Hausdorff topological vector space, and let  $K$  be a compact convex subset of  $E$ . Let  $\Psi$  be a set of functions on  $K$  with values in  $(-\infty, \infty]$  having the following properties:
  - each  $f \in \Psi$  is convex and lower semicontinuous,
  - $\Psi$  is concave, i.e., if  $g \in \text{conv}(\Psi)$ , there is an  $f \in \Psi$  with  $g(x) \leq f(x)$ , for every  $x \in K$ ,
  - there is an  $r \in \mathbb{R}$  such that each  $f \in \Psi$  has a value not greater than  $r$ .

Then there is an  $x_0 \in K$  such that  $f(x_0) \leq r$  for all  $f \in \Psi$ .