A LUSIN TYPE MEASURABILITY PROPERTY FOR VECTOR-VALUED FUNCTIONS

Kirill Naralenkov

MGIMO University, Moscow, Russian Federation

Bedlewo, Poland 2014

- In a Banach space, there are two basic notions of function measurability—the notions of Bochner (or strong) measurability and scalar (or weak) measurability.
- The Pettis Measurability Theorem states that a function is Bochner measurable if and only if it is both scalarly measurable and almost separably-valued.
- Why do we need another notion of function measurability to deal with Riemann type integration theories, such as those of McShane and Henstock, in a Banach space?
- The above notions of function measurability diverge sharply for *non-separable* range spaces. Two classical examples illustrate some of the difficulties:

- In a Banach space, there are two basic notions of function measurability—the notions of Bochner (or strong) measurability and scalar (or weak) measurability.
- The Pettis Measurability Theorem states that a function is Bochner measurable if and only if it is both scalarly measurable and almost separably-valued.
- Why do we need another notion of function measurability to deal with Riemann type integration theories, such as those of McShane and Henstock, in a Banach space?
- The above notions of function measurability diverge sharply for *non-separable* range spaces. Two classical examples illustrate some of the difficulties:

- In a Banach space, there are two basic notions of function measurability—the notions of Bochner (or strong) measurability and scalar (or weak) measurability.
- The Pettis Measurability Theorem states that a function is Bochner measurable if and only if it is both scalarly measurable and almost separably-valued.
- Why do we need another notion of function measurability to deal with Riemann type integration theories, such as those of McShane and Henstock, in a Banach space?
- The above notions of function measurability diverge sharply for *non-separable* range spaces. Two classical examples illustrate some of the difficulties:

- In a Banach space, there are two basic notions of function measurability—the notions of Bochner (or strong) measurability and scalar (or weak) measurability.
- The Pettis Measurability Theorem states that a function is Bochner measurable if and only if it is both scalarly measurable and almost separably-valued.
- Why do we need another notion of function measurability to deal with Riemann type integration theories, such as those of McShane and Henstock, in a Banach space?
- The above notions of function measurability diverge sharply for *non-separable* range spaces. Two classical examples illustrate some of the difficulties:

- Graves (1927) Define $\varphi:[0,1]\to\ell^\infty[0,1]$ by $\varphi(t)=\chi_{[t,1]}$ for each t in [0,1]. Then φ is Riemann integrable but not Bochner measurable on [0,1].
- Phillips (1940) Under the Continuum Hypothesis, there exists a bounded scalarly measurable function $\varphi:[0,1]\to\ell^\infty[0,1]$ such that Pettis' theory does not assign any integral to φ on [0,1].
- It is well-known that the McShane and Henstock integrals can be defined without the use of Lebesgue measure as well as of any notion of function measurability.
- Which other integration theories are based on Riemann type sums?

- Graves (1927) Define $\varphi:[0,1]\to\ell^\infty[0,1]$ by $\varphi(t)=\chi_{[t,1]}$ for each t in [0,1]. Then φ is Riemann integrable but not Bochner measurable on [0,1].
- **Phillips (1940)** Under the Continuum Hypothesis, there exists a bounded scalarly measurable function $\varphi:[0,1]\to\ell^\infty[0,1]$ such that Pettis' theory does not assign any integral to φ on [0,1].
- It is well-known that the McShane and Henstock integrals can be defined without the use of Lebesgue measure as well as of any notion of function measurability.
- Which other integration theories are based on Riemann type sums?

- Graves (1927) Define $\varphi:[0,1]\to\ell^\infty[0,1]$ by $\varphi(t)=\chi_{[t,1]}$ for each t in [0,1]. Then φ is Riemann integrable but not Bochner measurable on [0,1].
- **Phillips (1940)** Under the Continuum Hypothesis, there exists a bounded scalarly measurable function $\varphi:[0,1]\to\ell^\infty[0,1]$ such that Pettis' theory does not assign any integral to φ on [0,1].
- It is well-known that the McShane and Henstock integrals can be defined without the use of Lebesgue measure as well as of any notion of function measurability.
- Which other integration theories are based on Riemann type sums?

- Graves (1927) Define $\varphi:[0,1]\to\ell^\infty[0,1]$ by $\varphi(t)=\chi_{[t,1]}$ for each t in [0,1]. Then φ is Riemann integrable but not Bochner measurable on [0,1].
- **Phillips (1940)** Under the Continuum Hypothesis, there exists a bounded scalarly measurable function $\varphi:[0,1]\to\ell^\infty[0,1]$ such that Pettis' theory does not assign any integral to φ on [0,1].
- It is well-known that the McShane and Henstock integrals can be defined without the use of Lebesgue measure as well as of any notion of function measurability.
- Which other integration theories are based on Riemann type sums?

• Kolmogorov (1930) (for real-valued functions); Birkhoff (1935) (for vector-valued functions): A function f from [a,b] into a real Banach space X is said to be (Birkhoff) integrable on [a,b] to a vector $w \in X$ if for each $\varepsilon > 0$ there exists a partition of [a,b] into Lebesgue measurable sets $\{E_n\}$ such that the series $\sum_n f(t_n)\lambda(E_n)$ (λ denotes Lebesgue measure) is unconditionally summable for all t_n in E_n and

$$\left\| \sum_{n} f(t_n) \lambda(E_n) - w \right\| < \varepsilon.$$

 The Kolmogorov-Birkhoff theory of integration is not as simple and as useful as the Riemann type integration theories: the above definition uses Lebesgue measurable partitions as well as the notion of unconditional convergence of an infinite series of elements in a Banach space.

• Kolmogorov (1930) (for real-valued functions); Birkhoff (1935) (for vector-valued functions): A function f from [a,b] into a real Banach space X is said to be (Birkhoff) integrable on [a,b] to a vector $w \in X$ if for each $\varepsilon > 0$ there exists a partition of [a,b] into Lebesgue measurable sets $\{E_n\}$ such that the series $\sum_n f(t_n)\lambda(E_n)$ (λ denotes Lebesgue measure) is unconditionally summable for all t_n in E_n and

$$\left\| \sum_{n} f(t_n) \lambda(E_n) - w \right\| < \varepsilon.$$

 The Kolmogorov-Birkhoff theory of integration is not as simple and as useful as the Riemann type integration theories: the above definition uses Lebesgue measurable partitions as well as the notion of unconditional convergence of an infinite series of elements in a Banach space.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property.
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

- In connection with some of later investigations of the Kolmogorov-Birkhoff construction several classes of 'measurable' functions were defined that included the collection of Bochner measurable functions as a subclass:
- Jeffery (1940) 'measurable' functions;
- Kunisawa (1943) *-measurable functions;
- Snow (1958) almost-Riemann-integrable functions;
- Cascales and Rodríguez (2005) the Bourgain property.
- These classes consist of functions that are, in a certain sense, very close to Riemann integrable functions and are defined by means of Cauchy type conditions and limit processes.

• **Jeffery (1940)** A bounded function $f:[a,b] \to X$ is restricted on [a,b] if there exists R>0 such that to each $\varepsilon>0$ there corresponds a sequence of disjoint Lebesgue measurable sets $\{E_n\}$ with $\lambda(E_n)<\varepsilon$, $\sum_n\lambda(E_n)=b-a$, and

$$\left\| \sum_{n} \{ f(t_n) - f(t'_n) \} \right\| \le R,$$

where t_n and t'_n are any two points in E_n .

- It is easily seen that all countably-valued Bochner measurable functions are restricted.
- On the other hand, the function of Graves' example is restricted but not Bochner measurable on [0,1].

• Jeffery (1940) A bounded function $f:[a,b] \to X$ is restricted on [a,b] if there exists R>0 such that to each $\varepsilon>0$ there corresponds a sequence of disjoint Lebesgue measurable sets $\{E_n\}$ with $\lambda(E_n)<\varepsilon$, $\sum_n\lambda(E_n)=b-a$, and

$$\left\| \sum_{n} \{ f(t_n) - f(t'_n) \} \right\| \le R,$$

where t_n and t'_n are any two points in E_n .

- It is easily seen that all countably-valued Bochner measurable functions are restricted.
- On the other hand, the function of Graves' example is restricted but not Bochner measurable on [0,1].

• Jeffery (1940) A bounded function $f:[a,b] \to X$ is restricted on [a,b] if there exists R>0 such that to each $\varepsilon>0$ there corresponds a sequence of disjoint Lebesgue measurable sets $\{E_n\}$ with $\lambda(E_n)<\varepsilon$, $\sum_n\lambda(E_n)=b-a$, and

$$\left\| \sum_{n} \{ f(t_n) - f(t'_n) \} \right\| \le R,$$

where t_n and t'_n are any two points in E_n .

- It is easily seen that all countably-valued Bochner measurable functions are restricted.
- On the other hand, the function of Graves' example is restricted but not Bochner measurable on [0,1].

- **Jeffery (1940)** A function $f:[a,b] \to X$ is J effery-measurable on [a,b] if there exists a sequence $\{f_n\}$ of restricted functions on [a,b] such that $f_n \to f$ almost everywhere on [a,b].
- It is clear that all Bochner measurable functions are Jeffery-measurable.
- **Jeffery (1940)** If $f:[a,b] \to X$ is both bounded and Jeffery-measurable [a,b], then f is Birkhoff integrable on [a,b].
- Which notion of function measurability is more relevant to the Riemann type integration theories than that of Jeffery-measurability?
- Such a notion of function measurability should be formulated without the use of partitions into Lebesgue measurable sets or considering the relation of the function to any special function sequence.

- **Jeffery (1940)** A function $f:[a,b] \to X$ is J effery-measurable on [a,b] if there exists a sequence $\{f_n\}$ of restricted functions on [a,b] such that $f_n \to f$ almost everywhere on [a,b].
- It is clear that all Bochner measurable functions are Jeffery-measurable.
- **Jeffery (1940)** If $f:[a,b]\to X$ is both bounded and Jeffery-measurable [a,b], then f is Birkhoff integrable on [a,b]
- Which notion of function measurability is more relevant to the Riemann type integration theories than that of Jeffery-measurability?
- Such a notion of function measurability should be formulated without the use of partitions into Lebesgue measurable sets or considering the relation of the function to any special function sequence.

- **Jeffery (1940)** A function $f:[a,b] \to X$ is J effery-measurable on [a,b] if there exists a sequence $\{f_n\}$ of restricted functions on [a,b] such that $f_n \to f$ almost everywhere on [a,b].
- It is clear that all Bochner measurable functions are Jeffery-measurable.
- **Jeffery (1940)** If $f:[a,b] \to X$ is both bounded and Jeffery-measurable [a,b], then f is Birkhoff integrable on [a,b].
- Which notion of function measurability is more relevant to the Riemann type integration theories than that of Jeffery-measurability?
- Such a notion of function measurability should be formulated without the use of partitions into Lebesgue measurable sets or considering the relation of the function to any special function sequence.

- **Jeffery (1940)** A function $f:[a,b] \to X$ is Jeffery-measurable on [a,b] if there exists a sequence $\{f_n\}$ of restricted functions on [a,b] such that $f_n \to f$ almost everywhere on [a,b].
- It is clear that all Bochner measurable functions are Jeffery-measurable.
- **Jeffery (1940)** If $f:[a,b] \to X$ is both bounded and Jeffery-measurable [a,b], then f is Birkhoff integrable on [a,b].
- Which notion of function measurability is more relevant to the Riemann type integration theories than that of Jeffery-measurability?
- Such a notion of function measurability should be formulated without the use of partitions into Lebesgue measurable sets or considering the relation of the function to any special function sequence.

- **Jeffery (1940)** A function $f:[a,b] \to X$ is Jeffery-measurable on [a,b] if there exists a sequence $\{f_n\}$ of restricted functions on [a,b] such that $f_n \to f$ almost everywhere on [a,b].
- It is clear that all Bochner measurable functions are Jeffery-measurable.
- **Jeffery (1940)** If $f:[a,b] \to X$ is both bounded and Jeffery-measurable [a,b], then f is Birkhoff integrable on [a,b].
- Which notion of function measurability is more relevant to the Riemann type integration theories than that of Jeffery-measurability?
- Such a notion of function measurability should be formulated without the use of partitions into Lebesgue measurable sets or considering the relation of the function to any special function sequence.

- ullet [a,b] will denote a fixed nondegenerate interval of the real line and I its closed nondegenerate subinterval.
- A positive function defined on [a, b] will be called a gauge on [a, b].
- A McShane partition of [a,b] is a finite collection $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of interval-point pairs such that $\{I_k\}_{k=1}^K$ is a collection of pairwise non-overlapping intervals, $t_k \in [a,b]$ for each k, and $\{I_k\}_{k=1}^K$ covers [a,b]. \mathscr{P} is subordinate to a gauge δ on [a,b] if $I_k \subset (t_k-\delta(t_k),t_k+\delta(t_k))$ for each k.
- A Henstock partition of [a,b] is a McShane partition $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of [a,b] with $t_k \in I_k$ for each k.

- ullet [a,b] will denote a fixed nondegenerate interval of the real line and I its closed nondegenerate subinterval.
- A positive function defined on [a,b] will be called a *gauge* on [a,b].
- A McShane partition of [a,b] is a finite collection $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of interval-point pairs such that $\{I_k\}_{k=1}^K$ is a collection of pairwise non-overlapping intervals, $t_k \in [a,b]$ for each k, and $\{I_k\}_{k=1}^K$ covers [a,b]. $\mathscr P$ is subordinate to a gauge δ on [a,b] if $I_k \subset (t_k \delta(t_k), t_k + \delta(t_k))$ for each k.
- A Henstock partition of [a,b] is a McShane partition $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of [a,b] with $t_k \in I_k$ for each k.

- ullet [a,b] will denote a fixed nondegenerate interval of the real line and I its closed nondegenerate subinterval.
- A positive function defined on [a,b] will be called a *gauge* on [a,b].
- A McShane partition of [a,b] is a finite collection $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of interval-point pairs such that $\{I_k\}_{k=1}^K$ is a collection of pairwise non-overlapping intervals, $t_k \in [a,b]$ for each k, and $\{I_k\}_{k=1}^K$ covers [a,b]. \mathscr{P} is subordinate to a gauge δ on [a,b] if $I_k \subset (t_k \delta(t_k), t_k + \delta(t_k))$ for each k.
- A Henstock partition of [a,b] is a McShane partition $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of [a,b] with $t_k \in I_k$ for each k.

- [a, b] will denote a fixed nondegenerate interval of the real line and I its closed nondegenerate subinterval.
- A positive function defined on [a,b] will be called a *gauge* on [a,b].
- A McShane partition of [a,b] is a finite collection $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of interval-point pairs such that $\{I_k\}_{k=1}^K$ is a collection of pairwise non-overlapping intervals, $t_k \in [a,b]$ for each k, and $\{I_k\}_{k=1}^K$ covers [a,b]. \mathscr{P} is subordinate to a gauge δ on [a,b] if $I_k \subset (t_k \delta(t_k), t_k + \delta(t_k))$ for each k.
- A Henstock partition of [a,b] is a McShane partition $\mathscr{P} = \{(I_k,t_k)\}_{k=1}^K$ of [a,b] with $t_k \in I_k$ for each k.

The McShane and Henstock integrals

Definition

A function $f:[a,b]\to X$ is McShane integrable (Henstock integrable) on [a,b], with McShane integral (Henstock integral) $w\in X$, if for each $\varepsilon>0$ there is a gauge δ on [a,b] such that

$$\left\| \sum_{k=1}^{K} f(t_k) \lambda(I_k) - w \right\| < \varepsilon$$

whenever $\{(I_k, t_k)\}_{k=1}^K$ is a McShane partition (Henstock partition) of [a, b] subordinate to δ .

The restricted versions

Definition

A function $f:[a,b]\to X$ is said to be \mathscr{M} -integrable $(\mathscr{H}$ -integrable) on [a,b] if it is McShane (Henstock) integrable on [a,b] and for each $\varepsilon>0$ there exists a Lebesgue measurable gauge δ on [a,b] that corresponds to ε in the definition of the McShane (Henstock) integral of f on [a,b].

- **Solodov** (2005) The *M*-integral was first introduced for vector-valued functions.
- Solodov (2005) The M-integral and the Kolmogorov-Birkhoff integral are equivalent

The restricted versions

Definition

A function $f:[a,b]\to X$ is said to be \mathscr{M} -integrable $(\mathscr{H}$ -integrable) on [a,b] if it is McShane (Henstock) integrable on [a,b] and for each $\varepsilon>0$ there exists a Lebesgue measurable gauge δ on [a,b] that corresponds to ε in the definition of the McShane (Henstock) integral of f on [a,b].

- **Solodov** (2005) The *M*-integral was first introduced for vector-valued functions.
- Solodov (2005) The M-integral and the Kolmogorov-Birkhoff integral are equivalent

The restricted versions

Definition

A function $f:[a,b]\to X$ is said to be \mathscr{M} -integrable $(\mathscr{H}$ -integrable) on [a,b] if it is McShane (Henstock) integrable on [a,b] and for each $\varepsilon>0$ there exists a Lebesgue measurable gauge δ on [a,b] that corresponds to ε in the definition of the McShane (Henstock) integral of f on [a,b].

- **Solodov** (2005) The *M*-integral was first introduced for vector-valued functions.
- **Solodov (2005)** The *M*-integral and the Kolmogorov-Birkhoff integral are equivalent.

Definitions of measurability

Definition

A function $f:[a,b]\to X$ is said to be *Lusin measurable* on [a,b] if for each $\varepsilon>0$ there exists a closed set $F\subset [a,b]$ with $\lambda([a,b]\setminus F)<\varepsilon$ such that the function $f|_F$ is continuous.

• Lusin measurability is equivalent to Bochner measurability.

Definitions of measurability

Definition

A function $f:[a,b]\to X$ is said to be *Lusin measurable* on [a,b] if for each $\varepsilon>0$ there exists a closed set $F\subset [a,b]$ with $\lambda([a,b]\setminus F)<\varepsilon$ such that the function $f|_F$ is continuous.

• Lusin measurability is equivalent to Bochner measurability.

Definitions of measurability

Definition

A function $f:[a,b]\to X$ is said to be *Riemann measurable* on [a,b] if for each $\varepsilon>0$ there exist a closed set $F\subset [a,b]$ with $\lambda([a,b]\setminus F)<\varepsilon$ and $\delta>0$ such that

$$\left\| \sum_{k=1}^{K} \{ f(t_k) - f(t'_k) \} \cdot \lambda(I_k) \right\| < \varepsilon$$

whenever $\{I_k\}_{k=1}^K$ is a finite collection of pairwise non-overlapping intervals with $\max_k \lambda(I_k) < \delta$ and t_k , t_k' are any two points in $I_k \cap F$.

- Lusin measurability implies Riemann measurability.
- Riemann integrability implies Riemann measurability.

Definitions of measurability

Definition

A function $f:[a,b]\to X$ is said to be *Riemann measurable* on [a,b] if for each $\varepsilon>0$ there exist a closed set $F\subset [a,b]$ with $\lambda([a,b]\setminus F)<\varepsilon$ and $\delta>0$ such that

$$\left\| \sum_{k=1}^{K} \{ f(t_k) - f(t'_k) \} \cdot \lambda(I_k) \right\| < \varepsilon$$

whenever $\{I_k\}_{k=1}^K$ is a finite collection of pairwise non-overlapping intervals with $\max_k \lambda(I_k) < \delta$ and t_k , t_k' are any two points in $I_k \cap F$.

- Lusin measurability implies Riemann measurability.
- Riemann integrability implies Riemann measurability.

Definitions of measurability

Definition

A function $f:[a,b]\to X$ is said to be *Riemann measurable* on [a,b] if for each $\varepsilon>0$ there exist a closed set $F\subset [a,b]$ with $\lambda([a,b]\setminus F)<\varepsilon$ and $\delta>0$ such that

$$\left\| \sum_{k=1}^{K} \{ f(t_k) - f(t'_k) \} \cdot \lambda(I_k) \right\| < \varepsilon$$

whenever $\{I_k\}_{k=1}^K$ is a finite collection of pairwise non-overlapping intervals with $\max_k \lambda(I_k) < \delta$ and t_k , t_k' are any two points in $I_k \cap F$.

- Lusin measurability implies Riemann measurability.
- Riemann integrability implies Riemann measurability.

Theorem

If $f:[a,b]\to X$ is \mathscr{H} -integrable on [a,b], then f is Riemann measurable on [a,b].

Theorem

If $f:[a,b] \to X$ is both bounded and Riemann measurable on [a,b], then f is \mathscr{M} -integrable on [a,b].

Corollary

If $f:[a,b]\to X$ is Riemann measurable on [a,b], then f is scalarly measurable on [a,b].

Theorem

If $f:[a,b]\to X$ is \mathscr{H} -integrable on [a,b], then f is Riemann measurable on [a,b].

Theorem

If $f:[a,b]\to X$ is both bounded and Riemann measurable on [a,b], then f is \mathscr{M} -integrable on [a,b].

Corollary

If $f:[a,b]\to X$ is Riemann measurable on [a,b], then f is scalarly measurable on [a,b].

Theorem

If $f:[a,b]\to X$ is \mathscr{H} -integrable on [a,b], then f is Riemann measurable on [a,b].

Theorem

If $f:[a,b]\to X$ is both bounded and Riemann measurable on [a,b], then f is \mathscr{M} -integrable on [a,b].

Corollary

If $f:[a,b]\to X$ is Riemann measurable on [a,b], then f is scalarly measurable on [a,b].

Theorem

If $f:[a,b]\to X$ is both McShane (Henstock) integrable and Riemann measurable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

Corollary

Let $f:[a,b] \to X$. Then f is Kolmogorov-Birkhoff integrable on [a,b] if and only if f is both Pettis integrable and Riemann measurable on [a,b].

Theorem

Let $f:[a,b] \to X$. Suppose that X is separable. If f is McShane (Henstock) integrable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

Theorem

If $f:[a,b]\to X$ is both McShane (Henstock) integrable and Riemann measurable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

Corollary

Let $f:[a,b]\to X$. Then f is Kolmogorov-Birkhoff integrable on [a,b] if and only if f is both Pettis integrable and Riemann measurable on [a,b].

Theorem

Let $f:[a,b] \to X$. Suppose that X is separable. If f is McShane (Henstock) integrable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

Theorem

If $f:[a,b]\to X$ is both McShane (Henstock) integrable and Riemann measurable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

Corollary

Let $f:[a,b] \to X$. Then f is Kolmogorov-Birkhoff integrable on [a,b] if and only if f is both Pettis integrable and Riemann measurable on [a,b].

Theorem

Let $f:[a,b] \to X$. Suppose that X is separable. If f is McShane (Henstock) integrable on [a,b], then f is \mathscr{M} -integrable (\mathscr{H} -integrable) on [a,b].

- How wide the Riemann measurable function class for a non-separable range space may be?
- Let $f:[a,b] \to X$ be bounded on [a,b]. Then each of the following statements about f implies all the others.
 - (i) f is \mathcal{M} -integrable integrable on [a, b]
 - (ii) f is Riemann measurable on [a, b].
 - (iii) f is Jeffery-measurable on [a, b].
 - (iv) f is *-measurable on [a, b].
 - (v) f is almost-Riemann-integrable on [a, b].
 - (vi) $Z_f = \{x^*f : x^* \in X^*, \|x^*\| \le 1\}$ has the Bourgain property.
- Fremlin (2007) There exists a bounded function $\varphi:[0,1]\to\ell^\infty(\mathfrak{c})$ that is McShane integrable but not Birkhoff integrable on [0,1]. As a result, φ is neither \mathscr{M} -integrable nor Riemann measurable on [0,1].

- How wide the Riemann measurable function class for a non-separable range space may be?
- Let $f:[a,b] \to X$ be bounded on [a,b]. Then each of the following statements about f implies all the others.
 - (i) f is \mathscr{M} -integrable integrable on [a,b].
 - (ii) f is Riemann measurable on [a, b].
 - (iii) f is Jeffery-measurable on [a, b].
 - (iv) f is *-measurable on [a, b].
 - (v) f is almost-Riemann-integrable on [a, b].
 - (vi) $Z_f = \{x^*f : x^* \in X^*, ||x^*|| \le 1\}$ has the Bourgain property.
- Fremlin (2007) There exists a bounded function $\varphi:[0,1]\to\ell^\infty(\mathfrak{c})$ that is McShane integrable but not Birkhoff integrable on [0,1]. As a result, φ is neither \mathscr{M} -integrable nor Riemann measurable on [0,1].

- How wide the Riemann measurable function class for a non-separable range space may be?
- Let $f:[a,b] \to X$ be bounded on [a,b]. Then each of the following statements about f implies all the others.
 - (i) f is \mathcal{M} -integrable integrable on [a,b].
 - (ii) f is Riemann measurable on [a, b].
 - (iii) f is Jeffery-measurable on [a, b].
 - (iv) f is *-measurable on [a, b].
 - (v) f is almost-Riemann-integrable on [a, b].
 - (vi) $Z_f = \{x^*f : x^* \in X^*, ||x^*|| \le 1\}$ has the Bourgain property.
- Fremlin (2007) There exists a bounded function $\varphi:[0,1]\to\ell^\infty(\mathfrak{c})$ that is McShane integrable but not Birkhoff integrable on [0,1]. As a result, φ is neither \mathscr{M} -integrable nor Riemann measurable on [0,1].

- Fremlin (2007) Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Then each McShane integrable X-valued function is Birkhoff integrable. Consequently, if $f:[a,b]\to X$ is McShane integrable on [a,b], then f is Riemann measurable on [a,b].
- Fremlin and Mendoza (1994) There exists a bounded function $\varphi:[0,1]\to\ell^\infty$ that is Pettis integrable but not McShane integrable. In particular, φ is not Riemann measurable on [0,1].
- Question: Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Is any Henstock integrable X-valued function necessarily Riemann measurable?

- Fremlin (2007) Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Then each McShane integrable X-valued function is Birkhoff integrable. Consequently, if $f:[a,b]\to X$ is McShane integrable on [a,b], then f is Riemann measurable on [a,b].
- Fremlin and Mendoza (1994) There exists a bounded function $\varphi:[0,1]\to\ell^\infty$ that is Pettis integrable but not McShane integrable. In particular, φ is not Riemann measurable on [0,1].
- Question: Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Is any Henstock integrable X-valued function necessarily Riemann measurable?

- Fremlin (2007) Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Then each McShane integrable X-valued function is Birkhoff integrable. Consequently, if $f:[a,b]\to X$ is McShane integrable on [a,b], then f is Riemann measurable on [a,b].
- Fremlin and Mendoza (1994) There exists a bounded function $\varphi:[0,1]\to\ell^\infty$ that is Pettis integrable but not McShane integrable. In particular, φ is not Riemann measurable on [0,1].
- Question: Suppose that X is linearly isometric to a subspace of ℓ^{∞} . Is any Henstock integrable X-valued function necessarily Riemann measurable?

References

- R.L. Jeffery, Integration in abstract space. Duke Math. J. 6 (1940), 706-718.
- B. Cascales and J. Rodríguez, The Birkhoff integral and the property of Bourgain. Math. Ann. **331** (2005), no. 2, 259-279.
- A.P. Solodov, On the limits of the generalization of the Kolmogorov integral. (in Russian) Mat. Zametki **77** (2005), no. 2, 258-272.
- D.H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions. University of Essex Mathematics Department Research Report 92-10, version of 18.5.07.
- K.M. Naralenkov, A Lusin type measurability property for vector-valued functions. J. Math. Anal. Appl. **417** (2014), no. 1, 293-307.