A note on set-valued Henstock–McShane integral in Banach (lattice) space setting

A. Boccuto, D. Candeloro and A. R. Sambucini

Department of Mathematics and Computer Science - University of Perugia (Italy) Grant N. U2014/2010.011.0403

Integration, Vector Measures and Related Topics VI Będlewo, June 16-21, 2014

Let (T,d) be a compact metric Hausdorff topological space and Σ its Borel σ -algebra, let $\mu: \Sigma \to \mathbb{R}^+_0$ be a regular σ -additive (bounded) measure, so that (T,d,Σ,μ) is a Radon measure space.

Let (T, d) be a compact metric Hausdorff topological space and Σ its Borel σ -algebra, let $\mu: \Sigma \to \mathbb{R}_0^+$ be a regular σ -additive (bounded) measure, so that (T, d, Σ, μ) is a Radon measure space. Let X be a Banach space. We denote by:

- cbf(X) the set of all nonempty, bounded, closed, convex subsets of X,
- cwk(X) the set of all nonempty, weakly compact, convex subsets of X,

Let (T,d) be a compact metric Hausdorff topological space and Σ its Borel σ -algebra, let $\mu: \Sigma \to \mathbb{R}^+_0$ be a regular σ -additive (bounded) measure, so that (T,d,Σ,μ) is a Radon measure space.

- Let X be a Banach space. We denote by:
 - cbf(X) the set of all nonempty, bounded, closed, convex subsets of X,
- cwk(X) the set of all nonempty, weakly compact, convex subsets of X,

If $A_i \in cbf(X)$, i = 1, ..., n, we denote by $\sum_{i=1}^{n} A_i$ the set

$$\sum_{i=1}^n A_i := \operatorname{cl}(A_1 + \cdots + A_n). \tag{1}$$

where + is the Minkowski addition.

H-integrable functions

Definition 1

A function $f: T \to X$ is H-integrable if there exists $I \in X$ such that, for every $\varepsilon > 0$ there is a gauge $\gamma: T \to \mathbb{R}^+$ such that for every γ -fine partition of T, $\Pi = \{(E_i, t_i), i = 1, \dots, q\}$, we have:

$$\|\sigma(f,\Pi)-I\|\leq \varepsilon.$$

We set $I = (H) \int_T f d\mu$. Moreover the symbol $\sigma(f, \Pi) := \sum_{i=1}^q f(t_i) \mu(E_i)$.

H-integrable functions

Definition 1

A function $f: T \to X$ is H-integrable if there exists $I \in X$ such that, for every $\varepsilon > 0$ there is a gauge $\gamma: T \to \mathbb{R}^+$ such that for every γ -fine partition of T, $\Pi = \{(E_i, t_i), i = 1, \dots, q\}$, we have:

$$\|\sigma(f,\Pi)-I\|\leq \varepsilon.$$

We set $I = (H) \int_T f d\mu$. Moreover the symbol $\sigma(f, \Pi) := \sum_{i=1}^q f(t_i) \mu(E_i)$.

A decomposition Π of T is $\Pi = \{(E_i, t_i) : i = 1, ..., k\}$ of pairs such that $t_i \in E_i, E_i \in \Sigma$ (Perron) and $\mu(E_i \cap E_j) = 0$ for $i \neq j$. The points $t_i, i = 1, ..., k$, are called *tags*. If $\bigcup_{i=1}^k E_i = T$, Π is called a *partition*.

H-integrable functions

Definition 1

A function $f: T \to X$ is H-integrable if there exists $I \in X$ such that, for every $\varepsilon > 0$ there is a gauge $\gamma: T \to \mathbb{R}^+$ such that for every γ -fine partition of T, $\Pi = \{(E_i, t_i), i = 1, \dots, q\}$, we have:

$$\|\sigma(f,\Pi)-I\|\leq \varepsilon.$$

We set $I = (H) \int_T f d\mu$. Moreover the symbol $\sigma(f, \Pi) := \sum_{i=1}^q f(t_i) \mu(E_i)$.

A decomposition Π of T is $\Pi = \{(E_i, t_i) : i = 1, ..., k\}$ of pairs such that $t_i \in E_i$, $E_i \in \Sigma$ (Perron) and $\mu(E_i \cap E_j) = 0$ for $i \neq j$. The points t_i , i = 1, ..., k, are called *tags*. If $\bigcup_{i=1}^k E_i = T$, Π is called a *partition*.

Proposition 2

Let us assume, in the previous setting, that μ is nonatomic, i.e. $\mu(\{t\}) = 0$ for all $t \in T$. If $f: T \to X$ is H-integrable in T, then it is also Mc Shane-integrable.

H-integrable multifunctions

From now on we assume that μ is non atomic.

Definition 3

Given a multifunction $F: T \to cwk(X)$, F is H-integrable if there exists an element $J \in cwk(X)$: $\forall \varepsilon > 0$ there exists a gauge γ : for every γ -fine partition Π , the following holds: $d_H(\sum_{\Pi} F, J) \leq \varepsilon$, where d_H := Hausdorff distance. Then

$$J:=(\mathrm{H})\int_{\mathcal{T}} \mathsf{Fd}\mu.$$

Also in this case, existence of the integral in T implies existence in all measurable subsets E of T (which will be denoted by $J_E(F)$).

H-integrable multifunctions

From now on we assume that μ is non atomic.

Definition 3

Given a multifunction $F: T \to cwk(X)$, F is H-integrable if there exists an element $J \in cwk(X)$: $\forall \varepsilon > 0$ there exists a gauge γ : for every γ -fine partition Π , the following holds: $d_H(\sum_{\Pi} F, J) \leq \varepsilon$, where d_H := Hausdorff distance. Then

$$J:=(\mathrm{H})\int_{\mathcal{T}} \mathsf{F} \mathsf{d} \mu.$$

Also in this case, existence of the integral in T implies existence in all measurable subsets E of T (which will be denoted by $J_E(F)$).

Theorem 4

^a If $F: T \to cwk(X)$ is H-integrable, then $S_{F,H}^1 \neq \emptyset$.

^aB. Cascales, V. Kadets, J. Rodríguez, J. Funct. Anal. **256** (2009),3, 673–699. L. Di Piazza, K. Musiał, Monatsh. Math. **173** (2014), 459–470

Φ multi-valued integral

Definition 5

Let $F: T \to 2^X \setminus \emptyset$ be a multifunction, and $E \in \Sigma$. We call $(\|\cdot\|)$ -integral of F on E the set

$$\Phi(F, E) = \{ z \in X : \forall \varepsilon \in \mathbb{R}^+ \exists \gamma : T \to \mathbb{R}^+ : \inf_{c \in \sum_{\Pi_\gamma} F} ||z - c|| \le \varepsilon \\
\forall \gamma \text{-fine partition } \Pi_\gamma := \{ (E_i, t_i) : i = 1, \dots, k \} \text{ of } E. \}$$

¹ A. Boccuto, A. R. Sambucini, A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325

A. Boccuto, A.M. Minotti, A.R. Sambucini, Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAmerican Mathematical Journal 23 (1) (2013), 57–74.

Φ multi-valued integral

Definition 5

Let $F: T \to 2^X \setminus \emptyset$ be a multifunction, and $E \in \Sigma$. We call $(\|\cdot\|)$ -integral of F on E the set

$$\Phi(F, E) = \{ z \in X : \forall \varepsilon \in \mathbb{R}^+ \exists \gamma : T \to \mathbb{R}^+ : \inf_{c \in \sum_{\Pi_\gamma} F} ||z - c|| \le \varepsilon \}$$
$$\forall \gamma \text{-fine partition } \Pi_\gamma := \{ (E_i, t_i) : i = 1, \dots, k \} \text{ of } E. \}$$

Alternatively, one can write¹

$$\Phi(F, E) = \bigcap_{n} \bigcup_{\gamma} \bigcap_{P_{\gamma, E}} \left[\Sigma_{\Pi} F + \frac{B_{\chi}}{n} \right], \tag{2}$$

where $P_{\gamma, E}$ is the family of all Henstock γ -fine partitions of E.

¹ A. Boccuto, A. R. Sambucini, A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325

A. Boccuto, A.M. Minotti, A.R. Sambucini, Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAmerican Mathematical Journal 23 (1) (2013), 57–74.

1)
$$J_E(F) \subset \Phi(F, E)$$
;

² A. Boccuto, A. R. Sambucini - A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325.

1)
$$J_E(F) \subset \Phi(F, E)$$
;

2)
$$(AH)\int_{\mathcal{E}} \mathcal{F} d\mu \subset J_{\mathcal{E}}(\mathcal{F});$$

² A. Boccuto, A. R. Sambucini - A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325.

- 1) $J_E(F) \subset \Phi(F, E)$;
- 2) (AH) $\int_{E} F d\mu \subset J_{E}(F)$;
- 3) Moreover we know that if f is H-integrable for every $E \in \Sigma$, then f is McShane integrable and so Definition 5 is equivalent to the (\star) -integral given in (2).

² A. Boccuto, A. R. Sambucini - A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325.

- 1) $J_E(F) \subset \Phi(F, E)$;
- 2) (AH) $\int_{\mathcal{E}} \mathcal{F} d\mu \subset J_{\mathcal{E}}(\mathcal{F});$
- Moreover we know that if f is H-integrable for every E ∈ Σ, then f is McShane integrable and so Definition 5 is equivalent to the (⋆)-integral given in (2).
- 4) If we suppose that X is a separable Banach space and that there exists a countable family $(x'_n)_n$ in X' which separates points of X then the following equalities follow, for any measurable and integrably bounded multifunction F with values in cwk(X):

$$J_E(F) = (AH) \int_E F d\mu = \Phi(F, E).$$

² A. Boccuto, A. R. Sambucini - A McShane Integral for Multifunctions, J. Concr. Appl. Math. 2 (4) (2004), 307-325.

Let S be a nonempty set. The set S is said to be a *near vector space* provided that an $addition + : S \times S \to S$ is defined, such that (S, +) is a cancellative commutative semigroup, and endowed with a multiplication by non-negative scalars satisfying usual properties.

Let S be a nonempty set. The set S is said to be a *near vector space* provided that an $addition + : S \times S \to S$ is defined, such that (S, +) is a cancellative commutative semigroup, and endowed with a multiplication by non-negative scalars satisfying usual properties.

Definition 7

If (S, \leq) is a partially ordered set such that \leq is compatible with addition and multiplication by positive scalars which verifies:

- 7.1) $x \lor y$ exists for all $x, y \in S$; (joint-semilattice)
- 7.2) $(x \lor y) + z = (x + z) \lor (y + z)$ for all $x, y, z \in S$

then S is called a near vector lattice.

• The space $(S, +, \cdot, \leq) = (cbf(X), \oplus, \cdot, \subseteq)$ is an Archimedean near vector lattice with the unit ball B_X as a vector unit and $\mathbf{0} = \{0\}$.

- The space $(S, +, \cdot, \leq) = (cbf(X), \oplus, \cdot, \subseteq)$ is an Archimedean near vector lattice with the unit ball B_X as a vector unit and $\mathbf{0} = \{0\}$.
- cwk(X) is a sub-near vector lattice with respect to the operations and the order induced by cbf(X).

- The space $(S, +, \cdot, \leq) = (cbf(X), \oplus, \cdot, \subseteq)$ is an Archimedean near vector lattice with the unit ball B_X as a vector unit and $\mathbf{0} = \{0\}$.
- cwk(X) is a sub-near vector lattice with respect to the operations and the order induced by cbf(X).

Theorem 8

^a Let X be any Banach space. Then there exists a compact Stonian Hausdorff space Ω and a positively linear map $i: cwk(X) \to C(\Omega)$ such that

- 1) $d_H(A, C) = ||i(A) i(C)||_{\infty}, A, C \in cwk(X);$
- 2) i(cwk(X)) = cl(i(cwk(X))) (norm closure).
- 3) $i(\overline{co}(A \cup B)) = \max\{i(A), i(B)\}\$ for all A, C in cwk(X).

^aC. C. A. Labuschagne, A. L. Pinchuck, C. J. van Alten, *A vector lattice version of Rådstrőm's embedding theorem*, Quaest. Math. **30** (3) (2007), 285–308.

Theorem 9

Let $F: T \to cwk(X)$ be a multifunction. The following are equivalent:

1) F is H-integrable;

Theorem 9

Let $F: T \to cwk(X)$ be a multifunction. The following are equivalent:

- 1) F is H-integrable;
- 2) the embedded function $i(F): T \to C(\Omega)$ is H-integrable, and in that case (H)- $\int i(F)d\mu = i(J_T(F))$;

Theorem 9

Let $F: T \to cwk(X)$ be a multifunction. The following are equivalent:

- 1) F is H-integrable;
- 2) the embedded function $i(F): T \to C(\Omega)$ is H-integrable, and in that case (H)- $\int i(F)d\mu = i(J_T(F))$;
- 3) for every $E \in \Sigma$ and $\varepsilon > 0$ there exists a gauge γ such that $\|\sigma(i(F), \Pi_1) \sigma(i(F), \Pi_2)\|_{\infty} \le \varepsilon$ for every γ -fine partitions Π_1, Π_2 of E;

Theorem 9

Let $F: T \to cwk(X)$ be a multifunction. The following are equivalent:

- 1) F is H-integrable;
- 2) the embedded function $i(F): T \to C(\Omega)$ is H-integrable, and in that case (H)- $\int i(F)d\mu = i(J_T(F))$;
- 3) for every $E \in \Sigma$ and $\varepsilon > 0$ there exists a gauge γ such that $\|\sigma(i(F), \Pi_1) \sigma(i(F), \Pi_2)\|_{\infty} \le \varepsilon$ for every γ -fine partitions Π_1, Π_2 of E;
- 4) F is the sum of a non-negative H-integrable multifunction G with values in cwk(X) and an H-integrable single-valued function f: T → X.

Theorem 9

Let $F: T \to cwk(X)$ be a multifunction. The following are equivalent:

- 1) F is H-integrable;
- 2) the embedded function $i(F): T \to C(\Omega)$ is H-integrable, and in that case (H)- $\int i(F)d\mu = i(J_T(F))$;
- 3) for every $E \in \Sigma$ and $\varepsilon > 0$ there exists a gauge γ such that $\|\sigma(i(F), \Pi_1) \sigma(i(F), \Pi_2)\|_{\infty} \le \varepsilon$ for every γ -fine partitions Π_1, Π_2 of E;
- 4) F is the sum of a non-negative H-integrable multifunction G with values in cwk(X) and an H-integrable single-valued function $f: T \to X$.

Moreover, if X is reflexive then the previous statements are equivalent to:

5) the family $W_F = \{s(x^*, F) : x^* \in B_{X^*}\}$ is uniformly integrable.

- B. Cascales, V. Kadets, J. Rodríguez, Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal. 256 (2009), no. 3, 673 - 699.
- L. Di Piazza, K. Musiał, *A decomposition of Denjoy Hintchine Pettis and Henstock Kurzweil Pettis integrable multifunctions*, in: G.P. Curbera, G. Mockenhaupt, W.J. Ricker (Eds.), Vector Measures, Integration and Related Topics, in: Operator Theory: Advances and Applications, vol. 201, Birhauser-Verlag, (2010), 171 182.
- L. Di Piazza, K. Musiał, Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values, Monatsh. Math. 173 (2014), 459 - 470

- B. Cascales, V. Kadets, J. Rodríguez, Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal. 256 (2009), no. 3, 673 - 699.
- L. Di Piazza, K. Musiał, A decomposition of Denjoy Hintchine Pettis and Henstock -Kurzweil - Pettis integrable multifunctions, in: G.P. Curbera, G. Mockenhaupt, W.J. Ricker (Eds.), Vector Measures, Integration and Related Topics, in: Operator Theory: Advances and Applications, vol. 201, Birhauser-Verlag, (2010), 171 - 182.
- L. Di Piazza, K. Musiał, Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values, Monatsh. Math. 173 (2014), 459 - 470

Proposition 10

Let F be H-integrable. Then, for every $E \in \Sigma$ we have $J_E(F) = \Phi(F, E)$.

- B. Cascales, V. Kadets, J. Rodríguez, Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal. 256 (2009), no. 3, 673 - 699.
- L. Di Piazza, K. Musiał, A decomposition of Denjoy Hintchine Pettis and Henstock -Kurzweil - Pettis integrable multifunctions, in: G.P. Curbera, G. Mockenhaupt, W.J. Ricker (Eds.), Vector Measures, Integration and Related Topics, in: Operator Theory: Advances and Applications, vol. 201, Birhauser-Verlag, (2010), 171 - 182.
- L. Di Piazza, K. Musiał, Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values, Monatsh. Math. 173 (2014), 459 - 470

Proposition 10

Let F be H-integrable. Then, for every $E \in \Sigma$ we have $J_E(F) = \Phi(F, E)$.

Corollary 11

Let $F: T \to cwk(X)$ be any H-integrable multifunction. Then, for every $E \in \Sigma$, $M(E) := \Phi(F, E)$ is a countably additive multimeasure. Moreover, in the topology of $C(\Omega)$, M is σ -additive and μ -absolutely continuous.

 (H_0) X is a weakly σ -distributive Banach lattice with an order continuous norm, $\|\cdot\|$.

 (H_0) X is a weakly σ -distributive Banach lattice with an order continuous norm, $\|\cdot\|$.

Definition 12

 $^af:T\to X$ is oH-integrable if and only if there exist an element $J\in X$, an (o)-sequence $(b_n)_n$ $(b_n\downarrow 0)$ and a corresponding sequence $(\gamma_n)_n$ of gauges, such that

$$|\sigma(f,\Pi)-J|\leq b_n$$

holds, for every γ_n -fine partition Π (existence of this integral implies also integrability of $f\chi_E$, for each measurable set E).

^aA. Boccuto, A.M. Minotti, A.R. Sambucini, *Set-valued Kurzweil-Henstock integral in Riesz space setting*, PanAmerican Mathematical Journal **23** (1) (2013), 57–74. D. Candeloro, A.R. Sambucini, *Order-type Henstock and Mc Shane integrals in Banach lattice setting*, submitted to SISY 2014, arXiv:1405.6502 [math.FA].

Proposition 13

Let $f : \to X$ be any oH-integrable mapping. Then

- f is also H-integrable, and the two integrals agree;
- |f| is
- if X is an L-space then f is Bochner integrable.

Proposition 13

Let $f : \to X$ be any oH-integrable mapping. Then

- f is also H-integrable, and the two integrals agree;
- |f| is
- if X is an L-space then f is Bochner integrable.

Example 14

The function $f:[0,1]\to c_{00}$, defined by

$$f(x) = \begin{cases} u_n & \text{if } x = 1/n \\ 0 & \text{otherwise} \end{cases}$$

Example 15 (Skvortsov, Solodov, Real Analysis Exchange, 24 1998-99)

Define the function $f:[0,1] \longrightarrow X$ in the following way

$$f(t) = \left\{ \begin{aligned} 0, & \text{ if } t \in C \text{ or } t = d_i^T, & r \geq 0, 1 \leq i \leq 2^r, \\ 2 \cdot 3^r x_i^r, & \text{ if } t \in (a_i^r, d_i^r), & r \geq 0, 1 \leq i \leq 2^r, \\ -2 \cdot 3^r x_i^r, & \text{ if } t \in (d_i^r, b_i^r), & r \geq 0, 1 \leq i \leq 2^r. \end{aligned} \right.$$

Let $F: T \to 2^X$ be a multifunction with non-empty values, and $E \in \Sigma$. We call *(o)-integral* of F on E the set

$$\Phi^{o}(F, E) = \{ z \in X : \exists \text{ an } (o)\text{-sequence } (b_{n})_{n} : \forall n \in \mathbb{N} \ \exists \gamma : T \to \mathbb{R}^{+} : \\ \forall \gamma\text{-fine partition } P_{\gamma} := \{ (E_{i}, t_{i}) : i = 1, \dots, k \}$$
 of $E \exists c \in \sum_{i \le k} F(t_{i}) \mu(E_{i}) \text{ with } |z - c| \le b_{n} \}.$

Let $F: T \to 2^X$ be a multifunction with non-empty values, and $E \in \Sigma$. We call *(o)-integral* of F on E the set

$$\Phi^{o}(F, E) = \{ z \in X : \exists \text{ an } (o)\text{-sequence } (b_{n})_{n} : \forall n \in \mathbb{N} \ \exists \gamma : T \to \mathbb{R}^{+} : \\ \forall \gamma\text{-fine partition } P_{\gamma} := \{ (E_{i}, t_{i}) : i = 1, \dots, k \} \\ \text{of } E \ \exists \ c \in \sum_{i \leq k} F(t_{i}) \, \mu(E_{i}) \text{ with } |z - c| \leq b_{n} \ \}.$$

$$\Phi^o(F,E) := \bigcup_{(b_n)_n} \bigcap_n \bigcup_{\gamma_n} \bigcap_{P_{\gamma_n}} \mathcal{U}\left(\Sigma_{\Pi}(F), b_n\right),$$

where $(b_n)_n$ denotes any (o)-sequence, γ_n any gauge, P_{γ_n} the family of γ_n -fine partitions of E, and the symbol $\mathcal{U}(C,b)$ (for any set $C \in X$ and any positive element $b \in X$) denotes the set of all elements $z \in X$ such that $|z-y| \leq b$ for some $y \in C$

Let $F: T \to cwk(X)$ be any multifunction. F is oH-integrable if, for every $E \in \Sigma$ there exist an element $J_E \in cwk(X)$, an (o)-sequence $(b_n)_n$ in X and a corresponding sequence $(\gamma_n)_n$ of gages in T, such that, for every n and every γ_n -fine partition Π of E, we have

$$\Sigma_{\Pi}(F) \subset \mathcal{U}\left(J_{E}, b_{n}\right), \text{ and } J_{E} \subset \mathcal{U}\left(\Sigma_{\Pi}(F), b_{n}\right).$$

This in turn implies that $\Sigma_{\Pi}(F) \subset \mathcal{V}(J_E, b_n)$, and $J_E \subset \mathcal{V}(\Sigma_{\Pi}(F), b_n)$, where $\mathcal{V}(A, b) = \{z \in X : \exists a_0 \in A \text{ with } z \leq a_0 + b\}$, for every $(A, b) \in (cwk(X), X^{++})$.

Proposition 18

If $F: T \to cwk(X)$ is oH-integrable, then

- its integral J_E is unique;
- $\Phi^o(F, E) = J_E \in cwk(X)$.

From now on, we shall assume that F(t) are order-bounded for every $t \in T$.

From now on, we shall assume that F(t) are order-bounded for every $t \in T$.

Theorem 19

Let $F: T \to cwk(X)$ be oH-integrable, with integral J, and define

$$g(t) := \sup F(t), S := \sup J.$$

Then, g is oH-integrable, and its integral is S.

From now on, we shall assume that F(t) are order-bounded for every $t \in T$.

Theorem 19

Let $F: T \to cwk(X)$ be oH-integrable, with integral J, and define

$$g(t) := \sup F(t), \quad S := \sup J.$$

Then, g is oH-integrable, and its integral is S.

Theorem 20

Let $F: T \to cwk(X)$ be any oH-integrable function, such that $\sup F(t) \in F(t)$ for each $t \in T$. Then F is the sum of an oH-integrable single-valued $g: T \to X$ and an oH-integrable $G: T \to cwk(X)$: $s(x^*, G(t)) \ge 0$ for all $x^* \in X^*$ and $s(x^*, G(t)) = 0$ for all positive elements $x^* \in X^*$.

It is well-known that in M an order unit e exists, and an equivalent norm $\|\cdot\|_e$ can be introduced, as follows: $\|x\|_e := \inf\{\alpha > 0 : |x| \le \alpha e\}$ for all $x \in M$. With this norm, can be applied, and this gives rise to the integral Φ_e .

It is well-known that in M an order unit e exists, and an equivalent norm $\|\cdot\|_e$ can be introduced, as follows: $\|x\|_e := \inf\{\alpha > 0 : |x| \le \alpha e\}$ for all $x \in M$. With this norm, can be applied, and this gives rise to the integral Φ_e .

equivalence

 $f: T \to M$ is oH-integrable iff f is H-integrable

It is well-known that in M an order unit e exists, and an equivalent norm $\|\cdot\|_e$ can be introduced, as follows: $\|x\|_e := \inf\{\alpha > 0 : |x| \le \alpha e\}$ for all $x \in M$. With this norm, can be applied, and this gives rise to the integral Φ_e .

equivalence

 $f: T \to M$ is oH-integrable iff f is H-integrable

Proposition 21

Given $F: T \to cwk(M)$, for every $E \in \Sigma$ we have that

- (1) $\Phi^{o}(F, E) = \Phi(F, E) = \Phi_{e}(F, E)$,
- (2) $I_E = \Phi(F, E) = \Phi^o(F, E)$ whenever F is H-integrable.

References

A. Boccuto, A. R. Sambucini, *A McShane Integral for Multifunctions*, J. Concr. Appl. Math. **2** (4) (2004), 307-325.

A. Boccuto, A. R. Sambucini, A note on comparison between Birkhoff and McShane-type integrals for multifunctions, Real Anal. Exchange 37 (2) (2012), 315-324.

A. Boccuto, A.M. Minotti, A.R. Sambucini, *Set-valued Kurzweil-Henstock integral in Riesz space setting*, PanAmerican Mathematical Journal **23** (1) (2013), 57–74.

A. Boccuto, D. Candeloro, A. R. Sambucini *A note on set-valued Henstock - McShane integral in Banach (lattice) space setting*, preprint 2014, submitted, arXiv:1405.6530 [math.FA].

D. Candeloro, A.R. Sambucini, *Order-type Henstock and Mc Shane integrals in Banach lattice setting*, submitted to SISY 2014, arXiv:1405.6502 [math.FA].

B. Cascales, J. Rodríguez, *Birkhoff integral for multi-valued functions*, J. Math. Anal. Appl. **297** (2) (2004), 540-560.

B. Cascales, V. Kadets, J. Rodríguez, *The Pettis integral for multi-valued functions via single-valued ones*, J. Math. Anal. Appl. **332** (2007), no. 1, 1–10.

B. Cascales, V. Kadets, J. Rodríguez, *Measurable selectors and set-valued Pettis internon-separable Banach spaces*, J. Funct. Anal. **256** (2009), no. 3, 673–699.

References

L. Di Piazza, K. Musiał, *Set-valued Kurzweil-Henstock-Pettis integral*, Set-valued Anal. **13** (2005), 167-179.

L. Di Piazza, K. Musiał, *A decomposition theorem for compact-valued Henstock integral*, Monatsh. Math. **148** (2) (2006), 119–126.

L. Di Piazza, K. Musiał, *A decomposition of Denjoy - Hintchine - Pettis and Henstock - Kurzweil - Pettis integrable multifunctions*,in: Operator Theory: Adv. and Appl., vol. 201, BirHauser-Verlag, (2010), 171 - 182.

L. Di Piazza, K. Musiał, *Henstock - Kurzweil - Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space*, J.M.A.A. **408** (2013), 452–464.

L. Di Piazza, K. Musiał, *Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values*, Monatsh. Math. **173** (2014), 459 - 470

D. H. Fremlin, *The Henstock and McShane integrals of vector-valued functions,* Illinois J. Math. **38** (3) (1994), 471–479.

D. H. Fremlin, *The generalized McShane integral*, Illinois J. Math. **39** (1) (1995), 39–67.

D. H. Fremlin, Measure theory. Vol. 3. Measure Algebras, Torres Fremlin, Colchester, 2007

C. C. A. Labuschagne, A. L. Pinchuck, C. J. van Alten, *A vector lattice version of Rådstrőm's embedding theorem*, Quaest. Math. **30** (3) (2007), 285=308