On Corson's property (C) and Maharam type of measures

Damian Sobota

Warsaw Center of Mathematics and Computer Science

Integration, Vector Measures and Related Topics 2014

Joint work with Grzegorz Plebanek

K is always a compact Hausdorff space.

K is always a compact Hausdorff space.

C(K) denotes the Banach space of all real-valued continuous functions on K endowed with the supremum norm.

K is always a compact Hausdorff space.

C(K) denotes the Banach space of all real-valued continuous functions on K endowed with the supremum norm.

P(K) is the space of all probability regular Borel measures on K, endowed with the weak* topology,

K is always a compact Hausdorff space.

C(K) denotes the Banach space of all real-valued continuous functions on K endowed with the supremum norm.

P(K) is the space of all probability regular Borel measures on K, endowed with the weak* topology, ie. the smallest topology making functionals

$$\mu \longmapsto \int_{\mathcal{K}} f \mathrm{d}\mu$$

continuous for every $f \in C(K)$.

K is always a compact Hausdorff space.

C(K) denotes the Banach space of all real-valued continuous functions on K endowed with the supremum norm.

P(K) is the space of all probability regular Borel measures on K, endowed with the weak* topology, ie. the smallest topology making functionals

$$\mu \longmapsto \int_{\mathcal{K}} f \mathrm{d}\mu$$

continuous for every $f \in C(K)$.

For a Boolean algebra \mathcal{A} , $P(\mathcal{A})$ denotes the space of all probability finitely additive measures on \mathcal{A} with the topology of pointwise convergence.

Corson's property (C)

A Banach space X has **property** (C) of Corson if for every family \mathcal{C} of <u>convex</u> closed subsets of X with empty intersection there exists a countable subfamily $\mathcal{D} \subseteq \mathcal{C}$ with empty intersection.

Corson's property (C)

A Banach space X has **property** (C) of Corson if for every family $\mathcal C$ of convex closed subsets of X with empty intersection there exists a countable subfamily $\mathcal D\subseteq \mathcal C$ with empty intersection.

Every (weakly) Lindelöf Banach space X has (C).

Corson's property (C)

A Banach space X has **property** (C) of Corson if for every family $\mathcal C$ of convex closed subsets of X with empty intersection there exists a countable subfamily $\mathcal D\subseteq \mathcal C$ with empty intersection.

Every (weakly) Lindelöf Banach space X has (C).

 $C(\mathbb{D})$ where \mathbb{D} is the Double Arrow Space has (C) but is not weakly Lindelöf.

Corson's property (C)

A Banach space X has **property** (C) of Corson if for every family $\mathcal C$ of convex closed subsets of X with empty intersection there exists a countable subfamily $\mathcal D\subseteq \mathcal C$ with empty intersection.

Every (weakly) Lindelöf Banach space X has (C).

 $C(\mathbb{D})$ where \mathbb{D} is the Double Arrow Space has (C) but is not weakly Lindelöf.

Property (C) passes to closed subspaces, quotients and products.

R. Pol '80

For a Banach space X the following are equivalent:

1 X has property (C),

R. Pol '80

For a Banach space X the following are equivalent:

- X has property (C),
- ② for every $A \subseteq X^*$ and every $f \in \overline{A}^{w^*}$ there exists countable $A' \subseteq A$ such that $f \in \overline{\operatorname{conv}}^{w^*} A'$.

R. Pol '80

For a Banach space X the following are equivalent:

- X has property (C),
- ② for every $A \subseteq X^*$ and every $f \in \overline{A}^{w^*}$ there exists countable $A' \subseteq A$ such that $f \in \overline{\operatorname{conv}}^{w^*} A'$.

R. Pol '82

TFAE:

• the space C(K) has property (C),

R. Pol '80

For a Banach space X the following are equivalent:

- X has property (C),
- ② for every $A \subseteq X^*$ and every $f \in \overline{A}^{w^*}$ there exists countable $A' \subseteq A$ such that $f \in \overline{\operatorname{conv}}^{w^*} A'$.

R. Pol '82

TFAE:

- the space C(K) has property (C),
- ② for every $\mathcal{M} \subseteq P(K)$ and every $\mu \in \overline{\mathcal{M}}$ there exists countable $\mathcal{N} \subseteq \mathcal{M}$ such that $\mu \in \overline{\operatorname{conv}} \mathcal{N}$.

Tightness of a topological space

Tightness of a topological space X, denoted by $\tau(X)$, is the least cardinal number such that for every $A \subseteq X$ and $x \in \overline{A}$ there is a set $A_0 \subseteq A$ with $|A_0| \leqslant \tau(X)$ and $x \in \overline{A_0}$.

Tightness of a topological space

Tightness of a topological space X, denoted by $\tau(X)$, is the least cardinal number such that for every $A \subseteq X$ and $x \in \overline{A}$ there is a set $A_0 \subseteq A$ with $|A_0| \leqslant \tau(X)$ and $x \in \overline{A_0}$.

P(K) has **convex countable tightness** if P(K) fulfills condition (2) of Pol's theorem:

for every $\mathcal{M} \subseteq P(K)$ and every $\mu \in \overline{\mathcal{M}}$ there exists countable $\mathcal{N} \subseteq \mathcal{M}$ such that $\mu \in \overline{\operatorname{conv}} \mathcal{N}$.

Tightness of a topological space

Tightness of a topological space X, denoted by $\tau(X)$, is the least cardinal number such that for every $A \subseteq X$ and $x \in \overline{A}$ there is a set $A_0 \subseteq A$ with $|A_0| \leqslant \tau(X)$ and $x \in \overline{A_0}$.

P(K) has **convex countable tightness** if P(K) fulfills condition (2) of Pol's theorem:

for every $\mathcal{M} \subseteq P(K)$ and every $\mu \in \overline{\mathcal{M}}$ there exists countable $\mathcal{N} \subseteq \mathcal{M}$ such that $\mu \in \overline{\operatorname{conv}} \mathcal{N}$.

R. Pol '82

Assume P(K) has convex countable tightness ($\equiv C(K)$ has (C)).

Tightness of a topological space

Tightness of a topological space X, denoted by $\tau(X)$, is the least cardinal number such that for every $A \subseteq X$ and $x \in \overline{A}$ there is a set $A_0 \subseteq A$ with $|A_0| \leqslant \tau(X)$ and $x \in \overline{A_0}$.

P(K) has **convex countable tightness** if P(K) fulfills condition (2) of Pol's theorem:

for every $\mathcal{M} \subseteq P(K)$ and every $\mu \in \overline{\mathcal{M}}$ there exists countable $\mathcal{N} \subseteq \mathcal{M}$ such that $\mu \in \overline{\operatorname{conv}} \mathcal{N}$.

R. Pol '82

Assume P(K) has convex countable tightness ($\equiv C(K)$ has (C)). Does this imply the countable tightness of P(K)?

Frankiewicz, Plebanek, Ryll-Nardzewski '01

• YES under $MA(\omega_1)$.

Frankiewicz, Plebanek, Ryll-Nardzewski '01

- YES under $MA(\omega_1)$.
- YES if C(K) is weakly Lindelöf and K is zero-dimensional.

Frankiewicz, Plebanek, Ryll-Nardzewski '01

- YES under $MA(\omega_1)$.
- YES if C(K) is weakly Lindelöf and K is zero-dimensional.
- YES if for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Frankiewicz, Plebanek, Ryll-Nardzewski '01

- YES under $MA(\omega_1)$.
- YES if C(K) is weakly Lindelöf and K is zero-dimensional.
- YES if for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Plebanek and S.

If $P(K \times K)$ has convex countable tightness, then for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Frankiewicz, Plebanek, Ryll-Nardzewski '01

- YES under $MA(\omega_1)$.
- YES if C(K) is weakly Lindelöf and K is zero-dimensional.
- YES if for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Plebanek and S.

If $P(K \times K)$ has convex countable tightness, then for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Plebanek and S.

For every K, $C(K \times K)$ has property (C) if and only if $P(K \times K)$ has countable tightness.

Frankiewicz, Plebanek, Ryll-Nardzewski '01

- YES under $MA(\omega_1)$.
- YES if C(K) is weakly Lindelöf and K is zero-dimensional.
- YES if for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Plebanek and S.

If $P(K \times K)$ has convex countable tightness, then for every $\mu \in P(K)$ the space $L_1(\mu)$ is separable.

Plebanek and S.

For every K, $C(K \times K)$ has property (C) if and only if $P(K \times K)$ has countable tightness.

Note that: $\tau(P(K \times K)) = \omega \Rightarrow \tau(P(K)) = \omega$.

Question

Assume C(K) has property (C). Does this imply that $C(K \times K)$ has property (C)?

Question

Assume C(K) has property (C). Does this imply that $C(K \times K)$ has property (C)?

Probably...

YES if K is:

Eberlein (≡ weakly compact subset of a Banach sp.; R. Pol),

Question

Assume C(K) has property (C). Does this imply that $C(K \times K)$ has property (C)?

Probably...

YES if K is:

- Eberlein (≡ weakly compact subset of a Banach sp.; R. Pol),
- Rosenthal.

Question

Assume C(K) has property (C). Does this imply that $C(K \times K)$ has property (C)?

Probably...

YES if K is:

- Eberlein (≡ weakly compact subset of a Banach sp.; R. Pol),
- Rosenthal.

$$C(K \times K)$$
 has $(C) \Rightarrow C(K)$ has (C)

$$C(K)$$
 has $(C) \Rightarrow C(K) \oplus C(K)$ has (C)

Maharam type of a measure

Let $\mu \in P(K)$. We say that μ has *a countable (Maharam) type* if there exists a countable family \mathcal{C} of Borel subsets of K which is \triangle -dense,

Maharam type of a measure

Let $\mu \in P(K)$. We say that μ has **a countable (Maharam) type** if there exists a countable family $\mathcal C$ of Borel subsets of K which is \triangle -dense, ie. for every $B \in Borel(K)$ and $\varepsilon > 0$ there exists $C \in \mathcal C$ such that $\mu(B \triangle C) < \varepsilon$.

Maharam type of a measure

Let $\mu \in P(K)$. We say that μ has **a countable (Maharam) type** if there exists a countable family $\mathcal C$ of Borel subsets of K which is \triangle -dense, ie. for every $B \in Borel(K)$ and $\varepsilon > 0$ there exists $C \in \mathcal C$ such that $\mu(B\triangle C) < \varepsilon$.

Equivalently, the pseudo-metric space $(Borel(K), \rho_{\mu})$ is separable, where $\rho_{\mu}(A, B) := \mu(A \triangle B)$ for every $A, B \in Borel(K)$.

Maharam type of a measure

Let $\mu \in P(K)$. We say that μ has **a countable (Maharam) type** if there exists a countable family $\mathcal C$ of Borel subsets of K which is \triangle -dense, ie. for every $B \in Borel(K)$ and $\varepsilon > 0$ there exists $C \in \mathcal C$ such that $\mu(B \triangle C) < \varepsilon$.

Equivalently, the pseudo-metric space $(Borel(K), \rho_{\mu})$ is separable, where $\rho_{\mu}(A, B) := \mu(A \triangle B)$ for every $A, B \in Borel(K)$.

Equivalently, μ has a countable type iff $L_1(\mu)$ is separable.

Talagrand '81

If K admits a measure of type ω_2 , then P(K) can be continuously mapped onto $[0,1]^{\omega_2}$.

Talagrand '81

If K admits a measure of type ω_2 , then P(K) can be continuously mapped onto $[0,1]^{\omega_2}$. Hence, if $\tau(P(K)) \leq \omega_1$, then every measure $\mu \in P(K)$ is of type $\leq \omega_1$.

Talagrand '81

If K admits a measure of type ω_2 , then P(K) can be continuously mapped onto $[0,1]^{\omega_2}$. Hence, if $\tau(P(K)) \leq \omega_1$, then every measure $\mu \in P(K)$ is of type $\leq \omega_1$.

Fremlin '97 under $MA(\omega_1)$

If K carries a measure of uncountable type, then K can be continuously mapped onto $[0,1]^{\omega_1}$.

Talagrand '81

If K admits a measure of type ω_2 , then P(K) can be continuously mapped onto $[0,1]^{\omega_2}$. Hence, if $\tau(P(K)) \leq \omega_1$, then every measure $\mu \in P(K)$ is of type $\leq \omega_1$.

Fremlin '97 under $MA(\omega_1)$

If K carries a measure of uncountable type, then K can be continuously mapped onto $[0,1]^{\omega_1}$. Hence, P(K) has uncountable tightness.

Question

Assume P(K) has countable tightness. Does this imply that every measure $\mu \in P(K)$ is of countable type?

Question

Assume P(K) has countable tightness. Does this imply that every measure $\mu \in P(K)$ is of countable type?

Plebanek and S.

Assume $P(K \times K)$ has countable tightness. Then every measure $\mu \in P(K)$ is of countable type.

Question

Assume P(K) has countable tightness. Does this imply that every measure $\mu \in P(K)$ is of countable type?

Plebanek and S.

Assume $P(K \times K)$ has countable tightness. Then every measure $\mu \in P(K)$ is of countable type.

R. Pol '82

Assume P(K) has countable tightness. Does $P(K \times K)$ have countable tightness, too?

Question

Assume P(K) has countable tightness. Does this imply that every measure $\mu \in P(K)$ is of countable type?

Plebanek and S.

Assume $P(K \times K)$ has countable tightness. Then every measure $\mu \in P(K)$ is of countable type.

R. Pol '82

Assume P(K) has countable tightness. Does $P(K \times K)$ have countable tightness, too?

Note again that:
$$\tau(P(K \times K)) = \omega \Rightarrow \tau(P(K)) = \omega$$
 and $\tau(P(K)) = \omega \Rightarrow \tau(P(K) \times P(K)) = \omega$

Assume there is $\mu \in P(K)$ of uncountable type.

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

For $\xi < \omega_1$ construct $\nu_{\xi} \in P(Bor(K) \otimes Bor(K))$ in such a way that:

- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/4$ for $\eta < \xi$,
- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/2$ for $\eta \geqslant \xi$,

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

For $\xi < \omega_1$ construct $\nu_{\xi} \in P(Bor(K) \otimes Bor(K))$ in such a way that:

- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/4$ for $\eta < \xi$,
- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/2$ for $\eta \geqslant \xi$,
- $\nu_{\xi}(A \times K) = \nu_{\xi}(K \times A) = \mu(A)$ for $A \in Bor(K)$.

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

For $\xi < \omega_1$ construct $\nu_{\xi} \in P(Bor(K) \otimes Bor(K))$ in such a way that:

- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/4$ for $\eta < \xi$,
- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/2$ for $\eta \geqslant \xi$,
- $\nu_{\xi}(A \times K) = \nu_{\xi}(K \times A) = \mu(A)$ for $A \in Bor(K)$.

Extend ν_{ξ} to $\widehat{\nu}_{\xi} \in P(K \times K)$.

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

For $\xi < \omega_1$ construct $\nu_{\xi} \in P(Bor(K) \otimes Bor(K))$ in such a way that:

- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/4$ for $\eta < \xi$,
- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/2$ for $\eta \geqslant \xi$,
- $\nu_{\xi}(A \times K) = \nu_{\xi}(K \times A) = \mu(A)$ for $A \in Bor(K)$.

Extend ν_{ξ} to $\widehat{\nu}_{\xi} \in P(K \times K)$. Any cluster point of $\langle \widehat{\nu}_{\xi} : \xi < \omega_{1} \rangle$ is a point of tightness $\geqslant \omega_{1}$ in $P(K \times K)$.

Assume there is $\mu \in P(K)$ of uncountable type.

By the Maharam Theorem there is $\langle B_{\xi} \in Bor(K) : \xi < \omega_1 \rangle$ such that:

- $\mu(B_{\xi}) = \frac{1}{2}$,
- B_{ξ} are μ -independent of each other.

For $\xi < \omega_1$ construct $\nu_{\xi} \in P(Bor(K) \otimes Bor(K))$ in such a way that:

- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/4$ for $\eta < \xi$,
- $\nu_{\xi}(B_{\eta} \times B_{\eta}) = 1/2$ for $\eta \geqslant \xi$,
- $\nu_{\xi}(A \times K) = \nu_{\xi}(K \times A) = \mu(A)$ for $A \in Bor(K)$.

Extend ν_{ξ} to $\widehat{\nu}_{\xi} \in P(K \times K)$. Any cluster point of $\langle \widehat{\nu}_{\xi} : \xi < \omega_{1} \rangle$ is a point of tightness $\geqslant \omega_{1}$ in $P(K \times K)$.

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

If K is Rosenthal, then every $\mu \in P(K)$ is of countable type.

K Rosenthal

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

If K is Rosenthal, then every $\mu \in P(K)$ is of countable type.

 ${\mathcal K}$ Rosenthal ${\mathcal K} imes {\mathcal K}$ Rosenthal

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

$$K$$
 Rosenthal \Downarrow $K \times K$ Rosenthal \Downarrow $P(K \times K)$ Rosenthal

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

$$K$$
 Rosenthal \Downarrow $K \times K$ Rosenthal \Downarrow $P(K \times K)$ Rosenthal \Downarrow $P(K \times K)$ Fréchet-Urysohn

K is **Rosenthal** if K embeds into $B_1(X)$, the space of Baire-one functions on a Polish space X.

Bourgain '74, Todorčević '99, Marciszewski & Plebanek '12

$$K$$
 Rosenthal \Downarrow $K \times K$ Rosenthal \Downarrow $P(K \times K)$ Rosenthal \Downarrow $P(K \times K)$ Fréchet-Urysohn \Downarrow $\tau(P(K \times K)) = \omega$

Topological dichotomy for $P(K \times K)$

Krupski, Plebanek '11

P(K) contains either a \mathbb{G}_{δ} point (ie. a point of countable character in P(K)) or a measure of uncountable type.

Topological dichotomy for $P(K \times K)$

Krupski, Plebanek '11

P(K) contains either a \mathbb{G}_{δ} point (ie. a point of countable character in P(K)) or a measure of uncountable type.

Plebanek and S.

Either $P(K \times K)$ contains a \mathbb{G}_{δ} point or $P(K \times K)$ has uncountable tightness.

The end

Thank you for your attention.