# Openness of measures and closedness of their range

A. Avallone<sup>1</sup> G. Barbieri<sup>2</sup> P. Vitolo<sup>1</sup> H. Weber<sup>2</sup>

<sup>1</sup>Department of Mathematics, Computer Science and Economics University of Basilicata

<sup>2</sup>Department of Mathematics and Computer Science University of Udine

Sixth Conference on Integration, Vector Measures and Related Topics Bedlewo, 2014





- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures





- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures

- Our Results
  - Statement of the Results
  - Basic Ideas for Proofs





- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures

- Our Results
  - Statement of the Results
  - Basic Ideas for Proofs





# Closedness of range of a measure

This well-known result was first established by Lyapunov and rediscovered by Halmos some years later.

Theorem (Lyapunov, 1940; Halmos, 1948)

The range of an  $\mathbb{R}^N$ -valued  $\sigma$ -additive measure defined on a  $\sigma$ -algebra is closed.



P. R. Halmos.

The range of a vector measure.

Bull. Amer. Math Soc., 54 (1948), 416–421.





# Open Maps

Let X and Y be topological spaces, and let X be a point in X.

#### Definition

A map T of X onto Y is open at x if for each neighborhood U of x the image T(U) is a neighborhood of T(x).

We simply say that T is open if it is open at each point of X.

Equivalently: The image of every open set is open.





# Open Maps

Let X and Y be topological spaces, and let X be a point in X.

#### Definition

A map T of X onto Y is open at x if for each neighborhood U of x the image T(U) is a neighborhood of T(x).

We simply say that T is open if it is open at each point of X. Equivalently: The image of every open set is open.

### Openness Lemma

If X,Y are  $1^{st}$ -countable (in particular pseudo-metrizable), a map T of X onto Y is open at  $x \in X$  if and only if for every sequence  $(y_n)_{n \in \mathbb{N}}$  in Y converging to T(x) there is a sequence  $(x_n)_{n \in \mathbb{N}}$  in X converging to X and such that X on X for each X in X converging to X and such that X in X for each X in X in X converging to X and such that X is X for each X in X in X converging to X and X in X in





# Openness of Measures

Let  $\mathcal A$  be an algebra of sets, G a topological Abelian group, and  $\mu\colon \mathcal A\to G$  a measure. It is well-known that there is the weakest FN-topology  $\tau(\mu)$  which makes  $\mu$  continuous, called  $\mu$ -topology. Its neighborhoods at  $\emptyset$  have the form

$$U_W = \{ A \in \mathcal{A} \mid \forall B \subseteq A \quad \mu(B) \in W \},\$$

where W is a neighborhood of 0 in G.

# Theorem (A. Spakowski, 1988)

An  $\mathbb{R}^N$ -valued  $\sigma$ -additive nonatomic measure  $\mu$  on a  $\sigma$ -algebra  $\mathcal{A}$  is open when regarded as a map onto its image  $\mu(\mathcal{A})$ , where  $\mathcal{A}$  is endowed with the  $\mu$ -topology.



A. Spakowski.

Openness of vector measures and their integral maps.

J. Austral. Math. Soc. Ser. A, 45, no. 3 (1988), 351–359.



- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures

- Our Results
  - Statement of the Results
  - Basic Ideas for Proofs



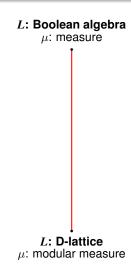


L: Boolean algebra

 $\mu$ : measure

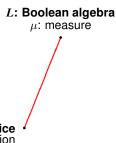








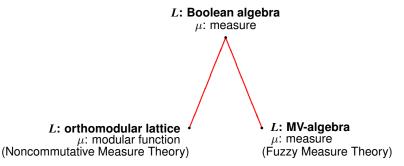






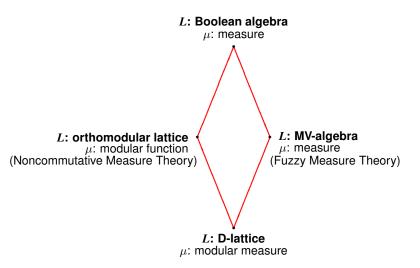
















# **D-Posets and D-Lattices**

#### Definition

A D-poset is a partially ordered set, having 0 and 1, endowed with a partially defined operation  $\ominus$  such that:

- $\bullet$   $a \ominus b$  is defined if and only if  $b \le a$
- 2 If  $a \le b$  then  $b \ominus a \le b$  and  $b \ominus (b \ominus a) = a$
- **3** If  $a \le b \le c$  then  $c \ominus b \le c \ominus a$  and  $(c \ominus a) \ominus (c \ominus b) = b \ominus a$





# **D-Posets and D-Lattices**

#### Definition

A D-poset is a partially ordered set, having 0 and 1, endowed with a partially defined operation  $\ominus$  such that:

- **1**  $a \ominus b$  is defined if and only if  $b \le a$
- 2 If  $a \le b$  then  $b \ominus a \le b$  and  $b \ominus (b \ominus a) = a$

A D-lattice is a D-poset which is also a lattice.

- $\bullet \ a^{\perp} := 1 \ominus a$
- $a \perp b$  means  $a \leq b^{\perp}$  (equivalently  $b \leq a^{\perp}$ )
- $a \oplus b := (a^{\perp} \ominus b)^{\perp}$  whenever  $a \perp b$ The sum  $\oplus$  is commutative and associative.



# From D-Lattices to Boolean Algebras

D-posets and D-lattices were introduced by Chovanec and Kôpka in 1994–1995.

In the same years, Bennett and Foulis defined independently the equivalent structure of effect algebra, for modelling unsharp measurement in a quantum mechanical system.





# From D-Lattices to Boolean Algebras

D-posets and D-lattices were introduced by Chovanec and Kôpka in 1994–1995.

In the same years, Bennett and Foulis defined independently the equivalent structure of effect algebra, for modelling unsharp measurement in a quantum mechanical system.

- An orthomodular lattice is a D-lattice satisfying
- An MV-algebra is a D-lattice satisfying





# From D-Lattices to Boolean Algebras

D-posets and D-lattices were introduced by Chovanec and Kôpka in 1994–1995.

In the same years, Bennett and Foulis defined independently the equivalent structure of effect algebra, for modelling unsharp measurement in a quantum mechanical system.

- An orthomodular lattice is a D-lattice satisfying
- An MV-algebra is a D-lattice satisfying
- A Boolean algebra is a D-lattice satisfying both and •.





# **Applications of Effect Algebras**

These structures, and other generalizations of Boolean algebras, such as MV-algebras or orthomodular lattices, which are particular cases of effect algebras, have applications in

- Logic and Programming Languages: Effect algebras, MV-algebras
- Quantum Physics and Quantum Logic: Effect algebras, orthomdular lattices
- Mathematical Economics, Theory of Decision:
   Effect algebras, MV-algebras, orthomodular lattices
- Measure Theory:
   MV-algebras, orthomodular lattices, Boolean algebras





# Orthogonal sequences

- The sum  $\bigoplus_{k=1}^{n} a_k$  of a finite sequence is defined as:  $\bigoplus_{k=1}^{1} a_k = a_1$ , and  $\bigoplus_{k=1}^{n+1} a_k = (\bigoplus_{k=1}^{n} a_k) \oplus a_{n+1}$  provided that the right-hand side exists.
- If the sum  $\bigoplus_{k=1}^{n} a_k$  exists, we say that the finite sequence  $(a_1, \ldots, a_n)$  is orthogonal.





# Orthogonal sequences

- The sum  $\bigoplus_{k=1}^n a_k$  of a finite sequence is defined as:  $\bigoplus_{k=1}^1 a_k = a_1$ , and  $\bigoplus_{k=1}^{n+1} a_k = \left(\bigoplus_{k=1}^n a_k\right) \oplus a_{n+1}$  provided that the right-hand side exists.
- If the sum  $\bigoplus_{k=1}^{n} a_k$  exists, we say that the finite sequence  $(a_1, \ldots, a_n)$  is orthogonal.
- We say that an infinite sequence  $(a_n)_{n\in\mathbb{N}}$  is orthogonal if the sum  $\bigoplus_{k=1}^n a_k$  exists for all  $n\in\mathbb{N}$ .
- The sum of an infinite orthogonal sequence  $(a_n)_{n\in\mathbb{N}}$  is  $\bigoplus_{k=1}^{+\infty} a_k := \sup_{n\in\mathbb{N}} \bigoplus_{k=1}^n a_k$  (if the supremum exists).





# Modular Measures

*L*: D-lattice. *G*: Hausdorff topological Abelian group.

#### **Definition**

A map  $\mu: L \to G$  is a modular measure if the following hold

- $abla \forall a,b \in L \text{ we have } \mu(a \lor b) + \mu(a \land b) = \mu(a) + \mu(b)$

Let  $\mu: L \to G$  be a modular measure.

We say that  $a \in L$  is  $\mu$ -negligible if  $\mu(b) = 0$  whenever  $b \le a$ . The set of  $\mu$ -negligible elements will be denoted by  $I(\mu)$ .





# Modular Measures

*L*: D-lattice. *G*: Hausdorff topological Abelian group.

#### **Definition**

A map  $\mu \colon L \to G$  is a modular measure if the following hold

- $\bullet$   $\forall a,b \in L$  with  $a \perp b$  we have  $\mu(a \oplus b) = \mu(a) + \mu(b)$
- 2  $\forall a,b \in L$  we have  $\mu(a \lor b) + \mu(a \land b) = \mu(a) + \mu(b)$

Let  $\mu: L \to G$  be a modular measure.

We say that  $a \in L$  is  $\mu$ -negligible if  $\mu(b) = 0$  whenever  $b \le a$ . The set of  $\mu$ -negligible elements will be denoted by  $I(\mu)$ .

#### Definition

A modular measure  $\mu$  is  $\sigma$ -additive if, given any orthogonal sequence  $(a_n)_{n\in\mathbb{N}}$  for which the sum exists, we have  $\mu(\bigoplus_{k=1}^{+\infty}a_k)=\sum_{k=1}^{+\infty}\mu(a_k)$ .





### **D-Uniformities**

#### **Definition**

A uniformity  $\mathcal{W}$  on a D-lattice L is a D-uniformity if it makes uniformly continuous the operations  $\vee$ ,  $\wedge$  and  $\ominus$  (hence  $\oplus$ , too).





### **D-Uniformities**

#### Definition

A uniformity  $\mathcal{W}$  on a D-lattice L is a D-uniformity if it makes uniformly continuous the operations  $\vee$ ,  $\wedge$  and  $\ominus$  (hence  $\oplus$ , too).

Let G be a topological Abelian group.

Given a G-valued modular measure  $\mu$ , there is always the weakest D-uniformity  $\mathcal{U}(\mu)$  making  $\mu$  uniformly continuous, called  $\mu$ -uniformity.

The topology induced by  $\mathcal{U}(\mu)$  is called the  $\mu$ -topology. In case L is a Boolean algebra, this definition of  $\mu$ -topology agrees with the classical one.





- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures

- Our Results
  - Statement of the Results
  - Basic Ideas for Proofs





# Interior Points of the Range

*L*: D-lattice.  $\mu: L \to \mathbb{R}^N$ : modular measure.

#### Definition

We say that  $\mu$  is nonatomic if given any  $\varepsilon > 0$  there exists an orthogonal sequence  $(a_1, \ldots, a_m)$  with  $\bigoplus_{k=1}^m a_k = 1$  such that for each  $k \in \{1, \ldots, m\}$  and every  $b \le a_k$  one has  $\|\mu(b)\| \le \varepsilon$ .

#### Definition

*L* is  $\sigma$ -complete if every increasing sequence has a supremum.

#### Interior Points Theorem

Suppose L is  $\sigma$ -complete and  $\mu$  is nonatomic. Let  $a \in L$ . If  $\mu(a)$  is an interior point of the range  $\mu(L)$ , then  $\mu$  is open at a.





# The One-Dimensional Case

Let  $\mu: L \to \mathbb{R}$  a modular measure, where L is  $\sigma$ -complete.

#### Closedness Theorem

If  $\mu$  is  $\sigma$ -additive, the range  $\mu(L)$  is a closed bounded interval.

### Proof of the Closedness Theorem (sketch)

A generalization of Lyapunov theorem (G. Barbieri, 2004) ensures that  $\mu(L)$  is convex. Moreover a  $\sigma$ -additive modular measure on a  $\sigma$ -complete D-lattice achieves its minimum and its maximum (H. Weber, 1996).





# The One-Dimensional Case

Let  $\mu: L \to \mathbb{R}$  a modular measure, where *L* is  $\sigma$ -complete.

#### Closedness Theorem

If  $\mu$  is  $\sigma$ -additive, the range  $\mu(L)$  is a closed bounded interval.

### Proof of the Closedness Theorem (sketch)

A generalization of Lyapunov theorem (G. Barbieri, 2004) ensures that  $\mu(L)$  is convex. Moreover a  $\sigma$ -additive modular measure on a  $\sigma$ -complete D-lattice achieves its minimum and its maximum (H. Weber, 1996).

### **Openness Theorem**

If  $\mu$  is nonatomic, then it is an open map.





### Main Theorem

#### Theorem

Let L be a  $\sigma$ -complete D-lattice. A  $\sigma$ -additive modular measure  $\mu \colon L \to \mathbb{R}^N$  has closed range. If  $\mu$  is nonatomic then it is open.





### Main Theorem

#### Theorem

Let L be a  $\sigma$ -complete D-lattice. A  $\sigma$ -additive modular measure  $\mu \colon L \to \mathbb{R}^N$  has closed range. If  $\mu$  is nonatomic then it is open.

# Example (a non-open $\sigma$ -additive measure with convex range)

The  $\sigma$ -additive atomic measure  $\mu$ , of  $\mathcal{P}(\mathbb{N})$  onto [0,1], defined by the formula  $\mu(\{n\})=2^{-n}$  for  $n\in\mathbb{N}$ , is not open at  $A=\{1\}$ .

### Proof of the Example.

If  $A_n=\mathbb{N}\setminus\{1,n+1\}$  then  $\lim_n\mu(A_n)=\lim_n\frac{1}{2}-\frac{1}{2^{n+1}}=\frac{1}{2}=\mu(A)$ . Given  $B_n\subseteq\mathbb{N}$  with  $\mu(B_n)=\mu(A_n)$ , we have  $\mu(B_n)<\frac{1}{2}$ , hence  $1\notin B_n$  and thus  $\mu(B_n\triangle\{1\})=\mu(B_n\cup\{1\})\geq\frac{1}{2}$ . Therefore  $B_n$  does not converge to  $A=\{1\}$  with respect to the  $\mu$ -topology.  $\square$ 





- Introduction and Motivation
  - The Classical Results That We Consider
  - D-Lattices and Modular Measures

- Our Results
  - Statement of the Results
  - Basic Ideas for Proofs





# **Order Continuous Modular Measures**

*L*: D-lattice. *Y*: Banach space. If  $(a_j)_{j\in J}$  is a decreasing net in *L*, and  $a=\inf_{j\in J}a_j$ , we write  $a_j\searrow a$ .

#### Definition

```
We say that a modular measure \mu\colon L\to Y is \sigma-order continuous (\sigma-o.c.) if a_n\searrow 0 implies \lim_n \mu(a_n)=0, for every decreasing sequence (a_n)_{n\in\mathbb{N}} order continuous (o.c.) if a_j\searrow 0 implies \lim_j \mu(a_j)=0, for every decreasing net (a_j)_{j\in J}
```





# **Order Continuous Modular Measures**

*L*: D-lattice. *Y*: Banach space. If  $(a_j)_{j\in J}$  is a decreasing net in *L*, and  $a=\inf_{j\in J}a_j$ , we write  $a_j\searrow a$ .

#### Definition

We say that a modular measure  $\mu\colon L\to Y$  is  $\sigma$ -order continuous ( $\sigma$ -o.c.) if  $a_n\searrow 0$  implies  $\lim_n \mu(a_n)=0$ , for every decreasing **sequence**  $(a_n)_{n\in\mathbb{N}}$  order continuous (o.c.) if  $a_j\searrow 0$  implies  $\lim_j \mu(a_j)=0$ , for every decreasing **net**  $(a_j)_{j\in J}$ 

#### **Theorem**

A modular measure  $\mu \colon L \to Y$  is  $\sigma$ -order continuous if and only if it is  $\sigma$ -additive.





# Proof of the Interior Points Theorem

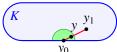
#### Interior Points Lemma

Let f be a map of a topological space X onto a subset K of a topological linear space Y. Fix  $x_0 \in X$  and  $y_0 := f(x_0)$ . Suppose that for each  $\varepsilon > 0$  there is a neighborhood Y of Y such that for every  $Y \in (y_0 + V) \cap K$  we have  $Y \in Y$  we have  $Y \in Y$ . Suppose also that there is  $Y \colon X \times [0,1] \to X$  satisfying:

- 2  $\gamma(x,\cdot)$  is equicontinuous at 0 (uniformly w.r.t.  $x \in X$ );
- **③**  $f(\gamma(x,t)) = (1-t)f(x_0) + tf(x)$  for all  $x \in X$  and  $t \in [0,1]$ .

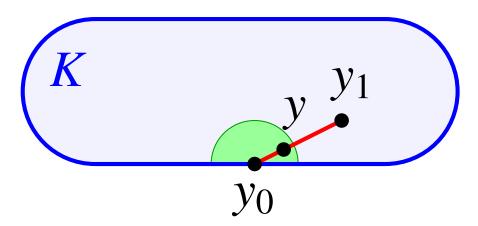
Then f is open at  $x_0$ .

The situation is illustrated in the figure at right where the set  $(y_0 + V) \cap K$  is colored in green and the point  $y_0 + \frac{1}{5}(y - y_0)$  is denoted by  $y_1$ .





#### Proof of the Interior Points Theorem







# **Uniformly Equicontinuous Paths**

#### Path Theorem

Let  $\mu \colon L \to \mathbb{R}^N$  be a modular measure, where L is  $\sigma$ -complete and  $\mu$  is nonatomic. There exists  $\gamma \colon L \times L \times [0,1] \to L$  such that, for all  $a,b \in L$  and every  $t \in [0,1]$ :

- **1**  $\gamma(a,b,0) = a, \quad \gamma(a,b,1) = b;$
- **3**  $\gamma(a,b,\cdot)$  is uniformly equicontinuous with respect to  $\mathcal{U}(\mu)$ .





# Uniformly Equicontinuous Paths

#### Path Theorem

Let  $\mu \colon L \to \mathbb{R}^N$  be a modular measure, where L is  $\sigma$ -complete and  $\mu$  is nonatomic. There exists  $\gamma \colon L \times L \times [0,1] \to L$  such that, for all  $a,b \in L$  and every  $t \in [0,1]$ :

- **1**  $\gamma(a,b,0) = a, \quad \gamma(a,b,1) = b;$
- **3**  $\gamma(a,b,\cdot)$  is uniformly equicontinuous with respect to  $\mathcal{U}(\mu)$ .

Applying the above theorem, and the Interior Points Lemma we obtain the Interior Points Theorem, as well as the Openness Theorem in the one-dimensional case.





### **Exposed Points**

#### Definition

Let K be a subset of a Banach space Y, and let  $p \in K \subset Y$ . We say that p is an exposed point of K if there is  $y^* \in Y^*$  such that  $y^*(p) > y^*(y)$  for all  $y \in K \setminus \{p\}$ . In this case we also say that K is exposed at p by  $y^*$ .

The exposed points are colored in green, while the four points marked in red are extreme points but not exposed points.



#### **Exposed Points Lemma**

Let L be a  $\sigma$ -complete D-lattice,  $a \in L$ , and Y a Banach space. If  $\mu \colon L \to Y$  is a  $\sigma$ -additive modular measure with  $\mu(L)$  exposed at  $\mu(a)$  by a  $y^* \in Y^*$ , then  $\mu$  is open at a. Also, given  $(a_n)_{n \in \mathbb{N}}$  in L such that  $\lim_n y^* \big( \mu(a_n) \big) = y^* \big( \mu(a) \big)$ , we have  $\lim_n \mu(a_n) = \mu(a)$ .





# **Decomposition by Central Elements**

#### Definition

An element  $c \in L$  is central if  $\forall a \in L \quad (a \land c) \lor (a \land c^{\perp}) = a$ .

The set C(L) of central elements (center) is a Boolean algebra.

#### **Decomposition Theorem**

Let L be a complete D-lattice, Y a Banach space, and  $\mu \colon L \to Y$  an o.c. modular measure with no nonzero  $\mu$ -negligible elements. Given  $y^* \in Y^* \setminus \{0\}$ , there is a decomposition of  $\mu$  into the sum of two modular measures  $h_1, h_2$  such that:

- $\bullet$   $h_1: a \mapsto \mu(a \wedge s)$  and  $h_2: a \mapsto \mu(a \wedge s^{\perp})$ , where  $s \in C(L)$ ;
- 2  $y^* \circ h_1 = 0$ ;
- 3  $h_2(L)$  is exposed by  $y^*$  at  $h_2(p)$  for some  $p \leq s^{\perp}$ .









**①** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .





- Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.





- Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .





- Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{x \in L} y^* (\mu(x))$ .





- **1** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{z \in I} y^* (\mu(x))$ .
  - Apply Decomposition Theorem to get  $\mu = h_1 + h_2$ ,  $x \in L$  a central element s, and  $p \le s^{\perp}$ . Let  $(z_n)_{n \in \mathbb{N}}$  in Y with  $\lim_n z_n = z$  and, for every n, let  $a_n \in L$  such that  $\mu(a_n) = z_n$ . Since  $y^*(h_2(p)) = y^*(z) = \lim_n y^*(\mu(a_n)) = \lim_n y^*(h_2(a_n))$ , by Exposed Points Lemma,  $h_2(p) = \lim_n h_2(a_n)$ , so  $z h_2(q) \in \overline{h_1(L)}$ .
    - Exposed Points Lemma,  $h_2(p) = \lim_n h_2(a_n)$ , so  $z h_2(q) \in h_1(q)$





- **1** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{z \in L} y^* (\mu(x))$ .
  - Apply Decomposition Theorem to get  $\mu=h_1+h_2$ ,  $x\in L$  a central element s, and  $p\leq s^\perp$ . Let  $(z_n)_{n\in\mathbb{N}}$  in Y with  $\lim_n z_n=z$  and, for every n, let  $a_n\in L$  such that  $\mu(a_n)=z_n$ . Since  $y^*\left(h_2(p)\right)=y^*(z)=\lim_n y^*\left(\mu(a_n)\right)=\lim_n y^*\left(h_2(a_n)\right)$ , by Exposed Points Lemma,  $h_2(p)=\lim_n h_2(a_n)$ , so  $z-h_2(q)\in\overline{h_1(L)}$ .
  - The range of  $h_1$  has dimension < N, hence is closed. Thus we find  $q \in L$  with  $h_1(q) = z h_2(p)$ . Therefore  $z = \mu((q \land s) \oplus p)$ .





- **1** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{z \in I} y^* (\mu(x))$ .
  - Apply Decomposition Theorem to get  $\mu=h_1+h_2$ ,  $x\in L$  a central element s, and  $p\leq s^\perp$ . Let  $(z_n)_{n\in\mathbb{N}}$  in Y with  $\lim_n z_n=z$  and, for every n, let  $a_n\in L$  such that  $\mu(a_n)=z_n$ . Since  $y^*\left(h_2(p)\right)=y^*(z)=\lim_n y^*\left(\mu(a_n)\right)=\lim_n y^*\left(h_2(a_n)\right)$ , by Exposed Points Lemma,  $h_2(p)=\lim_n h_2(a_n)$ , so  $z-h_2(q)\in\overline{h_1(L)}$ .
  - The range of  $h_1$  has dimension < N, hence is closed. Thus we find  $q \in L$  with  $h_1(q) = z h_2(p)$ . Therefore  $z = \mu((q \land s) \oplus p)$ .
  - Now let  $a \in L$  such that  $\mu(a) = z$ . Then  $\mu$  is open at a, because:





- **1** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- **②** Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{z \in L} y^* (\mu(x))$ .
  - Apply Decomposition Theorem to get  $\mu=h_1+h_2$ ,  $x\in L$  a central element s, and  $p\leq s^\perp$ . Let  $(z_n)_{n\in\mathbb{N}}$  in Y with  $\lim_n z_n=z$  and, for every n, let  $a_n\in L$  such that  $\mu(a_n)=z_n$ . Since  $y^*\left(h_2(p)\right)=y^*(z)=\lim_n y^*\left(\mu(a_n)\right)=\lim_n y^*\left(h_2(a_n)\right)$ , by Exposed Points Lemma,  $h_2(p)=\lim_n h_2(a_n)$ , so  $z-h_2(q)\in\overline{h_1(L)}$ .
  - The range of  $h_1$  has dimension < N, hence is closed. Thus we find  $q \in L$  with  $h_1(q) = z h_2(p)$ . Therefore  $z = \mu((q \land s) \oplus p)$ .
  - Now let  $a \in L$  such that  $\mu(a) = z$ . Then  $\mu$  is open at a, because:
    - $h_1(L)$  has dimension < N, hence  $h_1$  is open at a;



- **1** Up to a quotient, we assume L complete,  $\mu$  o.c., and  $I(\mu) = \{0\}$ .
- ② Consider the case when  $\mu$  is nonatomic. Argue by induction: If N=1 the result has been already established, so let N>1.
  - In view of the Interior Points Theorem, it suffices to consider a boundary point z of  $\mu(L)$ : we will prove that  $z \in \mu(L)$  and that  $\mu$  is open at any  $a \in L$  such that  $\mu(a) = z$ .
  - As  $\mu(L)$  is convex, we find  $y^* \in Y^* \setminus \{0\}$  with  $y^*(z) = \sup_{z \in I} y^* (\mu(x))$ .
  - Apply Decomposition Theorem to get  $\mu=h_1+h_2$ ,  $x\in L$  a central element s, and  $p\leq s^\perp$ . Let  $(z_n)_{n\in\mathbb{N}}$  in Y with  $\lim_n z_n=z$  and, for every n, let  $a_n\in L$  such that  $\mu(a_n)=z_n$ . Since  $y^*\left(h_2(p)\right)=y^*(z)=\lim_n y^*\left(\mu(a_n)\right)=\lim_n y^*\left(h_2(a_n)\right)$ , by Exposed Points Lemma,  $h_2(p)=\lim_n h_2(a_n)$ , so  $z-h_2(q)\in\overline{h_1(L)}$ .
  - The range of  $h_1$  has dimension < N, hence is closed. Thus we find  $q \in L$  with  $h_1(q) = z h_2(p)$ . Therefore  $z = \mu((q \land s) \oplus p)$ .
  - Now let  $a \in L$  such that  $\mu(a) = z$ . Then  $\mu$  is open at a, because:
    - $h_1(L)$  has dimension < N, hence  $h_1$  is open at a;
    - by Exposed Points Lemma,  $h_2$  is open at a, too.



In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.





- In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.
- **4** Use Hammer–Sobczyk Decomposition<sup>(\*)</sup> to get  $\mu = \lambda + \xi$ , where  $\lambda$ ,  $\xi$  are modular measures such that  $\lambda$  is nonatomic and  $\xi$  has compact range.

(\*)





- $oldsymbol{3}$  In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.
- 4 Use Hammer–Sobczyk Decomposition<sup>(\*)</sup> to get  $\mu = \lambda + \xi$ , where  $\lambda$ ,  $\xi$  are modular measures such that  $\lambda$  is nonatomic and  $\xi$  has compact range.

<sup>(\*)</sup> A. Avallone, G. Barbieri, P. Vitolo and H. Weber.

Decomposition of effect algebras and the Hammer-Sobczyk theorem.

Algebra Universalis, 60, no. 1 (2009), 1–18.



- $oldsymbol{3}$  In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.
- **4** Use Hammer–Sobczyk Decomposition<sup>(\*)</sup> to get  $\mu = \lambda + \xi$ , where  $\lambda$ ,  $\xi$  are modular measures such that  $\lambda$  is nonatomic and  $\xi$  has compact range.
- **⑤** Applying Step **②** to  $\lambda$ , we obtain that  $\lambda(L)$  is closed.





A. Avallone, G. Barbieri, P. Vitolo and H. Weber. Decomposition of effect algebras and the Hammer-Sobczyk theorem. Algebra Universalis, 60, no. 1 (2009), 1–18.

- In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.
- **4** Use Hammer–Sobczyk Decomposition<sup>(\*)</sup> to get  $\mu = \lambda + \xi$ , where  $\lambda$ ,  $\xi$  are modular measures such that  $\lambda$  is nonatomic and  $\xi$  has compact range.
- **5** Applying Step **2** to  $\lambda$ , we obtain that  $\lambda(L)$  is closed.
- **1** Then  $\mu(L)$  is closed because it coincides with  $\lambda(L) + \xi(L)$ .





<sup>(\*)</sup> A. Avallone, G. Barbieri, P. Vitolo and H. Weber. Decomposition of effect algebras and the Hammer-Sobczyk theorem. Algebra Universalis, 60, no. 1 (2009), 1–18.

- In the general case (when  $\mu$  is not necessarily nontomic) we have to prove that the range  $\mu(L)$  is closed.
- **4** Use Hammer–Sobczyk Decomposition<sup>(\*)</sup> to get  $\mu = \lambda + \xi$ , where  $\lambda$ ,  $\xi$  are modular measures such that  $\lambda$  is nonatomic and  $\xi$  has compact range.
- **5** Applying Step **2** to  $\lambda$ , we obtain that  $\lambda(L)$  is closed.
- **6** Then  $\mu(L)$  is closed because it coincides with  $\lambda(L) + \xi(L)$ .

Q.E.D.

A. Avallone, G. Barbieri, P. Vitolo and H. Weber. Decomposition of effect algebras and the Hammer-Sobczyk theorem. Algebra Universalis, 60, no. 1 (2009), 1–18.



### Thank you for your attention





