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{0} 6= X is a Banach space ⇒ ∃A,B⊂X A,B closed but
A + B 6= A + B

Theorem
If Y ⊂ X is a closed linear subspace of infinite dimension and
infinite codimension, then there exists a closed linear subspace
G ⊂ X such that Y ∩G = {0} and Y + G 6= Y + G.

on the other hand: Y + G is always closed whenever Y is
closed and G is of finite dimension or G is closed and finite
codimensional

E = (E , ‖ · ‖) is a Banach lattice

Let I be a closed ideal in E . Does there exist an infinite
dimensional closed discrete (resp. continuous, heterogeneous)
Riesz subspace F in E such that I + F 6= I + F?
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a linear subspace F ⊂ E is said to be:
a Riesz subspace (= sublattice) if
x , y ∈ F ⇒ x ∨ y = sup{x , y} ∈ F (equivalently,
x ∧ y = inf{x , y} ∈ F or |x | = x ∨ (−x) ∈ F ),
an ideal whenever F is solid, i.e.,
|x | 6 |y |, y ∈ F ⇒ x ∈ F

every ideal is a Riesz subspace
Banach lattices = discrete lattices ∪ continuous
lattices ∪ heterogeneous lattices
heterogeneous lattices = Banach lattices r (continuous
lattices ∪ discrete lattices)
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0 < e ∈ E is discrete iff 0 6 x 6 e ⇒ x = te for some real
t , equivalently:
∗ [0,e] does not contain any two nonzero disjoint elements,
∗ 0 < e and Id(e) = Re,
∗ 0 < e and {e}dd = Re

(Ad = {x ∈ E : ∀a∈A |x | ∧ |a| = 0}),
∗ 0 < e and {e}d is a maximal ideal.

D(E) = {e ∈ E : e is discrete}
e1,e2 ∈ D(E) ⇒ e1 ∧ e2 = 0 or e1 = te2.
if (eγ)γ∈Γ1 , (eγ)γ∈Γ2 are maximal families of discrete
elements, then for every γ1 ∈ Γ1 there exists, uniquely
determined, γ2 ∈ Γ2 and tγ1 > 0 such that eγ2 = tγ1eγ1
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Examples.
t1{γ} are unique discrete elements in `p(Γ), c0(Γ) etc.; t1A,
where A is an atom of a measure µ are unique discrete
elements in E(µ) (= a Banach lattice of measurable
functions: Lp-spaces, Orlicz spaces ...).
f ∈ C(K ) is discrete iff f = t1{s}, s is an isolated point
E∗ = the dual of E ; h ∈ D(E∗) iff h is a homomorphism:
|h(x)| = h(|x |).
Let F be Dedekind complete.
T ∈ Lr(E ,F ) = {S : E → F : S = S1−S2, 0 6 Si : E → F}
is discrete iff T = f ⊗ e where e is discrete in F and f is
discrete in E∗
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I ⊂ E a closed ideal Q : E → E/I the canonical quotient
map

Q(x) 6 Q(y) ⇔ ∃f1,f2∈F x + f1 6 y + f2

For 0 < x /∈ I there holds Q(x) is discrete iff I + Rx is an
ideal.

E is discrete: for every 0 < x ∈ E [0, x ] ∩D(E) 6= ∅.
equivalently
E contains a complete disjoint system (eγ)γ∈Γ with eγ ∈ D(E).
0 6 x = supγ x(γ)eγ , the numbers x(γ) are uniquely
determined,
T : E+ → RΓ

+ defined by T (x) = (x(γ))γ∈Γ can be extended
from E into RΓ by T (x) = T (x+)− T (x−) – the extension is an
order isomorphic embedding.

span{1{γ} : γ ∈ Γ} ⊂ T (E) ⊂ RΓ, T (E) ≈ E
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Examples of discrete spaces
Ideals in spaces of measurable functions E(µ) over a
purely atomic measure µ–in particular `p(Γ) spaces
(0 < p 6∞), c0(Γ).
C(K ) is discrete iff isolated points are dense in K .
For a Dedekind complete Banach lattice F Lr(E ,F ) is
discrete iff E∗ and F are discrete.

E is continuous when E does not contain discrete elements or,
equivalently,
Every 0 < x ∈ E dominates infinitely many nonzero pairwise
disjoint elements (⇒ dim E =∞).
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Examples of continuous spaces.
Ideals in spaces of measurable functions E(µ) over an
atomless measure µ–in particular Lp[0,1], Orlicz spaces
Lϕ[0,1].
C(K ) is continuous iff K consists of accumulation points.
(E , ‖ · ‖) a σ-Dedekind complete Banach lattice,

EA = {x ∈ E : |x | > xα ↓ 0 ⇒ ‖xα‖ → 0}.

The quotient E/EA is always continuous (in particular
`∞/c0 is continuous).
For a Dedekind complete Banach lattice F Lr(E ,F ) is
continuous iff E∗ or F is continuous.
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Every Banach lattice E embeds isometrically and order
isomorphically onto a Riesz subspace of a continuous Banach
lattice

E ↪→∆ ⊂ `∞(E) ↪→ `∞(E)/c0(E)

x −→ x1N −→ Q(x1N)

where ∆ = {(xn) ∈ EN : ∀n,m xn = xm}
None continuous Banach lattice with an order continuous norm
(i.e., E = EA: xα ↓ 0 ⇒ ‖xα‖ → 0) embeds in a discrete space.
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Let E be heterogeneous and let D(E) be set of all discrete
elements in E .
ED = D(E)dd = the discrete part of E
EC = D(E)d = the continuous part of E
dim EC =∞ and E = ED + EC whenever E is Dedekind
complete but E 6= ED + EC in general
(K = [−1,0] ∪ {1

n : n ∈ N}
C(K )D = {f ∈ C(K ) : f ([−1,0]) = {0}},
C(K )C = {f ∈ C(K ) : f ( 1

n ) = 0 for every n} but
C(K )D + C(K )C ⊂ {f ∈ C(K ) : f (0) = 0} 6= C(K ))
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dim E =∞ ⇒ ∃F⊂E dim F =∞, F = F , F is discrete

F = span{xn : n ∈ N} where xk ∧ xm = 0

x , y ∈ F , x =
∞∑

n=1

tn(x)xn, y =
∞∑

n=1

tn(y)xn

⇓
x 6 y ⇔ ∀n tn(x) 6 tn(y)

Proposition
Every infinite dimensional Banach lattice E contains a
continuous Riesz subspace E1 and a heterogeneous Riesz
subspace E2 such that E1 and E2 are discrete and E1 is order
isomorphic to C[0,1].
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Choose (xn) ⊂ E+, xk ∧ xm = 0,
∑∞

n=1 ‖xn‖ <∞.
Let (qn) be a sequence of all rational numbers in [0,1].
Define T : C[0,1]→ E by Tf =

∑∞
n=1 f (qn)xn. T is an order

isomorphism, and so T (C[0,1]) is a continuous Riesz
subspace in E .
Fix ε > 0 and k ∈ N. There exist N > k and f ∈ C[0,1] such
that

∑∞
n=N+1 ‖xn‖ 6 ε, f (qk ) = ‖f‖∞ = 1,

f ({qm : m ∈ {1, . . . ,N}r {k}}) = {0}. We obtain
‖xk − Tf‖ < ε, i.e, xk ∈ T (C[0,1]) = span{xn : n ∈ N}, and so
T (C[0,1]) is discrete.
It is sufficient to put E1 = T (C[0,1]) and
E2 = span{x2n−1 : n ∈ N}+ {

∑∞
k=1 f (qk )x2k : f ∈ C[0,1]}.
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There exists a discrete Riesz subspace F ⊂ `∞ × `∞ such that
F is heterogeneous (and separable).

A an algebra of subsets in N such that
– C /∈ A whenever ∅ 6= C is finite,
– ∀n 6=m ∃C∈A n ∈ C and m /∈ C.

(Q = rational numbers, ϕ : Q→ N a bijection A = ϕ(AQ)
where AQ = the algebra generated by the family
{Q ∩ [a,b) : a,b dyadic numbers})
G = span{1C : C ∈ A} ⊂ `∞ is continuous (1C = the
characteristic function of C)
Let ek be the k -th unit vector, x = (xn) ∈ c0 with xn > 0 for all n.
F = span{(x1C ,1C), (ek ,0) : C ∈ A, k ∈ N} ⊂ `∞ × `∞ is
discrete but F = c0 ×G is heterogeneous.
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e discrete in F ⇒ e discrete in F , i.e, the closure of a
discrete Riesz subspace is never continuous.
Location of continuous Riesz subspaces in discrete Banach
lattices.

Proposition
Let E be a discrete Banach lattice. If F ⊂ E is a closed
continuous Riesz subspace, then F ∩ EA = {0}.

Theorem
For a discrete σ-Dedekind complete Banach lattice E the
following are equivalent.
(a) Every closed Riesz subspace of E is discrete.
(b) The closure of every discrete Riesz subspace of E is

discrete.
(c) The norm on E is order continuous.
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The assumptions in the previous theorem cannot be avoided:
the discreteness of E is essential because modifying the
construction (presented above) in `∞ × `∞ we obtain a
discrete Riesz subspace in L1[0,1] whose closure is
heterogeneous,
σ-Dedekind completeness is also important–all closed
Riesz subspaces in the lattice c of real convergent
sequences are discrete.
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Sometimes F1 + F2 is not a Riesz subspace for one
dimensional Riesz subspaces F1,F2.
Indeed, let E = ca(Σ), µ 6 ν ⇒ µ(A) 6 ν(A) for every
A ∈ Σ. Let 0 6 µ be such that µ(Σ ∩ Ai) 6= {0} for disjoint Ai ,
i = 1,2,3. Define µi(X ) = µ(X ∩ (A1 ∪ Ai)). Clearly Rµ2,Rµ3
are Riesz subspaces and µ1 = µ2 ∧ µ3 /∈ Rµ2 + Rµ3, i.e., the
sum is not a Riesz subspace.

Let x , y ∈ E+ be linearly independent. The sum Rx + Ry is a
Riesz subspace iff x , y are of the form tp + sq where t , s are
positive distinct numbers and
p,q ∈ {u ∈ E : (x + y − u) ∧ u = 0} are different.
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F ,G are Riesz subspaces ⇒ F + G is a Riesz subspace
whenever at least one component is an ideal or F ⊥ G (i.e.,
|f | ∧ |g| = 0 for all f ∈ F ,g ∈ G).

Theorem (E.B. Davis, H.P. Lotz ’68)
If I1, I2 are closed ideals in a Banach lattice, then I1 + I2 is
closed.

Moreover for closed Riesz subspaces F1,F2 ⊂ E such that
F1 ⊥ F2 the sum F1 + F2 is closed.
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Theorem (L. Drewnowski, 2011)

Let E be a Banach lattice, and let (In) be a sequence of closed
ideals in E. Define I =

∑∞
n=1 In to be the set of elements z ∈ E

that are of the form z =
∑∞

n=1 xn where xn ∈ In for every n.
Then I is the smallest closed ideal in E that contains all the
ideals In.

Theorem
Let E be a Banach lattice and suppose that Fn ⊂ E, n ∈ N, are
closed Riesz subspaces satisfying the condition Fk ⊥ Fj for
distinct k , j . Then the order sum of Fn’s, i.e., the space
F = (o)(⊕Fn) = {x ∈ E : x = (o)

∑∞
k=1 xk where xk ∈ Fk} is a

closed Riesz subspace.



Introduction Types of lattices Closedness Sums of ideals and subspaces

(B. Wiatrowski ’05): There exists a normed lattice containing a
closed ideal I with I + Id 6= I + Id. Hence Idd + Id 6= Idd + Id.

Let I be a closed ideal in E . Does there exist an infinite
dimensional closed Riesz subspace F in E with “good ” order
properties such that I + F 6= I + F?

Theorem
Let I be a closed infinite dimensional and infinite codimensional
ideal in E. Then there exists a closed separable discrete Riesz
subspace G such that the induced norm is order continuous,
I ∩G = {0} and I + G is not closed.
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Theorem
Suppose that either
(a) E is a σ-Dedekind complete Banach lattice and I ⊂ E is a

closed infinite dimensional ideal such that the quotient
norm on E/I is not order continuous,

or
(b) E is a continuous Banach lattice with order continuous

norm and {0} 6= I & E is a closed ideal.
Then there exists a closed continuous Riesz subspace G1 ⊂ E
and a closed heterogeneous Riesz subspace G2 ⊂ E such that
I ∩Gi = {0} and I + Gi is not closed for i = 1,2.
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If E is Dedekind complete and E 6= EA, then the quotient norm
on E/EA is not order continuous, and so the Theorem can be
applied to I = EA whenever dim EA =∞ (particular case:
E = `∞, I = EA = c0).
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