Rozdzial IT1

Funkcje zmiennej rzeczywistej.

o © ©
§1. Funkcje elementarne.

1. Przyklady funkcji. W poprzednim rozdziale zdefiniowaliSmy ciag nieskonczony
jako funkcje okreslona na zbiorze liczb naturalnych IN i przyjmujaca wartosci nalezace
do zbioru liczb rzeczywistych IR. Obecnie przejdziemy do rozwazania funkcji okreslonych
na calym zbiorze liczb rzeczywistych IR lub na jego podzbiorze i przyjmujacych wartosci
rzeczywiste. Wiele przykltadow takich funkcji poznatl juz Czytelnik podczas nauki w szkole.

Zbiér D C IR na ktérym okreslona jest funkcja f nazywamy dziedzing tej funkcji. Dla
oznaczenia warto$ci funkcji f w punkcie x € D bedziemy uzywali oznaczenia f(z) lub y
(to drugie jest wygodniejsze w rachunkach). Zmienng z nazywamy argumentem funkcji
f- Zbior wartosci przyjmowanych przez funkcje f na zbiorze A C D bedziemy oznaczaé
przez f(A). Najczesciej bedziemy mieli do czynienia z funkcjami, ktérych dziedzina, jest
przedziat (ograniczony lub nie).

WprowadZzmy na plaszczyznie uktad dwéch prostopadtych osi liczbowych 1,15 przeci-
najacych sie w punkcie 0, ktére nazwiemy osia x-6w i osig y-6w. Dla dowolnie ustalonego
punktu P plaszczyzny niech P, bedzie jego rzutem prostopadlym na os z-6w, zas P, -
rzutem prostopadlym na o$ y-6w. Oznaczmy dalej przez x wspoéhrzedng punktu P, na
osi z-0w oraz przez y wspoélrzedns punktu P, na osi y-6w. Liczby z, y nazywamy
wspdlrzednymi prostokatnymi punktu P (z jest odcieta, y jest rzedng punktu P), za$
uktad osi l1, l2 - prostokgtnym uktadem wspolrzednych. Plaszczyzne z wprowadzonym
prostokatnym ukladem wspéirzednych bedziemy oznaczali przez IR?. Zgodnie z twierdze-
niem sformutowanym w punkcie 3 rozdz. I §1 kazdej parze liczb rzeczywistych (z,y)
odpowiada dokladnie jeden punkt P plaszczyzny IR? taki, ze x jest odcieta zad y rzedna
punktu P. Wobec tego mozemy uzywaé zapisu

P =(z,y)

utozsamiajac punkty plaszczyzny IR? z parami liczb rzeczywistych.

Punkt przeciecia osi O = (0, 0) nazywamy poczatkiem uktadu wspdtrzednych. Umébwimy
sie, ze dodatnia poélo§ z-6w po obrocie o kat prosty wykonanym przeciwnie do ruchu
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wskazéwek zegara pokrywa sie z dodatnia pélosia y-6w (rys. 2). Umowa ta okresla
orientacje uktadu wspdtrzednych (zwana, orientacja dodatnia,).

h
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P=
[ (6. »)
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a |
‘ > |,
0=(0,0) X X

[rys. 2]

Wykresem funkcji f bedziemy nazywali zbiér punktéw plaszczyzny IR? postaci (x,y),
gdzie y = f(z), x € D.

A oto pare przykladéw funkcji:
(i) f@)=Vit+tz+Vi-z

okreslona dla z € [—1, 1];
(i) g(x) = log ||(1 — |z|)
okreslona dla z € (—1,0) U (0,1) (przez log rozumiemy tu logarytm dziesietny);

2z
SN Bz =
(i) (o) x? — Tz + 10
okreslona dla x € (—00,2)U(2,5) U (5, 00) (jak tatwo sprawdzi¢, mianownik jest zerem dla
x =2 oraz z = 5);

() d(o) = { yimier:
0 dla 2z niewymiernych
okreslona dla wszystkich z € IR. Funkcje d, zwana, funkcja Dirichleta', mozna réwniez
okresli¢ jako granice pewnego ciagu o wyrazach zaleznych od z (por. zadanie 11 rozdz. 11

§1).

Oméwimy teraz doktadniej funkcje, ktére zazwyczaj obejmuje sie wsp6lng nazwa, funkcyi
elementarnych.

1 dla =z wymiernych

2. Wielomiany. Dla ustalonej liczby calkowitej nieujemnej n funkcje
w(z) = apz™ + a1z '+ +a, (ag#0)

1Peter Gustaw Lejeune Dirichlet (1805 - 1859), matematyk niemiecki, w 1826 r. zostal docentem na
uniwersytecie we Wroclawiu, w pézniejszych latach byl profesorem uniwersytetu w Berlinie, nastepnie w
Getyndze. Zajmowal sie teorig liczb, teorig szeregdédw i rachunkiem catkowym. Jako jeden z pierwszych
zastosowal metody analityczne w teorii liczb.
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nazywamy wielomianem stopnia n, za$ liczby rzeczywiste a; (j = 0,1,...,n) wspdtczynni-
kami wielomianu w. Wielomian jest funkcja okrelona, dla wszystkich = € IR.

W szczegdlnosci wielomian stopnia n < 1 jest funkcjq liniowq

(1) f(z) =ax +0,

wielomian stopnia n = 0 jest funkcjq stalq

f(z) =c.

Wykresem funkcji liniowej jest linia prosta, wykresem funkcji stalej jest prosta réwnolegla
do osi z-6w.

3. Funkcje wymierne. Funkcjqg wymierng nazywamy funkcje postaci

P(x)

f@) = 5

gdzie P,(Q sa wielomianami, przy czym @ nie jest funkcjg stala. Funkcja wymierna jest
okreslona dla kazdego x € IR nie bedacego miejscem zerowym mianownika.
4. Funkcje monotoniczne i funkcja odwrotna. Méwimy, ze funkcja f jest
rosnaca, jezeli

flx1) < f(z2) dla zq < mo;

scisle rosngca, jezeli
flz1) < f(z2) dla 71 <

malejaca , jezeli
f(xa) > f(z2) dla z7 < mo;

scisle malejaca, jezeli
f(x1) > f(z2) dla zp < za.

Funkcje ($cisle) rosnace lub (Scisle) malejace obejmujemy wspélng nazwa funkeji ($cisle)
monotonicznych.

Przyklad 1. Funkcja stala jest jednoczesnie rosnaca i malejaca. Funkcja liniowa (1)
jest Scisle rosnaca, gdy a > 0, écisle malejaca, gdy a < 0, rosnaca i malejaca, gdy a = 0
(wtedy oczywiscie jest funkcja stala).

Moéwimy, ze funkcja f jest réznowartosciowa, jezeli

f(x1) # f(z2) dla zq # za.
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Oczywiscie kazda funkcja Sci§le monotoniczna jest réznowartosciowa, ale nie na odwrot.
Na przykiad funkcja

@) f()_{a: dla 0<z<1
v = z—3 dla 1<z<2.

jest réznowartosciowa ale nie jest SciSle monotoniczna w przedziale [0, 2] (rys. 3).
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[rys. 3]

Jezeli f jest funkcja réoznowarto$ciowa, to mozemy okresli¢ nowa funkcje g przyjmujac
(3) gly) ==
wtedy i tylko wtedy, gdy
(4) f(z) =y

Funkcja g jest dobrze okreslona na zbiorze wartosci funkcji f, gdyz na mocy zalozenia
kazdej liczbie y nalezacej do tego zbioru odpowiada dokladnie jedna liczba z taka, ze
zachodzi (4). Funkcje g nazywamy funkcja odwrotng do funkcji f. Uzywane jest oznaczenie

g=1r""
Aby znalezé funkcje odwrotna f~1 nalezy rozwiazaé réwnanie (4) wzgledem z (nie zawsze

mozna to zrobi¢ efektywnie).

Przykilad 2. Niech
flx)=azx+b

gdzie a # 0. Funkcja f jest $ciSle monotoniczna (por. Przyklad 1), a wiec réznowartoscio-
wa. Rozwigzujac réwnanie
y=axr+b
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wzgledem z otrzymujemy

y—>b
xr=
a
zatem ) b
_]_ _ = _
)= Y-

Funkcja odwrotna, jest réwniez liniowa. Obie funkcje f, f~! sa okre§lone na calym zbiorze

R.

Twierdzenie 1. Jezeli f jest funkcjq Scisle rosnacq ($cisle malejaca), to f~! ma tq sama
wtasnosé.

DOWOD. Dowdd podamy dla funkcji $cisle rosnacej. Zalézmy, ze

y1 = f(21) <ya = f(x2)

wobec tego
1= f""w), z2=f""(y2)

Gdyby bylo x1 > x5, to na mocy zalozenia otrzymaliby$my
Y1 2 Y2
wbrew zalozeniu. O
5. Funkcja {/z. Funkcja
(5) fz) ="

zwana funkcjq potegowa o wyktadniku naturalnym n jest okreslona dla wszystkich z € IR.
7 reguly mnozenia nieréwnosci wynika, ze

0 <2l <zy

dla 0 < z; < zy, zatem f jest SciSle rosnaca w przedziale [0,00) i przyjmuje w tym
przedziale wartosci dodatnie. Zgodnie z rozwazaniami punktu 7 rozdz. I §2 réwnanie

y==x
ma dla dowolnego y > 0 dokladnie jedno rozwiazanie
T = y.

Wobec tego

g(z) = Yz
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jest funkcja, odwrotna do funkcji potegowej f danej wzorem (5). Funkcja g jest okreslona
w calym przedziale [0, 00).

6. Potega o wykladniku wymiernym. Potege
a" (weW)

okreslimy przy zatozeniu a > 0. Liczbe a nazywamy podstawq potegi, liczbe w wyktadnikiem
potegi.

Przyjmujac
a' = a, a"l'=a".a dla nelN
a =1,
(6) ¥ = VaP gdzie w="<>, pge N
a” ¥ = ai“”
udowodnimy

Twierdzenie 2. Potega o wyktadniku wymiernym ma nastepujgce wlasnosci:

(i) a® >0,

(ii) a®t =qa"a",

(iii) (@)’ =a"" (a,b>0; w,v e W)
(7) (iv) (ab)® = a"b"

(v) jezeli w<wv, to

a® < a’ dla a>1,
a¥ > a’ dla a<1.

DOWOD. Punkt (i) wynika z definicji potegi. Dla dowodu punktéw (ii) - (iv) zauwazmy
najpierw, ze dla wykladnikéw v, w naturalnych wynikaja one z przemiennosci i lacznosci
mnozenia liczb rzeczywistych. Dowdd dla dowolnych wykladnikéw wymiernych poprzedzi-
my lematami.

Lemat 1. Jezeli
a? =b? (a,b>0, g € IN)

to
a=b.

DOWOD. Przypuéémy, ze a > b - wéwczas zgodnie z regula mnozenia nieréwnosci mamy
a? > b? wbrew zalozeniu. Podobnie okazujemy, ze nie moze by¢ a < b. O
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Lemat 2. Przyjmujgc
! B = {/T (a>0, g€ N)
o= =4{/- (a
\q/_ﬂ a 7 q

mamy
a = f.

IS

DOWOD. Zgodnie z wprowadzonym oznaczeniem

aq = —

zatem zgodnie z definicja pierwiastka (por. pumkt 7 rozdz. I §2)

skad wynika
ol = B

a to w oparciu o lemat 1 daje teze.

Lemat 3. Dlaa >0, p€ Z,q € IN mamy
q

= vaP.

Qs

a

DOWOD. Dla p > 0 teza lematu wynika ze wzoréw (6). Jezeli p < 0, to zgodnie ze

wzorami (6)
1

Cl:\q/an

oraz
/1
q q
vaP = —a_p.
O

Korzystajac z lematu 2 dostajemy teze.

SIs

Lemat 4. Dlaa >0, pe Z,s € N mamy
(a?)® = aP’.

. Dla p < 0 mamy, ponownie

pOowOD. Dla p > 0 teza lematu wynika ze wzoréw (6)
korzystajac ze wzoréw (6) i opierajac sig na wlasnosciach potegi o wyktadniku naturalnym

(@) = (=)
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Lemat 5. Jezeli p,r € Z, to
aPa” = Pt

DOWOD. Dla p,7 > 0 teza lematu byla juz omawiana (jest to wlasnosé (ii) dla wy-
ktadnik6w naturalnych). Jezeli przynajmniej jedna z liczb p,r jest zerem, réwnos¢ jest
oczywista. Pozostaja do rozwazenia przypadki

a.) liczby p,r sa réznych znakéw, niech na przykltad p < 0,r > 0;

b.) p< 0,7 <0.

W przypadku b.) mamy zgodnie z (6)

1
ala" = —
aPa "
g 1 pry 1 g ap+T
a P—T a—(p+r)
za$ w przypadku a.)
a'r
ala" = —a" =
a~” a”P

W ostatnim ulamku mamy w liczniku i w mianowniku potege o wykladniku naturalnym.
Po skréceniu (nalezy rozréznié przypadki: —p > r,—p = r,—p < r) dostajemy teze
lematu. 0

Mozemy teraz udowodnié¢ wlasnosé (ii). Niech w = g, v="%(p,7 € Z; q,5,€ IN) iniech

r=a"", y=a", z=a".

Wystarczy udowodnié, ze

®) 2% = (y2)”

i skorzysta¢ z lematu 1. Zgodnie z lematem 3 mamy
(9) 295 — gPstra.

Z drugiej strony opierajac sie na whasnosciach (iii), (iv) dla wyktadnikéw naturalnych oraz
na lematach 4, 5 dostajemy

(10) (y2)® = (y*)°(z°)? = (a”)*(a")*
= aP%q"? = gPst7e,

Réwnosé (8) wynika z (9) i (10).

Dalszy ciag dowodu twierdzenia poprzedzimy kolejnymi lematami.
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Lemat 6. Jesl:

x:qaba y:{l/aa Z:\q/ga

a,b>0, gelN.

to zachodzi réwnosé
T =yz.

DOWOD. 7 definicji pierwiastka wynika, ze
¥=ab, yi=a, 29=0
wobec tego (na mocy wlasnosci (iv) dla wykladnikéwe naturalnych)
79 = 4927 = (y2)4.

Stad w oparciu o lemat 1 dostajemy teze. O

Lemat 7. Dla a > 0,q,s € IN zachodzi rownosé
(Va)* = Va.

DOWOD polega na indukcji wzgledem s i wykorzystaniu lematu 6. Szczegdly pozosta-
wiamy Czytelnikowi. O

Lemat 8. Zachodzi réwnosé

dla a > 0,p,7 € Z,q € IN.

DOWOD. Oznaczmy przez «, 3 odpowiednio lewa i prawa strone réwnosci. Dla r = 0
rownosé jest oczywista, gdyz a = 8 = 1. Przeprowadzimy dowdd dla r # 0 rozrézniajac
przypadki r > 0 oraz r < 0. Na mocy lematu 3 i definicji pierwiastka

B = qPr.
Wystarczy zatem okazaé, ze
(11) al = a?"

a nastepnie skorzystaé¢ z lematu 1.
Jezeli r > 0, to opierajac sie na wlasnosci (iii) dla wykladnikéw naturalnych mamy

ol = (ad)",

Korzystajac z lematow 3, 4, 7 otrzymujemy stad kolejno

ot = (Va1 = () -

= qaqu = a/plr.
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Dla r < 0 mamy z definicji potegi o wyktadniku ujemnym
1

(%)

al = (

)q

a zatem na mocy (iii) dla wyktadnikéw naturalnych

Ponownie korzystajac z lematow 3, 4, 7 otrzymujemy dalej

1 1
aq — — —
(Yar)ra ~ gflar)a
1 1

= = =aP".

o Y a—prra aPr

Réwnosé (11) zostala udowodniona w obu przypadkach. Dowdd lematu jest zakoriczony.
O

Udowodnimy teraz wlasnosé (iii). Oznaczmy przez z, y odpowiednio lewg i prawa, strone
réwnosci 1 niech

wzg, 'u:g (p,r € Z; q,s € IN).
Na mocy lematu 3
y= Varr
zatem z definicji pierwiastka
(12) y?® = af".

Ponownie korzystajac z lematu 3 i definicji pierwiastka otrzymujemy

a wiec zgodnie z lematem 8

Wykorzystujac lematy 3 i 7 oraz wlasnosé (iii) dla wykladnikéw naturalnych dostajemy
stad

skad, ponownie korzystajac z lematu 3,
(13) x?® = aP’.

W oparciu o lemat 1 dostajemy z (12), (13) zadana réwnosé x = y. O

Udowodnimy jeszcze dwa proste lematy.
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Lemat 9. Dilaa >0, pé€ Z zachodzi réwnosé

DOWOD. Dla p = 0 réwnos¢ jest oczywista (obie strony sa réwne 1), dla p < 0 wynika
z definicji potegi o wykladniku wymiernym ujemnym, za$ dla p > 0 réwniez na mocy tej
definicji

Sy
Sy

Lemat 10. Dla dowolnych a,b > 0,p € Z zachodzi réownosé
(ab)? = aPbP.

DOWOD. Dla p = 0 obie strony sg réwne 1, za$ dla p > 0 jest to whlasnoéé (iv) dla
wykladnik6w naturalnych. Natomiast dla p < 0 mamy, ponownie korzystajac z (iv) dla
wykladnikéw naturalnych i z lematu 9

1 1
aPtP = — —
a~Pb—P
1 1
_ _ — (ab)?
a~Pb=P  (ab)~P (ab)
co konczy dowdd lematu. O
Mozemy teraz udowodni¢ wlasnosé (iv). Przyjmujac
b
w= = (p € Z,q € N)

wprowadzimy oznaczenia

Qs

p
q

z = (ab)s, y=a9, z=ba.

Q3

Aby udowodnié¢ zadana réwnosé x = yz wystarczy okazac, ze
(14) 27 = (y2)°
i skorzysta¢ z lematu 1. 7Z lematu 3 wynika, ze

x = Y (ab)P, y=VaP, z= VbP.
Wobec tego na mocy definicji pierwiastka

7= (ab)?, y?=aP, 27=1P,
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co po zastosowaniu lematu 10 daje
77 = aPbP = y9,1

a stad po wykorzystaniu (iv) dla wykladnikéw naturalnych wynika (14).

Pozostala do udowodnienia wlasnosé (v). Najpierw zauwazmy, ze dla dowolnej liczby
wymiernej w

na mocy wiasnosci (ii), a stad

1
(15) a¥=— dla a>0, weW.
a”u)

Dow6d wlasnosci (v) podamy dla @ > 1. Dla a < 1 rozumowanie jest podobne i po-
zostawiamy je Czytelnikowi. Korzystajac z (15) i z wlasnosci (ii) mozemy nieréwnosé (7)
zapisa¢ w réwnowaznej postaci
(16) a’ v >1
dla w < v, za$ dla dowodu (16) wystarczy okazaé, ze

(17) a¥ >1

dla @ > 1 i dowolnej liczby wymiernej w > 0. Dow6d (17) nie nastrecza trudnosci. Przede
wszystkim dla dowolnego b > 1,q € IN

Vb >1

-gdyby bowiem zachodzila nieréwnosé¢ przeciwna, to podnoszac obie strony do g-tej potegi
otrzymaliby$my b < 1, co przeczy zalozeniu. Jezeli teraz w = 2, (p,q € IN), to

q’
a® = /b

gdzie b = a? > 1, zatem (17) zachodzi i w tym przypadku.

na mocy (6)

Dow6d twierdzenia jest zakonczony. O

7. Potega o dowolnym wykladniku rzeczywistym. Dla dowolnie ustalonych
a > 0,a € IR przyjmiemy

(18) a :nli)noloa "

jezeli {wy,} jest ciagiem liczb wymiernych takim, ze

(19) nli_)ngo Wy, = Q.
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Podobnie jak w punkcie 6 liczbe a nazwiemy podstawa potegi zas liczbe o - wyktadnikiem
potegi.

Oczywiscie nalezy wykazaé, ze przyjeta definicja jest poprawna, co sprowadza sie do
udowodnienia, ze

(A) dla dowolnie ustalonego o € IR istnieje ciqg liczb wymiernych spelniajacy
warunek (19);

(B) granica po prawej stronie (18) istnieje i nie zaleZy od wyboru ciggu {wy,}.

DOWOD (A). Na mocy twierdzenia o liniowej gestosci zbioru liczb wymiernych (twierdzenie
5 rozdz. I §2) dla dowolnie ustalonego n € IN istnieje liczba wymierna w,, taka, ze

(20) 1< <
a—— < w, <a— .
n n+1

Z nieréwnosci (20) i twierdzenia o trzech ciagach wynika, ze spelniony jest warunek (19).
Ponadto z (20) wynika, ze
1

n+1

w, < a— < Wp41

zatem {w, } jest ciagiem rosnacym. O

W dalszym ciqgu bedziemy zaktadali, Ze a > 1 (w przypadku a < 1 rozumowania przebie-
gaja, podobnie i pozostawiamy je Czytelnikowi jako ¢wiczenie).

DOWOD (B). Z twierdzenia 2 punkt (v) wynika, ze ciag {a"~} jest réwniez rosnacy oraz
ze jest on ograniczony z gory, gdyz nieré6wnos¢

Wy <a<la]+1=M

pociaga za sobg,

a® < a™.

Na podstawie twierdzenia 5 rozdz. II §2 ciag {a“~} jest zbiezny. Granica po prawej
stronie (18) istnieje wiec, gdy jako ciag liczb wymiernych aproksymujacy « obierzemy ciag
{wy,} okreslony w dowodzie (A). Aby wykazaé, ze granica ta nie zalezy od wyboru ciagu
aproksymujacego wykladnik @ udowodnimy najpierw
Lemat 11. Dla dowolnego € > 0 istnieje liczba § > 0 taka, zZe

la¥ — 1| <e
dla wszystkich wymiernych w spetniajacych nierownosé

lw| < 6.

DOWOD przeprowadzimy dla w > 0, dla w < 0 rozumowanie jest podobne i nie bedziemy
go powtarzac.
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Jesli liczba w spelnia nieréwnosé

S

(21) 0<w<

dla pewnego n € IN, to zgodnie z twierdzeniem 2
(22) 1<a” < {a.

Przypomnijmy, ze
lim {/a=1

n—>00

(por. Przyklad 13 rozdz. II §1). Wobec tego z (22) wynika, ze do dowolnie ustalonego &
mozna dobraé n. € IN tak, aby dla w speliajacych (21) przy n > n. zachodzita nier6wnosé

l1<a¥ <1+e.

Zatem wystarczy przyjaé
0= —

nE
co konczy dowdd lematu. ]

Przypus$émy teraz, ze mamy inny ciag liczb wymiernych {v, } réwniez zbiezny do a. Na
mocy twierdzenia 1 punkt (ii)

(23) a’ = a"“ra’ .

Poniewaz
lim (v, — wy,) =0,
n—oo

wiec do liczby §, o ktérej mowa w lemacie 11, mozna dobra¢ N tak, by dla n > N bylo
(24) |y, — wy | < 6.
Zgodnie z lematem 11 z nieréwnosci (24) wynika

la» "% — 1| <€

dla n > N, a wiec

lim a’»~ %" = 1.
n—oo

Stosujac do (23) twierdzenie o granicy iloczynu otrzymujemy

Iim ¢’ = lim a%"
n—0oQ n—0o0

co koriczy dowéd (B). O

Uwaga. Jezeli a jest liczba wymierna, to w definicji (18) mozemy przyjaé w,, = a dla
n € IN. Wida¢ stad, ze dla wykladnikéw wymiernych nowa definicja potegi pokrywa sie z
poprzednia wprowadzona, w punkcie 6.
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Twierdzenie 3. Potega o wyktadniku rzeczywistym ma nastepujace wtasnosci:

(i) a* >0,

(i) a®*P = a%dP,

(i) (a*)? = a®”,

(iv) (ab)* = a®b”,

(v) gjezeli a<p, to

a®<al gdy a>1,

a®>d® gdy a<1,

(vi) jezeli 0<a<b, a>0 to

a® < b oraz a~%>b7P.
DOWOD zaczniemy od punktéw (ii) i (iv). Niech {wy}, {vn} beda ciagami liczb wymiernych
takimi, ze

lim w, =«, lim v, = 8.

n—oo n—0o0

Na mocy twierdzenia 1 mamy
awn+vn — awnavn

a stad po przejsciu do granicy dostajemy (ii). Podobnie przebiega dowéd (iv).
Dowéd (iii) zaczniemy od lematéw.
Lemat 12. Jezeli a > 0 oraz {a,} jest ciggiem liczb rzeczywistych spelniajacym warunek

lim a, =a

n—0o0
to
(25) lim a, = Va
n—0o0

dla dowolnie ustalonego q € IN.

DOWOD. Przypusémy ze nie jest prawda (25), wobec tego (por. rozdz. II §1 punkt
2) istnieje takie €9 > 0, ze nieréwnosé epsilonowa nie zachodzi dla ¢ = g9 po odrzuceniu
dowolnej skoniczonej ilosci wyrazéw ciagu { ¢/a,}. Zatem do dowolnego k¥ € IN mozna
dobraé¢ wskaznik ny > k tak, ze zachodzi jedna z nieréwnosci

Yn, < Va—eg
lub
Yan, > ¥/a+¢eo
dla k£ € IN. Z nier6wnosci tych otrzymujemy
an, < (Va—ep)?=a1<a
lub
an;, > (Ya+e9)? =az > a.
Oznacza to, Ze istnieje otoczenie (a1, a2) punktu a nie zawierajace zadnego wyrazu pod-

ciagu {an, }, co przeczy zalozeniu lematu. O
Natychmiastowym wnioskiem z lematu 12 jest
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Lemat 13. Przy zatozeniach lematu 12

lim a, =a"
n—00

dla dowolnie ustalonej liczby wymiernej w.

DOWOD. Niech
w="? (p€ Z,q e N).
q

Na podstawie lematu 3 (punkt 6)
a? = V/adh.

7 twierdzen o granicy iloczynu i ilorazu wynika
: P _ P
lim af = a?,

n—00

zatem na mocy lematu 12

lim a; = VaP =a".
n—o0

Lemat 14. Dla dowolnego € > 0 istnieje liczba n > 0 taka, Ze
(26) la® — 1| <e
dla wszystkich a € IR spetniajacych nierownosé

la| <.

DOWOD. Niech {w,} bedzie ciagiem liczb wymiernych zbieznym do « i niech 5 = 34.
Wéwcezas dla dostatecznie duzych n zachodzi nieré6wnos¢

lwy,| <6

zatem zgodnie z lematem 11 (z zastapieniem ¢ przez §)

€ €
1— - <a¥ <1+-.
5 <a <1+ 5
Przechodzac do granicy zgodnie z (18) dostajemy

9] g
1—s<1—§§a°‘§<1+§<1+s

co daje (26). O
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Lemat 15. Jezeli {a,} jest dowolnym ciggiem liczb rzeczywistych spelniajgcym warunek

lim a, =0
n—oo

to

Iim a% = 1.
n—oo

DOWOD. Ustalmy dowolnie € > 0 i niech 5 bedzie liczba, dobrana, do €, o ktérej mowa
w lemacie 14. Na mocy zalozenia istnieje liczba N taka, ze dlan > N

|an| <.
7 lematu 14 wynika, ze wobec tego dla n € IN zachodzi nieréwnosé¢
la® — 1| < e

co konczy dowdd lematu. 0

Przechodzac do dowodu (iii) zalt6zmy, ze

(27) lim w, =«, lim v, =7
n—>00 n—00
gdzie wy,, v, sg liczbami wymiernymi dla dowolnego n € IN. Dla dowolnie ustalonej liczby
wymiernej w mamy
( awn)w — qWnW

na mocy twierdzenia 2, skad po przejsciu do granicy wynika zgodnie z lematem 13

(28) (a®)” = =

dla dowolnego w € W. Przyjmujac w = v, w réwnosci (28) i korzystajac z udowodnionego
juz punktu (ii) otrzymujemy

(aa)vn — a(a—wn)vnawnvn

co po przejsciu do granicy w oparciu o lemat 15 daje teze (iii).

Udowodnimy teraz (v) zakladajac a > 1 (dowdd dla a < 1 przebiega podobnie i po-
zostawiamy go Czytelnikowi jako éwiczenie). Zauwazmy najpierw, ze ciagi {wy,}, {v,.}
speiajace (26) mozna obra¢ w taki sposéb, by pierwszy z nich byl ciagiem rosnacym a
drugi ciagiem malejacym. Wystarczy w tym celu przyjaé

1 1
Bt g <wm<B+_

——<wp<a— ——,
@ n Wn <@ n+1 n+1

dla n € IN, co jest mozliwe wobec liniowej gestosci zbioru liczb wymiernych. Wéwczas dla
kazdego n € IN zachodzi nieréwnosé
Wy, < Up
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a zatem na mocy twierdzenia 2
a®" < a’

co po przejéciu do granicy daje
(29) a® < aP.

Korzystajac z udowodnionego juz punktu (ii) i rozumujac podobnie jak w dowodzie twier-
dzenia 2 okazujemy, ze dla dowodu (v) wystarczy okazacé, ze

(30) a’ > 1
dla v > 0. Obierzmy liczbe k € IN tak, by

O<1<
2 v

(jest to mozliwe na mocy zasady Archimedesa - por. twierdzenie 2 rozdz. I §2). Wéwczas
przyimujac a = ¢, 8=~ w (29) dostajemy

x|

ar <a.

7 drugiej strony na mocy twierdzenia 2 mamy

x|

1=a"<ak*.

Ostatnie dwie nieréwnosci daja, (30) co koriczy dowdd (v).
Mozemy teraz udowodni¢ punkt (i). Jezeli & > 0 to zgodnie z (29)

a®>1>0.

Jezeli a < 0, to korzystajac z (ii) okazujemy latwo, ze

a wiec i w tym przypadku mamy nieréwnosé (i).
Pozostat do udowodnienia punkt (vi). Z zalozenia mamy

wobec tego na mocy (v)

a z tej nieréwnosci wynika (vi).
Twierdzenie jest udowodnione. ]
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8. Funkcje: wykladnicza, logarytm i potegowa. Funkcjq wyktadniczq o podsta-
wie a (gdzie a > 0 jest dana, liczba) nazywamy funkcje

(31) flz)=a" (z€R).

Zgodnie z twierdzeniem 3 funkcja wykladnicza jest Scidle rosnaca gdy a > 11 écisle malejaca
gdy a < 1. W dalszym ciggu bedziemy rozwazali wytgcznie funkcje wyktadniczq o podstawie
a > 1 Bardzo wazny w analizie jest przypadek gdy a = e (por.
rozdz. II §2 punkt 5) gdyz, jak zobaczymy w dalszym ciagu, taka funkcja wykladnicza
ma szczegblnie wygodne wlasnosci rachunkowe. Uzywane jest oznaczenie

e’ =expzx.

Funkcje odwrotna, do funkcji wykladniczej (31) nazywamy logarytmem (lub funkcjq
logarytmiczng) o podstawie a. Przy zalozeniu a > 1 jest to funkcja $cisle rosnaca (por.
twierdzenie 1). Z definicji réwnania

(32) x=a¥
oraz

y =log, x

sg rownowazne. Funkcja log, jest okreslona na zbiorze wartosci funkcji wykladnicze;j.
Z twierdzenia 3 wynika, ze zbidr ten zawiera sie w przedziale (0,00). W dalszym ciagu
wykladu zobaczymy, ze jest on identyczny z przedzialem (0, occ), zatem funkcja logarytm
okreslona wzorem (33) jest okreslona dla wszystkich z > 0. W przypadku gdy a = e wzory
(32), (33) okreslaja logarytm naturalny ktéry oznaczamy symbolem log (bez podawania
podstawy). Z wlasnosci potegi o wyktadniku rzeczywistym wynikaja wlasnosci rachunkowe
logarytmu, ktore sformutujemy w nastepujacym twierdzeniu:

Twierdzenie 4. Dlaa > 1, z,z1,x2 > 0 oraz dowolnego o € IR zachodza wzory

(i) log,(z122) = log, z1 + log, x2,
(ii) log, z* = alog, =.

DOWOD przeprowadzimy przy dodatkowym zalozeniu, ze liczby z, 21, 2 naleza do zbioru
wartosci funkcji wykladniczej (31). Wobec tego

r=a¥, xz1=da%", x9=a"?
dla pewnych y,y1,y2 € IR a to oznacza, ze
(34) y=log,z, y1=log,z1, y2=log,2>.
Na mocy twierdzenia 3 punkt (ii)

12Ty = qY1tyz
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zatem
(35) Y1 + Y2 = log, (7122)

za$ wobec punktu (iii) tegoz twierdzenia

% =a"¥
skad
(36) aylog, z“.
Poréwnujac (34), (35), (36) dostajemy teze twierdzenia. O

Przy danej liczbie o € IR funkcje
f(z) =z® (x > 0)

nazywamy funkcjq potegowq o wyktadniku «. Zgodnie z twierdzeniem 3 punkt (vi) jest ona
Scidle rosngca, gdy a > 0 i Scisle malejaca, gdy a < 0.

9. Funkcje trygonometryczne. Wprowadzmy na plaszczyznie z prostokatnym ukla-
dem wspoélrzednych okrag o srodku w poczatku ukladu i promieniu jednostkowym, oz-
naczmy przez Py jego punkt przeciecia z dodatnia pélosia, x-6w (rys. 4) i niech P, = (z1,y1)
bedzie dowolnie obranym punktem okregu. Oznaczmy przez o kat, o jaki nalezy obrdcic
pélprosta, OP, tak, by punkt Py pokryl sie z punktem P; za$ przez s(a) dlugosé tuku
okregu przebieganego przy tym obrocie przez punkt Py. Jako miare kata a (zwang miarq
tukowa) przyjmiemy

(i) s(a) gdy obrét odbywat sie przeciwnie do ruchu wskazéwek zegara,

(ii) —s(a) gdy obrét odbywat sie zgodnie z ruchem wskazéwek zegara.

W dalszym ciagu miare tukowa, kata o bedziemy oznaczac¢ ta sama litera, a.

A
y

[rys. 4]
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Przypomnimy znane z kursu szkolnego definicje funkcji trygonometrycznych kata o
(ktérego miara moze przyjmowaé dowolne wartosci rzeczywiste, dodatnie lub ujemne)
sina = yq, cosa = T,

€T
tgo =21 (21 #£0), ctga= - (1 #0)
T1 Y1

7 sensu geometrycznego podanych definicji tatwo wynikaja, wlasnosci tych funkcji:

a.) okresowoé¢ sin(a + 27) = sina,
cos(a + 2m) = cos a,

tg(a + ) = tgay,
ctg(a + m) = ctge,

. . 1 .
b.) sin0=sinw =0, sin 5T = 1,sin 9T = —1,
1
cos0 =1, cos §7r = COS §7r =0,cosm = —1,
c.) sin?a+cos?a =1,
d.) sin(—a) = —sina, cos(—a)=cosa.

Przypomnimy jeszcze wzory

- sin(a + ) = sin a cos 3 + cos asin 3,
(37) cos(a+ B) = cos acos 3 — sin asin

7z ktérych wynika po uwzglednieniu d.)

2sinacos B = sin(a + B) + sin(a — B),
(38) 2 cosa.cos 8 = cos(a + B) + cos(a — ),
2sinasin B = cos(a — B) — cos(a + fB).
Wzory (38) maja, zastosowanie w rachunku catkowym.
Zakladajac, ze a € (0, %7‘(’) udowodnimy teraz pewne nieréwnosci. Oznaczmy przez A

rzut prostopadly punktu P; na o x-6w i przez B punkt przeciecia prostopadlej do osi z-6w
wystawionej w punkcie Py z p6lprosta OP; (rys. 4).Z tréjkata Py APy wynika, ze

|P1A| < |POP1|,
ponadto diugosc¢ cieciwy Py P; jest mniejsza niz dlugos¢ tuku Py Py, zatem
0 <sina < a.

Jak wida¢ z rysunku, wycinek kola PyOP; jest zawarty w tréjkacie PyO B, za$ odpowiednia
nierowno$¢ dla pdl ma postac

L <1t
50 < gtge



124

7. dwoéch ostatnich nieréwnosci wynika, ze

39 0<sina < a<tga

( g

a stad

(40) cosa < 2% 1.
o

7 tréjkata AOP; mamy ponadto
1—y1 <z

czyli
(41) 1 —sina<cosa < 1.

Nier6wnosci (39), (40), (41) beda wykorzystane w dalszym ciagu przy badaniu funkcji
trygonometrycznych.

10. Funkcje odwrotne do trygonometrycznych. Funkcje trygonometryczne
sinx, ,cosz, tgr, ctgx

sg, Scisle monotoniczne odpowiednio w przedzialach

1 1 1 1
[—§7r,§7r], [0, ], (—§7T,§7r), (0, )

istnieja, wiec w tych przedzialach funkcje odwrotne. Przyjmujemy, ze

. . 1 1
y = arcsinx gdy z=siny, —m <y< 7™

Yy = arccos x gdy r=cosy, 0<y<m,

1 1
y = arctg x gdy r=tguy, —§7r<y< 3™

y = arcctg = gdy r=ctgy, O0<y<m.

Wprowadzone w ten sposéb funkcje odwrotne do trygonometrycznych nosza, nazwe funkcji
kotowych lub cyklometrycznych.

11. Funkcja zlozona (superpozycja). Niech f bedzie funkcja, okreslona na zbiorze
D C IR, za$ g funkcjg okreslong na zbiorze f(D). Mozemy wéwczas utworzy¢ nowa, funkcje

h(z) =g(y) gdzie y= f(z), z€D

czyli
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Funkcje h nazywamy superpozycjq funkcji f, g (lub funkcjq ztozona z funkcji f,qg). Uzy-
wany jest zapis

oraz

Przykiad 3. Niech
f(@)=1+sinz, g(y) =Y.

Funkcja g jest okreslona dla y > 0, za$
f(x) >0 dla ze€R.

Wobec tego funkcja zlozona

h(z) =+v1+sinzx
jest okreslona dla wszystkich = € IR.

Przykilad 4. Niech
f@)=2-1, gly)=y">

Funkcja potegowa g jest okreslona dla y > 0. Wobec tego superpozycja h = go f jest
okreslona tylko dla takich wartosci argumentu z, dla ktérych f przyjmuje wartosci dodat-
nie. Aby je znalez¢ rozwiazujemy nier6wnosé

2 —1>0,
ktéra mozna zapisa¢ w rOwnowaznej postaci
lz| > 1.

Wobec tego funkcja
h(z) = (2% —1)V3

jest okreslona na zbiorze D = (—o0, —1) U (1, 00).

Na zakonczenie wprowadzimy jeszcze dwie definicje. Dla uproszczenia zalozymy, ze
funkcja f jest okreslona na calym zbiorze IR.
Funkcja f jest

parzysta jezeli f(—z) = f(z) dla z € R,

nieparzysta jezeli f(—z) = —f(x) dla z € R.
Jak latwo zauwazy¢, podane definicje zachowuja, sens, gdy dziedzina funkcji D ma ta wlas-
nos¢, ze dla kazdego x € D réwniez —z € D.

Przykladem funkcji parzystej jest funkcja cosinus, gdyz

cos(—z) =cosz (z € R),
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funkcja, nieparzysta, jest sinus, gdyz
sin(—z) = —sinz  (z € R).

Wykres funkcji parzystej jest symetryczny wzgledem osi y-6w, wykres funkcji nieparzystej
jest symetryczny wzgledem poczatku ukladu wspélrzednych.
(VERVERV

Zadania.
1. W jakich przedziatach funkcja
y=azx’+br+c

jest $cisle monotoniczna? W kazdym z tych przedzialéw znalezé funkcje odwrotna,.
Wskazéwka. Przedstawi¢ tréjmian kwadratowy w postaci kanoniczne;j

gdzie A = b? — 4ac.

2.Udowodni¢, ze

1
(i) arcsinz + arccosx = 5™

1
(ii) arctgz 4 arcctgzr = o™

3. Ktore z podanych funkcji sa
a.) $cisle monotoniczne,
b.) réznowartosciowe.
Narysowa¢ ich wykresy. W przypadku funkcji réznowartosciowej znalezé funkcje odwrotna,.

flz)=2% (z>1),

11—z dla z <0,
g9(z) =
r—1 dla 0<zx<1,

z3 dla —1<z<1,

p(z) =< —2 dla z= -2
2 dla z =2,
sinx dla 0<z< 7,
’I‘(iL') - 2 m ™
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4. Ktére z podanych fukcji sa,
a.) parzyste,
b.) nieparzyste?

f(x)=zsinz (z€R),
-1 dla z = -2,

g(x)=¢ cosz dla —rn<z<m,
1 dla z =2,

1 dla z wymiernych,

d(z) = {

0 dla x niewymiernych.

5. Na przyktadzie funkcji
flz) =z +m, g(z) =sinz

pokazaé, ze funkcje zlozone f o g oraz g o f nie sg identyczne (superponowanie funkcji nie
jest dzialaniem przemiennym).

6. Znalez¢ dziedzine podanych funkcji:

fl@)=Va? -1+ Va2’ +1,
9(o) = @+ - 2)¥2
M) = S

p(x) = Vel=#* —1.

Ktére z tych funkcji sa
a.) parzyste,
b.) nieparzyste?

7. Niech
(A) f(2) = &, g(a)=sinz -1,
(B) f@) =1, g@)=a>—4,
Zmalez¢ funkcje zlozone f o g oraz g o f i poda¢ ich dziedziny.

8. Udowodni¢, ze kazda funkcja okreslona dla x € IR daje sie przedstawi¢ jako suma funkcji

parzystej i nieparzystej.
Wskazéwka. Zauwazy¢, ze funkcja

9(z) = f(z) + f(-=)
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jest parzysta, zas$ funkcja

jest nieparzysta.
9. Niech f, g beda funkcjami liniowymi spelniajacymi nieréwnosci

fla) <g(a), f(b) <g() (a<b).

Udowodni¢, ze niero6wnos¢
f(z) < g(z)

jest speliona w calym przedziale [a,b]. Podaé¢ sens geometryczny.



