§5. Pochodne wyzszych rzedéw.

o © ©
1. Pochodna rzedu k i wzor Leibniza Niech f bedzie funkcjs rézniczkowalna w
przedziale otwartym IP i niech

g9(x) = f'(x) (zeP).

Jezeli funkcja g jest réwniez rézniczkowalna w IP, to jej pochodng nazywamy drugaq po-
chodng funkcji f i oznaczamy

J(@)=1P@) (zelP)

lub
d*f(x)

dz?

Ogdlnie, przyjmujemy nastepujaca rekurencyjng definicje k-tej pochodnej (inaczej: pochod-
nej rzedu k) funkcji f:

g'(x) = (z € P).

@) =[f* V@) (zeP)

lub w zapisie Leibniza
i)  d ()

dek  dz dzk-1 )

dla k£ € IN. Przez pochodng rzedu zerowego rozumiemy sama, funkcje f, zas dla k = 2,3
uzywane jest oznaczenie

(z € P)

fO@) = "),  fO)=f"().

Jezeli IP nie jest przedzialem otwartym, lecz zawiera swéj lewy koniec a (wzglednie prawy
koniec b), to przyjeta definicja k-tej pochodnej pozostaje w mocy z tym, ze przez pochodng
w punkcie a (wzglednie b) rozumiemy pochodng prawostronna, (wzglednie lewostronna,).

Jezeli funkcja f ma w przedziale IP (otwartym lub nie) skoniczone pochodne do rzedu
n wlacznie, to mowimy, ze jest ona w tym przedziale n-krotnie rézniczkowalna. Przepro-
wadzajac rozumowanie podobne jak w dowodzie twierdzen 2 i 3 §4 stwierdzamy latwo, ze
jezeli funkcja ma skoriczona pochodng prawostronng (wzglednie lewostronna) w punkcie
Zo, to jest w tym punkcie ciaglta prawostronnie (wzglednie lewostronnie). Z uwagi tej oraz
z twierdzenia 3 §4 wynika, ze jezeli funkcja f jest m-krotnie rézniczkowalna w przedziale
IP, to ma w tym przedziale ciagte pochodne do rzedu n — 1 wlacznie. Jezeli réwniez
pochodna rzedu n jest ciggla w przedziale IP to méwimy, ze f jest klasy C™ w tym przedziale
(zapisujemy f € C™(IP)). Jezeli funkcja f ma w przedziale IP pochodne dowolnego rzedu
(oczywiscie zgodnie z twierdzeniem 3 §4 i uczyniona wyzej uwaga, sa one ciagle) to méwimy,
ze [ jest klasy C°° w tym przedziale (zapisujemy f € C*°(IP)).
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Dla pochodnej n-tego rzedu iloczynu dwdéch funkcji zachodzi wzor Leibniza

n

(1) (9™ =3 () s

k=0

przy zalozeniu, ze obie funkcje f, g sa n-krotnie rézniczkowalne w rozwazanym przedziale.
Udowodnimy go metods indukcji. Dla n = 1 wzér (1) zostal udowodniony w §4 (por.
twierdzenie 4 oraz wzory (10), (10’), (10”)). Zalézmy teraz, ze obie funkcje f,g sa
(n + 1)-krotnie rézniczkowalne, wobec tego wyrazenie po prawej stronie (1) jest funkcja
rézniczkowalna. Zakladajac, ze réwnosé (1) jest prawdziwa i rézniczkujac ja obustronnie
otrzymujemy po zastosowaniu reguty (10°) §4

n

n _ "~ (n n—
(fg)(n—H) — Z <k> f(k+1)g(n k) + Z <k>f(k)g( k—}—l)’
k=0

k=0

co po podstawieniu r = k + 1 w pierwszej sumie daje

n+1 n
n . n e
() =3 <7~ " 1>f(r>g(n Sy (k)f(k)g( +1),
k=0

r=1
Grupujac wyrazy z tymi samymi pochodnymi funkcji f, g otrzymujemy stad

2 (fg)"V = 2“:[( - ) ! (D}f Mgln=rid) 4 fO1) 4 DO,

r—1
r=1

Réwnosé (2) po wykorzystaniu znanej wlasnosci wspdlezynnikéw newtonowskich (por. (18)
rozdz.I §1) daje

(fg)(n—i—l) — Ti_:l ((’I’L + 1)) f('r)g(n—r—i—l)’

r
r=0

czyli wzér (1) z zastapieniem n przez n + 1. Dowdd indukcyjny jest zakoriczony. O

2. Wz6r Taylora i wzér Maclaurina.

Twierdzenie 1. Niech f bedzie funkcjq n-krotnie rdiniczkowalng w przedziale [a,b].
Wéwczas istnieje punkt ¢ € (a,b) taki, ze

_ - (b —a)* (k)
(3) fO) = fla)+ > 7 FP(a) + Ra,
k=1
gdzie
() R, = =9 s
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DOWOD. Dla dowodu wprowadzimy dwie pomocnicze funkcje

_ (b a)k (k)
9(z) = fb) = f(2) = 3 P (@)
k=1

oraz
u(z) = (b—=)"

(fatwo zauwazy¢, ze funkcje g otrzymujemy z réwnosci (3) rozwiazujac ja wzgledem R,

i zastepujac a przez z). Funkcje g, u speliaja w przedziale [a,b] zalozenia twierdzenia

Cauchy’ego (twierdzenie 12 §4). Mamy

() g9(b) = u(b) =0
(6) u'(z) = —n(b—z)" L.

Ponadto dla z € (a, b)
n—1 n—1
bh— gkt b—x)k
@) = @)+ ¥ e 10w - 30 L 0 ),
k=1 k=1
co po redukcji daje

@ /@) = - )

Stosujac do funkcji g, u twierdzenie Cauchy’ego otrzymujemy wobec (5)

co po wykorzystaniu (6), (7) i skréceniu utamka po prawej stronie przez (b — c¢)"~! daje

gla) _ f™(c)
u(@) n(n-1)"

Ostatnia réwno$é po obustronnym pomnozeniu przez u(a) daje (3). O

Wzér (3) nosi nazwe wzoru Taylora' (wzoru Maclaurina® gdy a = 0) z reszta w postaci
Lagrange’a okreslona wzorem (4).

1Brook Taylor (1685 - 1731), studiowal na uniwersytecie w Cambridge, w 1712 r. zostal czlonkiem
Londynskiego Towarzystwa Krélewskiego. Kontynuujac badania I. Newtona zajmowatl sie rachunkiem
rézniczkowym i mechanika (badal drgania poprzeczne struny jednorodnej zamocowanej na konicach).

2Colin Maclaurin (1698 - 1776), urodzony w Szkocji, od 1725 r. profesor matematyki na uniwersytecie
w Edynburgu, czlonek Londynskiego Towarzystwa Krélewskiego. Zajmowal sie analizg matematyczna,
kontynuujac badania I. Newtona.
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W przeprowadzonym dowodzie rozwazaliémy funkcje f w przedziale [a, b], co oznacza, 7e
zakladamy a < b. Zauwazmy jednak, ze w twierdzeniu Cauchy’ego, na ktérym oparty jest
dowdd, mozna zamienié¢ role punktéw a,b - powoduje to jedynie zmiane znaku w liczniku
i w mianowniku utamka po lewej stronie wzoru (57) §4. Nic wiec nie stoi na przeszkodzie,
by zakladajac b < a powtdrzy¢ cale rozumowanie, rozwazajac funkcje f, g, u w przedziale
[b,a]. Zatem we wzorze (3) moze by¢ a < b lub a > b. Wzér (3) pozostaje réwniez
prawdziwy dla a = b, gdyz redukuje sie on wtedy do réwnosci f(b) = f(a) (przyjmujemy
w tym wypadku ¢ = a = b).

Uwzgledniajac te uwagi i zmieniajac oznaczenia mozemy twierdzenie 1 sformulowa¢ w
innej, nieco ogdlniejszej, postaci.

Twierdzenie 2. Niech f bedzie funkcjaq n-krotnie rézniczkowalnag w przedziale IP i niech
a € IP. Wowczas dla dowolnego x € P istnieje punkt T lezgcy miedzy a, x taki, ze

— (x —a)*

® f@) = f@+ 3 T 00 4 R,
k=1

gdzie

Q Ry == o)

Réwnosé (8) stanowi inna postaé wzoru Taylora (wzglednie wzoru Maclaurina,
gdy a = 0) z reszta, R, w postaci Lagrange’a okre§lona wzorem (9).

3. Szczegéblne przypadki wzoru Taylora. Dla n = 1 wzér (3) przyjmuje postaé

fb) = f(a) + (b= a)f'(c),

twierdzenie 1 jest wowczas twierdzeniem Lagrange’a, ktére bylo omdéwione w §4 (twierdze-
nie 11). Zakladajac, ze funkcja f jest dwukrotnie rézniczkowalna w przedziale IP i przyj-
mujac n = 2 we wzorze (8) otrzymujemy z twierdzenia 2

(10) f(z) = f(a) + (& — a)f'(a) + Ro,
gdzie
(11) Ry = (a— a)? ()

Moéwimy, ze
f jest wypukta w przedziale IP, jezeli3

f'(z) >0 dla zelP;

3W dalszym ciagu (punkt 10) bedzie podana inna definicja funkcji wypuklej bez zadnych zalozeri o jej
regularnodci. Dla funkeji dwukrotnie rézniczkowalnych obie definicje sa réwnowazne (twierdzenie 8).



264

f jest wklesta w przedziale IP, jezeli
f(z)y<0 dla zelP.

Oczywiscie f jest wypukla (wklesta) wtedy i tylko wtedy, gdy —f jest wklesla (wypukla)
w przedziale IP.

Przypomnijmy (por. §4 punkt 1), ze réwnanie stycznej do wykresu funkcji f w punkcie
(a, f(a)) ma postaé

(12) y=f(a)+ (z —a)f'(a).

Ze wzoréw (10) - (12) widaé, ze jezeli f jest funkcjq wypuktq w IP, to jej wykres leZy nad
styczng poprowadzong w dowolnym punkcie (a, f(a)), gdzie a € IP. Jezeli f jest funkcjq
wklestq w IP, to zachodzi sytuacja przeciwna - wykres lezy pod styczng poprowadzong w
punkcie (a, f(a)) dla dowolnego a € IP.

Przyktad 1. Niech (rys. 36)

wowczas

f'(@) =2

dla dowolnego z, zatem f jest wypukta w przedziale IP = (—o0,00). Z rys. 36 widaé, ze

parabola o réwnaniu y = z2 lezy nad styczna poprowadzona w dowolnie obranym punkcie
(a,a?).

Przyktad 2. Niech (rys. 37)

f(z) =logz  (z>0),
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wowczas

zatem [ jest wklesta w przedziale IP = (0,00). Z rys. 37 widaé, ze wykres funkcji f lezy
pod styczna, poprowadzona, w dowolnie obranym punkcie (a,loga).

Przyklad 3. Rozwazmy funkcje potegowa
f(z) ==z*
okreslong w przedziale IP = (0, 00). Mamy dla z € IP
1"(2) = o — 1)a?

a stad
£1( ){<O gdy 0<a<l,
x
>0 gdy a<0 lub a>1.

Dla « € (0,1) funkcja f jest wklesta w przedziale IP, dla o € (—00,0) U (1, 00) funkcja f
jest wypukta w tym przedziale. Wykresy funkcji f dla réznych wartosci o podane byly na
rys. 18 (§3).

Zakladajac w dalszym ciagu, ze f jest dwukrotnie rézniczkowalna w przedziale IP
wprowadzmy pomocnicza funkcje

(13) o(z) = fw) = fa) (z,a € P,z # a).

r—a

Mamy

(14) o) = D
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Z drugiej strony, zamieniajac role punktéw a, x we wzorze Taylora (8) przy n = 2 otrzy-
mujemy dla a, z € IP

(15) f@a) = f(2) + (a — 2)f'(z) + 5 (a — 2)*f"(2),

gdzie T jest punktem poSrednim miedzy a, x. Jezeli f jest wypukla w przedziale IP, to z
(14), (15) wynika, ze funkcja ¢ okreslona wzorem (13) jest rosnaca w kazdym przedziale
nie zawierajacym punktu a. W szczegélnosci dla

a<z<b (belP)

mamy
e(z) < o(b),
co daje po prostych przeksztalceniach
b) —
(16) f) < f@)+ PO =Ty

dla a < z < b. Zauwazmy, ze réwnanie prostej przechodzacej przez punkty A = (a, f(a)),
B = (b, f(b)) ma postaé

(17) y=fla)+—————(z—a)

Prosta, te nazywamy sieczng wykresu funkcji f, za$ jej odcinek o konicach A, B - cieciwq
wykresu. 7 (16), (17) wynika wiec, ze

wykres funkcji wypuktej w przedziale IP lezy zawsze pod cieciwg wyznaczonag przez punkty

(a, f(a)), (b, f(b)), gdzie a, b € IP.

Jezeli funkcja f jest wklesta w przedziale IP, to w podobny spos6b zauwazamy, ze funkcja
¢ okreslona wzorem (13) jest malejaca w kazdym przedziale nie zawierajacym punktu a.
Daje to w konsekwencji nier6wnosé (16) z zamiana, znaku < na >. Wobec tego

wykres funkcyi wklestej w przedziale IP lezy zawsze nad cieciwg wyznaczong przez punkty
(a, f(a)), (b, f(b)) gdzie a,b € IP. Przeprowadzone rozwazania ilustruje rys. 38 a), gdzie
f(z) = z? oraz rys. 38 b), gdzie f(z) = logz.
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[rys. 38 a)] [rys. 38 b)]

Przykiad 4. Niech
flz)=¢€" (ze€R).

Funkcja f jest wypukla w przedziale (—oo, 00) gdyz
f'(x) =e" >0,
zatem wykres jej lezy nad styczna w punkcie (0,1) o réwnaniu
y=x+1,

skad wynika, ze
e >1+z (z € R).
Nier6wnosé ta byta udowodniona w §4 (Przyktad 28).

Przykitad 5. Niech
f(z) =log(14+2z) (z>-1).

Funkcja f jest wklesta w przedziale (—1, 00), gdyz

—1

f(z) = At2°

<0,

zatem wykres jej lezy pod styczna, w punkcie (0,0) o réwnaniu

skad wynika, ze
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Jest to prawa czesé¢ nieréwnosci udowodnionej w §4 (Przyklad 29).

4. Ekstrema i punkty przegiecia. Niech f bedzie funkcja rézniczkowalna w prze-
dziale otwartym IP i niech dla ustalonego punktu a € IP

(18) d(z) = f(z) = f(a) — (z = a) f'(a).

Moéwimy, ze a jest punktem przegiecia funkcji f, jezeli istnieje § > 0 takie, ze

<0 dla a—d<zxz<a,
(19) d()

>0 dla a<z<a+é
Iub

>0 dla a—d<zxz<a,
(19) 4]

<0 dla a<z<a+é.

Niech [, oznacza styczng do wykresu w punkcie (a, f(a)) - jak wiemy (por. §4 punktl),
jest ona okreslona réwnaniem

y=f(a) + (& —a)f'(a).

Warunek (19) oznacza, ze

wykres lezy pod styczna, [, w przedziale (a —d, a) i nad styczna [, wprzedziale (a,a+96),
za$ warunek (19’), ze naodwrot -

wykres lezy nad styczna, I, w przedziale (a —d, a) i pod styczna [, w przedziale (a,a+9).
Zatem jezeli a jest punktem przegiecia, to wykres funkcji w punkcie (a, f(a)) przechodzi z
jednej strony stycznej na druga, strone.

Podobnie, jak w przypadku ekstremum, mozna latwo sformulowaé warunek konieczny
do tego, by punkt a byl punktem przegiecia.

Twierdzenie 3. Jezeli f jest klasy C? w przedziale otwartym P oraz a € IP jest punktem
przegiecia, to

f"(a) =0.

DOWOD. Wzdr Taylora (8) dla n = 2 mozemy zapisa¢ w postaci

(20) () = 5z — )1 (@),

gdzie z lezy miedzy punktami a, z. Przypusémy teraz, ze f”(a) # 0. Woéwczas z (20)
widzimy, ze w pewnym dostatecznie malym otoczeniu a wyrazenie d(z) jest r6zne od zera
dla z # a i ma staly znak, taki jak f”(a) (por. zadanie 38 §3). Oznacza to, ze zaden z
warunkéw (19), (19°) nie jest spelniony - wbrew zalozeniu, ze a jest punktem przegiecia.
Ol
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Zalézmy teraz, ze f jest funkcja klasy C™ w przedziale otwartym IP. Wiemy (por. §4
punkty 6,7), ze jezeli a € IP jest punktem ekstremalnym funkcji f, to

(21) flla)=0

przy czym (21) stanowi jedynie warunek konieczny ale nie dostateczny istnienia ekstremum
w punkcie a. Aby rozstrzygnaé, czy rzeczywiscie funkcja f osiaga ekstremum w punkcie a,
badamy zachowanie jej pochodnej f’ w otoczeniu a - tak postepowaliSmy w Przykladach
38, 39, 40 §4. Obecnie zobaczymy, ze majac do dyspozycji pochodne wyzszych rzedow,
mozemy sformutowaé kryterium sprowadzajace si¢ do badania tych pochodnych w punkcie
a, w ktérych zachodzi réwnosé (21). Zalézmy, ze spelione sa warunki

fla)=--=f""Da) =0, fP(a)#0,
gdzie 2 < p < n. Ze wzoru Taylora (8) dla n = p mamy, przyjmujac z =a + h
h? _
(22) fla+h) = fla) = 2L fP (@),

przy czym dla dostatecznie malych |h| pochodna f®)(Z) jest rézna od zera i ma ten sam
znak, co f®P)(a). Z réwnosci (22) widaé, ze jezeli p jest liczba parzysta, to réznica po lewej
stronie ma taki sam znak jak f(®)(Z) niezaleznie od znaku przyrostu h. W tym przypadku
f ma w punkcie a ekstremum, przy tym
minimum gdy f®(a) >0, maksimum gdy f®(a) < 0.

Jezeli p jest liczbg nieparzysta, to z (22) wynika, ze znak réznicy po lewej stronie zalezy
od znaku przyrostu h, wobec tego w punkcie a nie ma ekstremum.

Przyjmijmy teraz, ze a € IP jest punktem przegiecia funkcjif, zatem zgodnie z twierdze-
niem 3

(23) f"(a) =0.

Zalézmy ponadto, ze

(@) == fr"(a) =0, fP(a) #0
gdzie 3 < p < n. Wzér Taylora (8) dla n = p mozemy zapisa¢ w postaci
z—a)P i
d(z) = %f(p) (z),

gdzie funkcja d(x) jest okreslona wzorem (18). Jezeli p jest liczbg nieparzysta, to w pewnym

otoczeniu punktu a
<0 dla z<a,
d(z)
>0 dla z>a
lub

>0 dla z<a,
d(x)
<0 dla =z > a,

zaleznie od znaku pochodnej f®) (a). Jezeli za$ p jest liczba, parzysta, to w pewnym
otoczeniu punktu a wyrazenie d(z) ma staly znak, taki sam jak f)(a) - zatem a nie moze
by¢ punktem przegiecia.

Przeprowadzone rozumowanie doprowadzito nas do nastepujacego kryterium pozwala-
jacego rozstrzygnaé zachowanie sie funkcji w otoczeniu punktu a.
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Twierdzenie 4. Niech f bedzie funkcjag klasy C™ w przedziale otwartym 1P ¢ niech a € TP.
(i) Jezeli
fl@) =+ =" (a)=0, [P(a)#0,

gdzie 2 < p < n, to a jest punktem ekstremalnym wtedy i tylko wtedy gdy p jest liczbg
parzysta, przy tym
f ma w punkcie a minimum gdy f®(a) > 0,
oraz
f ma w punkcie a maksimum gdy f®(a) < 0.
(ii) Jezeli
f'(a)=---=f"Va)=0, f¥ 0,

gdzie 3 < p < n, to a jest punktem przegiecia witedy i tylko wtedy gdy p jest liczbg
nieparzystq, przy tym

wykres lezy pod stycang lg dla © < a za$ nad styczng l, dla z > a gdy f®(a) >0
oraz

wykres lezy nad styczng l, dla r < a zas pod styczna l, dla x > a gdy f(p)(a) < 0.

Przyktad 6. Niech (rys. 39)
f@)=(z—-a)* (ke).
Funkcja f jest klasy C°° w calym przedziale (—oo, 00). Dla k =1 jest to funkcja liniowa

flx) =z —a.

Poniewaz

fll@)=1  (zeR),

w zadnym punkcie a € IR nie jest spelniony warunek konieczny istnienia ekstremum (por.
twierdzenie 9 §4). Réwniez
dz)=0 (x € R)

i wobec tego przy dowolnym obiorze punktu a € IR nie moze by¢ spelniony zaden z
warunkéw (19), (19’). Wynika stad, ze dla k = 1 funkcja f nie ma ekstreméw ani punktéw
przegiecia.

Gdy k > 1, mamy

fO@)=k(k=1) - (k—j+D)(x—a)f 7 dla j=1,2,....,k—1, f*(z)=kl,

zatem zgodnie z twierdzeniem 4
f ma minimum w punkcie a gdy k jest liczba parzysta,
oraz
f ma punkt przegiecia dla z = a gdy k jest liczba nieparzysta,.
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y=@-a) y=@-a)

\

o a X 0 a X

v
v

(k parzyste) (k> 1 nieparzyste)

[rys. 39 a)] [rys. 39 b)]

Przyklad 7. Niech (rys. 40)

f(a:):{mg dla z >0,

0 dla 2<0
A
y
0] x'
[rys. 40]
wowczas 302 dl 0
x a x>0,
ra) ={
0 dla x<0,
nastepnie

6z dla >0
174 — )
fiz) {0 dla z<0
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oraz

6 dla >0
" _ )
! (x)_{o dla z<0

za$ f"”'(0) nie istnieje (druga pochodna f” ma w punkcie £ = 0 rézne pochodne lewo- i
prawostronna). Zatem f jest klasy C? w przedziale (—oo, 00). Pomimo, ze

f” (0) — 0
punkt x = 0 nie jest punktem przegiecia, gdyz

x3 dla =z >0,

d(z) = {
0 dla z <0,

nie jst wiec spelniony zaden z warunkéw (19), (19°) dla a = 0. Jak widaé z rys. 40, dla

x > 0 wykres lezy nad styczna [y (jest nia, oS z-6w), natomiast dla < 0 wykres pokrywa

sie z ta styczna. W punkcie z = 0 mamy minimum (nie jest to minimum witasciwe).

Przyklad 8. Opierajac sie na twierdzeniu 4 zbadamy ekstrema i punkty przegiecia
funkcji

f(z) =sinz.
Mamy
f'(z) =cosz, f’"(xz) = —sinz, f"(z) = —cosuz,
a wiec warunek
f@)=0

jest spelniony w punktach
1
a:k:(k+§)7r (ke Z),

natomiast
f'(zx) = (1) £ 0.

Zatem funkcja sinus ma minimum w punktach

3
Tokt+1 = (2]4: + —)7T

2
oraz maksimum w punktach
1
Ponadto
f'@)=0
dla
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przy czym
f"(@x) # 0.
Wobec tego punkty #j sa punktami przegiecia funkcji sinus. Funkcja ta jest wypukla w
kazdym przedziale [(2k —1)7, 2k] i wklesta w kazdym przedziale [2kn, (2k+1)7] (k € Z).
Przykilad 9. Niech

[@)=tgr (—5 <e<g),

wowczas
f'(z) = (cosz)2, f"(x) = 2(cosz) sinz, f"(x)=6(cosz) *(sinz)? + 2(cosz) 2.

Poniewaz f'(z) # 0 dla wszystkich z, funkcja tangens nie ma ekstremdéw. Warunek
konieczny dla punktu przegiecia

f'(z)=0

speliony jest dla x = 0. Poniewaz

F0)=2#0

punkt z = 0 jest punktem przegigcia. W przedziale (—7,0] funkcja tangens jest wklesla
za$ w przedziale [0, ) jest funkcja wypukla.

Aby zbadaé¢ w oparciu o twierdzenie 4 czy punkt a spelmiajacy warunek (23) jest punk-
tem przegiecia, musimy obliczy¢ pochodna, rzedu co najmniej trzeciego, co moze wymagac
ucigzliwych rachunkéw. Nastepujace twierdzenie pozwala sprowadzi¢ zagadnienie do bada-
nia drugiej pochodnej w otoczeniu punktu a.

Twierdzenie 5. Niech f bedzie funkcja dwukrotnie rozniczkowalng w przedziale otwartym
IP i niech
fll(a) — 0’

gdzie a jest punktem przedziatu IP. Jezeli istnieje takie 6 > 0, ze

<0 dla a—-9d<zx<a,
>0 dla a<z<a+9§

lub
f”(m){>0 dla a—-9d<zx<a,

<0 dla a<xz<a+§,
to a jest punktem przegiecia funkcji f.

DOWOD. Korzystajac z postaci (20) wzoru Taylora dla n = 2 stwierdzamy, ze spelniony
jest jeden z warunkéw (19), (19’), co konczy dowdd. O
o © ©
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5. Funkcje hiperboliczne. Przy pomocy funkcji wyktadniczej e* wprowadzimy dwie
nowe funkcje: sinh (sinus hiperboliczny) i cosh (cosinus hiperboliczny), okreslone wzorami

1 1
(24) sinhx = 5(6’” —e™*), coshz = 5(6”” +e ) (z€RR).
Ze wzoréw tych wynika natychmiast wazna tozsamosé
(25) cosh? z —sinh? z = 1.

Rézniczkujac wzory (24) stwierdzamy, ze

(26) (sinhz)’ = coshz, (coshz)’ = sinhz
a stad
(27) (sinhz)” = sinhz, (coshz)” = coshz.

Z pierwszego wzoru (26) wynika, ze sinus hiperboliczny jest funkcja scisle rosnaca, ponadto
sinh 0 = 0. Wobec tego

<0 d < 0,
(28) sinhx{ v

>0 dla x>0,

a stad i z pierwszego wzoru (26) wnioskujemy, ze sinus hiperboliczny jest funkcja wklesta,
w przedziale (—o0,0) i funkcjg wypukla, w przedziale (0, 00). Dla = 0 mamy

(sinh)”(0) = sinh 0 = 0, (sinh)"”’(0) = cosh 0 =1,

za$ réwnanie prostej [y stycznej do wykresu funkcji sinus hiperboliczny w punkcie (0, 0)
ma postac

Y=

Zgodnie 7z twierdzeniem 4 punkt x = 0 jest punktem przegiecia funkcji sinus hiperboliczny,
przy czym wykres lezy pod stycznag, [y dla x < 0, zas nad styczng lo dla x > 0. Z pierwszego
wzoru (24) wynika ponadto, ze

lim sinhx = —o0, lim sinh z = oo.
r—r—00 T—r0Q0

Wykres funkcji sinus hiperboliczny podany jest na rys. 41.



275

y y =sinhx

[rys. 41]

Funkcja cosinus hiperboliczny jest parzysta, wobec tego wykres jej jest symetryczny
wzgledem osi y-6w. Na mocy (26), (28) funkcja cosinus hiperboliczny jest $cisle malejaca
w przedziale (—oo, 0] i Scidle rosnaca w przedziale [0,00). W punkcie z = 0 ma minimum
(wlasciwe), przy czym

cosh(0 = 1.

Poniewaz

coshz >0

dla dowolnego = € R, z drugiej réwmosci (27) wynika, ze cosinus hiperboliczny jest funkcja
wypukla, w calym przedziale (—oo, 00). Ponadto

lim coshz = lim coshz = 0.
T—r—00 r— 00

Wykres funkcji cosinus hiperboliczny podajemy na rys. 42.
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[rys. 42]

Funkcja sinus hiperboliczny jest $cisle rosnaca w przedziale (—oo, 00), posiada zatem
funkcje odwrotng ktdra oznaczamy arsinh. Aby ja wyznaczyé rozwiazemy wzgledem x
réwnanie

Podstawienie
(29) z=e"
doprowadza do réwnania kwadratowego

22— 2yz — 1 =0,

ktére ma dwa rozwiazania

n=y+V1+y?, zn=y—V1+y2
Poniewaz
V1I+y2>y? =yl

wiec
z1>y+y[ >0, z2<y—|y<0 (yeR),

zatem rozwiazanie zagadnienia dostajemy przyjmujac

e’ =21

co daje

z =log(y + v1+y?).
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Funkcja arsinh ma zatem postac

(30) arsinhz = log(z + V14 22) (z € R).

Funkcja cosinus hiperboliczny jest S$ciSle monotoniczna w kazdym z przedzialow
(—00,0], [0,00), w kazdym z tych przedzialéw posiada wiec funkcje odwrotng okreslona
dla y > 1. Znajdziemy ja rozwiazujac wzgledem z réwnanie

1
(31) Y= 5(6:c +e %),
ktére po podstawieniu (29) przechodzi w réwnanie kwadratowe
22 —2yz+1=0.

Ostatnie rownanie ma dwa rozwiazania

zn=y+Vy2 -1, z=y—vy? -1 (y>1),

przy czym zachodzi zwiazek
(32) Z1R9 = 1.

Poniewaz

wiec na mocy (32) mamy

1 przyjmujac

dostajemy dla y > 1 dwa rozwiazania réwnania (31)

(33) z1=log(y +vy2—1) >0

oraz
(34) z2 =log(y — vy* — 1) <0,
przy czym

ro = —I1

(por. rys. 42). Wzory (33) i (34) okreslaja, funkcje odwrotna, do funkcji cosinus hiper-
boliczny odpowiednio w przedziale [0,00) i (—o00,0]. Przez arcosh rozumiemy funkcje
odwrotna, w przedziale [0, c0). Mamy zatem

(35) arcoshz = log(z + V22 —1) (z>1).
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Znajdziemy jeszcze pochodne funkcji odwrotnych do funkcji hiperbolicznych. Podsta-

wiajac
u=+vz2+1
mamy
d 1+ du
36 — (arsinhz) = ————4z
(36) L ) PR
Poniewaz

du T

dz — VaZ+1’

mnozac po prawej stronie (36) licznik i mianownik przez vz2 4+ 1 dostajemy po uproszcze-
niu

d 1
37 — inhz) = ——.
(37) = (arsi ) Jo 1

Podobny rachunek daje

(38) %(arcoshx) = (x>1).

1
V2 -1

Wzory (37), (38) sg przydatne w rachunku catkowym.

VRV

6. Asymptoty wykresu funkcji. Niech f bedzie funkcja okreslona w sasiedztwie
punktu a € IR. Méwimy, ze prosta x = a jest asymptota pionowq wykresu funkcji f, jezeli
przynajmniej jedna z granic jednostronnych funkcji f w punkcie a jest granica niewlasciwa
(tzn. oo lub —o0).

Przyklad 10. Niech
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A
y
x,

[rys. 43]

wowczas
lim f(z)=—o0, lim f(x)= o0,
T—=—5+ T— 5 —

zatem proste £ = —7% oraz = 7 sa asymptotami pionowymi wykresu funkcji f (rys. 43).

Oproécz asymptot pionowych rozwazamy réwniez asymptoty skosne. Niech [ bedzie
prosta o réwnaniu
y(x) = Az + B

i niech

s(z) = f(z) —y(z)
(zauwazmy, ze |s(x)| oznacza odleglo$é miedzy prosta | a wykresem funkcji f mierzona w
kierunku osi y-6w). Méwimy, ze [ jest asymptotq skosna wykresu funkcji f przy x — oo,
jezeli
(39) xli)rgo s(z) =0
(oczywiscie zakladamy, ze funkcja f jest okreslona przynajmniej dla dostatecznie duzych

x). Z podanej definicji latwo wyprowadzi¢ wzory pozwalajace wyznaczy¢ wspélezynniki
A, B w réwnaniu asymptoty. Z warunku (39) wynika, ze réwniez

lim M =0
r—o00 T
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a to oznacza, ze

(40) im L&) 4

T—>00 €T
Z (39) otrzymujemy teraz

(41) lim (f(z) — Az) = B.

T—r00

Na odwr6t, jezeli wspélczynniki A, B sa okreslone wzorami (40), (41), to z (41) wynika,
ze prosta [ jest asymptotg sko$ng przy x — oo.
Uwaga 1. Wspélczynnik A mozna rowniez obliczaé ze wzoru

(42) A= lim f'(z),
T—r00
o ile funkcja f jest rézniczkowalna dla dostatecznie duzych x i istnieje granica po prawej
stronie (por. zadanie 41 §4).
Uwaga 2. Jezeli

A5, (e =5,
to zgodnie z (40)
A= 1im 19—,
r—oo €I
zatem prosta
y=2>B

jest asymptota skosna wykresu funkcji f przy x — oo.

W zupelnie podobny sposéb mozemy wprowadzi¢ asymptoty przy  — —oo. Zakladajagc,
ze f jest okreslona dla z < —M (gdzie M jest odpowiednio dobrana liczbg dodatnia,),
mowimy, ze [ jest asymptotq skosna wykresu funkcji f przy x — —oo, jezeli

(397 lim s(z) =0.

T—r— 00

Rozumujac podobnie jak poprzednio otrzymujemy wzory na wspolczynniki A, B w postaci

(407 A= tm 1
(41%) B= lim (f(z)— Ax).

T—>—00

Uwagi 1, 2 pozostaja stuszne dla asymptot skosnych przy x — —oo (oczywiscie w podanych
wzorach nalezy rozwazaé granice przy x — —o00). W dalszym ciagu asymptoty skosne przy
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xr — 0o wzglednie przy r — —oo oraz asymptoty pionowe bedziemy nazywali po prostu
asymptotami.
Przyklad 11. Niech

flz) = isinx, g(z) = %sinw2 (x> 0).

Zbadamy asymptoty wykreséw obu funkcji przy x — co. Mamy

lim f(z)= lim g(z) =0,

Tr—00 T—r00

zatem prosta y = 0 jest asymptota obu wykreséw. Zauwazmy, ze w przypadku funkcji f
wspoélezynnik A mozna obliczy¢ réwniez ze wzoru (42), gdyz

cosx Ssinzx

! — pu—
f (.73) - T x2
zatem
lim f'(z) =0.
T—00
Natomiast o
g'(z) = 2cosz? — 5122x :
wobec tego
lim ¢'(x)
T—>00

nie istnieje (por. Przyktad 4 §2) i wzér (42) nie moze byé stosowany.

Przyklad 12. Znajdziemy asymptoty wykresu funkcji

flz) = V1+a2

Mamy
lim@:hm %-i-l:l
T—00 T =00 ¥ T
oraz (po przeksztalceniu)
flo) - = ——

Vit +a
skad
lim (f(z) —x) =0.

Tr—00
Zatem prosta
y=u1
jest asymptota wykresu przy z — oo. Podobnie
1
lim @:— lim —+1=-1

T——00 I z——o00 | 22
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oraz ,
f@) o=,
skad
mgr_noo(f(a:) +z)=0.
Zatem prosta
Yy=-—x

jest asymptota wykresu przy x — —oo. Zauwazmy, ze ten ostatni wynik mozna bylo
przewidzie¢ bez rachunku. Funkcja f jest bowiem parzysta, zatem wykres jej jest symet-
ryczny wzgledem osi y-6w. Znajac wykres dla z > 0 i asymptote przy £ — oo znajdujemy
pozostala czes¢ wykresu (a wiec i jego asymptote przy & — —oo) przez odbicie w osi y-6w.
Wykres funkcji f (rys. 44) stanowi gérna gataz hiperboli o réwnaniu

[rys. 44]

7. Badanie wykresu funkcji. Badanie funkcji celem sporzadzenia jej wykresu prze-
prowadzamy wedlug nastepujacego planu:

19 okreglenie dziedziny funkcji;

29 monotoniczno$é funkcji, ekstrema;

39 wypuktosé funkcji i punkty przegiecia;

4% granica funkcji w punktach koncowych przedzialéw, w ktérych jest okreélona;

59 asymptoty wykresu;
W niektorych przypadkach badamy jeszcze
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6° punkty przeciecia wykresu z osiami

oraz

79 kierunek stycznej do wykresu w pewnych szczegélnych punktach np. punktach prze-
ciecia wykresu z osiami, punktach przegiecia, punktach koricowych przedzialéw w ktérych

funkcja jest okreslona.
Wyjasnimy ten schemat na kilku przykladach.
Przyklad 13. Niech

f(z) = e=.
A
Y
y= el/x
S 5 e —
—% 1 x
[rys. 45]

Funkcja f jest okreslona dla x # 0, zatem dziedzina jej jest suma dwéch przedzialéw
(—00,0) U (0,00). Poniewaz
fl('r) = _%e% < 07
funkcja jest $cisle malejaca w kazdym z tych przedzialéw. Rézniczkujac ponownie otrzy-
mujemy
2 1 1 1 1
E —I— F)eﬁ = Few (233 —I— 1),

(@) =(

skad

<0 dla =z< -1
(43) f'z)y=< 0 dla z=-1,

>0 da z>—3.
Na mocy twierdzen 3, 5 punkt z = —% jest jedynym punktem przegiecia. Oznaczajac
przez | styczna do wykresu w punkcie (—1, f(—1)) widzimy ze wzoru (18), ze dla z < —1
wykres lezy pod styczng [, dla —% < x < 0 wykres lezy nad styczna, [.
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Ponadto z (43) wynika, ze funkcja f jest wklesta w przedziale (—oc, —%) oraz wypukla w
kazdym z przedzialéw (—1,0) i (0, 00).
7 definicji funkcji f otrzymujemy

li = li =
Jm f(z) =0,  lim f(z)=co,
zatem prosta x = 0 jest asymptota pionows wykresu. Podstawiajac t = —% i stosujac

regule de 'Hospitala (por. Przyktady 32 - 34 §4) stwierdzamy, ze

: / _ T 2,—t _
a:l—l)I(I)l— f (I) - tll)rgot ¢ O,

co oznacza, ze wykres w przedziale (—oo, 0) osiaga poczatek ukladu stycznie do osi z-6w.
Mamy nastepnie
lim f(z)= lim f(z)=1

T—00 Tr——00

a wiec prosta y = 1 jest asymptota wykresu przy x — oo oraz przy x — —oo. Wykres
funkcji f podany jest na rys. 45.

Przykilad 14. Zbadamy funkcje

flx)=2" (x>0).

v

[rys. 46]

Dziedzina, funkcji jest przedzial (0, 00). W celu obliczenia pochodnej mozemy zastosowaé
pochodna logarytmiczna, (por. zadanie 11 i wz6r (95) §4) lub przedstawié funkcje w postaci

(44) fla) = e*los
(podobnie, jak w Przyktadzie 12 §4). Rézniczkujac otrzymujemy

(45) f'(@) = " (log z + 1)
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a stad .
f'(z) = f'(z)(logz +1) + — f(z) = 2" (logz + 1) + 2" 1.

7 wiasnosci potegi wynika, ze
(46) f'(z)>0 dla z >0,

zatem funkcja f nie ma punktéw przegiecia i jest wypukla w przedziale (0, 00). Dla zbada-
nia ekstreméw zauwazmy, ze rownanie

fl(x)=0

jest réwnowazne réwnaniu
loge = -1,

ktorego jedynym rozwiazaniem jest x = é Poniewaz

, {<0 dla 0<a:<é,
T
>0 dla z>1

funkcja f jest $ciSle malejaca w przedziale (0, 1) oraz Scisle rosnaca w przedziale (1,00)

1
e
za$ w punkcie z = 1 osiaga swéj kres dolny (czyli minimum absolutne w przedziale (0, co)
- por. Uwaga §3 punkt 6), przy czym
1
inf f=e ".
(0,00) !

Z przedstawienia (44) widaé, ze (por. wzér (86) §4)

(47) lim f(z) =€’ =1, lim f(z) = oo.

x— 0+ T—00

Ponadto

Z
tim T — g ele08e — o,
T—00 I T— 00

wobec tego wykres nie ma asymptot. Z (45), (47) wynika, ze

. / _
$1_1)1’(I)1+f (I) -

zatem przy x — 0+ wykres dochodzi do osi y-0w stycznie do niej. Wykres funkcji f
podany jest na rys. 46.
Przyklad 15. Zbadajmy funkcje

x3 — 22243
212 )

fz) =
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Yiin

[rys. 47]

Funkcja f jest okreslona dla z # 0, jej dziedzina jest zatem sumg dwéch przedzialéow
(—00,0) U (0,00). Wykonujac dzielenie mozemy funkcje f przedstawié w postaci

1 3
(48) f(m):§$—1+ﬁ

skad przez rézniczkowanie dostajemy

oraz

Jedynym punktem stacjonarnym jest o = /6. Poniewaz
(49) f'(@)>0

dla wszystkich z # 0, a wiec i dla x = x(, na mocy twierdzenia 4 funkcja f ma minimum
w punkcie zo. Poniewaz
£ ){ >0 dla z<0 orazdla =z > x,
<0 dla 0<z<xg
funkcja f jest $cisle rosnaca w kazdym z przedzialéw (—oo,0) i (xo,00) i SciS§le malejaca
w przedziale (0,z¢). Oznaczajac przez Y., najmniejsza, wartosé¢ funkcji f w przedziale
(0,00) (jest to kres dolny funkcji f w tym przedziale) mamy
B 9-2{/36
Ymin = [(T0) = W
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Latwo sprawdzic¢, ze

Ymin > 0.
Istotnie, wyciagajac pierwiastek trzeciego stopnia z obu stron nieréwnosci 27 > 16 dosta-
jemy 3 > 2+/2, skad

9> 6V/2,

zas z drugiej strony

2v/36 = 2V/22 - 32 < 2V/2- 33 = 6V/2.
Zestawienie otrzymanych nieréwnosci daje ymin > 0, skad wynika, ze w przedziale (0, c0)
funkcja f przyjmuje wylacznie wartoéci dodatnie. Natomiast w przedziale (—oo, 0) funkcja
f przyjmuje wartosci réznych znakéw, gdyz
f(=1)=0

a w przedziale tym funkcja f jest SciSle rosnaca. Z nieréwnosci (49) wynika, ze funkcja f
jest wypukla w kazdym z przedzialéw (—oo,0) i (0,00). Z przedstawienia (48) widaé, ze

lim f(z) = oo,

z—0

zatem of y-Ow jest asymptota pionowa wykresu. Aby znalezé asymptoty skosne zauwazmy,
ze

A= limwz lim @:1

T—>00 €T T——00 T
oraz . .
B = lim (f(z) - 52) = lim (f(z)-52)=-1.
Na mocy wzoréw (40), (41), (40’), (41°) stwierdzamy, ze prosta
Yy = lx -1
2

jest asymptota, wykresu przy x — oo oraz przy £ — —oo. Wykres funkcji f przedstawiony
jest na rys. 47.

Przyklad 16. Niech f(z) = logsinz.

[rys. 48]
A
Yy

v

27 -7 %n T 2n 3n
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
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Funkcja f jest okreslona w kazdym przedziale w ktérym sinxz > 0 tzn. w kazdym
przedziale IPy = (2km, (2k + 1)7) gdzie k jest liczby calkowity. Poniewaz jest to funkcja
okresowa o okresie 27, mozemy jg rozwazaé tylko w jednym z przedziatow np. Py czyli

dla 0 < z < w. Mamy
CoS T

f'(@) =

sinz’
a stad
>0 dla 0<z<7,
fl(z)d =0 dla z=71,
<0 dla §<z<m.
Wobec tego funkcja f jest Sciéle rosnaca w przedziale (0, %) i cisle malejaca w przedziale
(5,m) a w punkcie = § osiaga maksimum, przy czym

Ty=0

Ymaz :f(2

(zauwazmy, Ze Ymae jest kresem gérnym funkcji f w przedziale IPg). Poniewaz

f//(:L_) - _

. 92 <07
s r

funkcja f jest wklesta w przedziale IPy. Ponadto

lim f(z)= lim f(z)= —o0,

x—0+ T—T—

zatem proste x = 0 oraz x = 7 stanowia, asymptoty pionowe wykresu. Wykres funkcji f
podajemy na rys. 48.
o © ©

8*. Przyblizone rozwigzywanie réwnan - metoda siecznych (regula falsi).
Réwnanie, ktére chcemy rozwigzac, ma postaé

(50) f(x)=0.

Jezeli f jest ciagla w przedziale [a,b] i na koncach tego przedzialu przyjmuje wartosci
réznych znakéw, to z twierdzenia Darboux (twierdzenie 13 §3) wynika, ze w przedziale
otwartym (a, b) istnieje rozwiazanie o réwnania (50). Jezeli ponadto funkcja f jest Scisle
monotoniczna w [a, b], to rozwiazanie to jest jedyne. Zakladajac, ze f jest dwukrotnie
rézniczkowalna i wypukla wzglednie wklesta w przedziale [a, b] skonstruujemy ciag zbiezny
do rozwiazania réwnania (50). Dla ustalenia uwagi zalézmy, ze

(i) f(a) <0< f(b),

(ii) f jest Scisle rosnaca w |[a, b],

(iii) f jest dwukrotnie rézniczkowalna i wypukta w [a, b].
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Sieczna wykresu funkcji f przechodzaca przez punkty A = (a, f(a)), B = (b, f(b)) ma

réwnanie
v=fo)+ 010, )
i przecina o$ z-6w w punkcie
e (=)@
f(b) = fla)
A
y
0 a i x>
A i X‘

[rys.49]

Poniewaz f jest wypuklta w [a,b], jej wykres lezy pod cieciwa, AB (por. punkt 3 i
rys. 49), zatem f(z1) < 0. Jezeli f(z1) = 0, to 1 = « jest szukanym rozwigzaniem.
Zakladajac, ze

f(z1) <0

mamy
a<zri<a<b

i mozemy powtorzy¢ przeprowadzona konstrukeje zastepujac przedzial [a, b] przez przedzial
[x1,b]. Prowadzac sieczna, przez punkty X = (z1, f(z1)), B = (b, f(b)) znajdujemy jej
punkt przecigcia z osig z-6w (rys. 49)

(b—z1)f (1)
f(b) — f(z1)

To =T1 —

przy czym
a<xi <z <a<b.

Kontynuujac opisane postepowanie dostajemy ciag punktéw okreslony wzorem rekuren-
cyjnym

(b—p) f(zn)

oy Pt = ) — o)
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przy czym
(52) a<x<x3< - <zp<zpy <a<b.

Zauwazmy, ze jezeli dla pewnego ng mamy f(z,,) = 0, to oczywiscie x,, = a i ze wzoru
(51) wynika, ze x,, = a dla n > ng. Rozwiazanie réwnania (50) otrzymujemy wéwczas w
postaci doktadnej po ng krokach. Jezeli taka sytacja nie zachodzi, to z nieréwnosci (52)
wynika, Ze ciag nieskoriczony {z,,} jest monotoniczny i ograniczony a wiec zbiezny zgodnie
z twierdzeniem 5 rozdz. Il §2. Oznaczajac

lim z, =g
n—oo

mamy na mocy (52)
(53) a<g<a<hb.
Po przejsciu do granicy w (51) i wykorzystaniu ciaglosci funkcji f dostajemy

(b—9)f(9)
f(0) — f(a)

co po uwzglednieniu (53) daje f(g) = 0. Zatem

=0

g=c

jest szukanym rozwigzaniem réwnania (50), a wyrazy ciagu {z,} daja jego przyblizenie
(z niedomiarem). Aby oszacowaé blad, jaki popelniamy zastepujac rozwiazanie a przez
jego przyblizenie zalé6zmy dodatkowo, ze

(iv) f'(z) > 0 dla z € [a, b].
7Z zalozenia dwukrotnej rézniczkowalnosci funkcji f wynika, ze f’ jest ciagla w przedziale
domknietym [a, b], wobec tego na mocy twierdzenia Weierstrassa (twierdzenie 12 §3) osiaga
w tym przedziale swdj kres dolny m. Z uwagi na (iv) mamy

m = inf ' > 0.
[a,b]f

Zakladajac, ze z,, # « (a wiec z, < « ) istosujac twierdzenie o wartosci §redniej dostajemy
f(a) - f(xn) = (C\f - xn)fl(c)a

gdzie ¢ € (zp, @), skad

| f (@)
oS T

a zatem
” o — af < )]

m
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Nier6wnosé (54) pozwala sprowadzi¢ oszacowanie bledu znalezionego przyblizenia do wy-
liczenia wartosci f(z,). Zauwazmy, ze wartoS¢ f(z,) potrzebna jest do znalezienia na-
stepnego przyblizenia z,y1. Znajdujac ja mozemy zdecydowaé¢ w oparciu o (54), czy
juz uzyskaliSmy przyblizenie rozwiazania « z wystarczajaca dokladnoscia czy tez nalezy
kontynuowaé obliczenia.

9*. Przyblizone rozwiazywanie réwnan - metoda stycznych (Newtona). Po-
damy jeszcze inng metode przyblizonego rozwigzywania réwnania (50), w ktérym funkcja
f oprécz zalozen podanych w punkcie 8 spelia jeszcze zalozenie dodatkowe

fl@)#0 (x € [a,b]).

Dla ustalenia uwagi zalozymy, ze spelnione sg warunki (i) - (iv) punktu 8.
Styczna I, do wykresu w punkcie (b, f(b)) ma réwnanie

y=f®)+ f'(b)(z—b)

[rys.50]
i przecina o$ z-6w (rys. 50) w punkcie
f(®)
=b— .
ST )

Z zatozenia wypuklosci funkcji f wynika, ze jej wykres lezy nad styczng Iy, zatem f(x1) > 0.
Jezeli f(xz1) =0, to 1 = « jest szukanym rozwiazaniem réwnania (50). Zakladajac, ze

f($1) >0

mamy
a<a<zi<b
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i mozemy powtdrzy¢ opisana konstrukcje zastepujac punkt b przez punkt z;. Styczna I,
w punkcie (z1, f(x1)) przecina o§ z-6w w punkcie

f(z1)

(55) Ty =T1 — Fi(z1)’

przy czym z zalozenia wypuklodci funkcji f wynika, ze f(z2) > 0, a stad i z (55) mamy
a<a<zo <z <b.

Kontynuujac opisane postepowanie otrzymujemy ciagg punktéw okreslony wzorem rekuren-
cyjnym

f(zn)
(56) T =T )
przy czym
(57) a<a< Ty <xp << xyg<xq <D

Podobnie jak w metodzie siecznych, jezeli dla pewnego ng mamy f(z,,) =0, to z,, = «
jest szukanym rozwiazaniem i ze wzoru (56) wynika, ze wéwczas z, = a dla wszyst-
kich n > ng. Wéwczas po skonczonej ilosci ng krokéw dostajemy rozwiazanie dokladne
réwnania (50). Jezeli taka sytuacja nie zachodzi, to z (57) wynika, ze ciag nieskoniczony
{z,} jest monotoniczny i ograniczony a wiec zbiezny zgodnie z twierdzeniem 5 rozdz. II
§2. Oznaczmy

lim z, =g.

n—00

Przechodzac do granicy w (56) i korzystajac z ciaglosci funkcji f i jej pochodnej dostajemy

flg) _
f'(9)

skad wynika, ze f(g) = 0. Zatem
g=a

jest szukanym rozwiazaniem réwnania (50), a wyrazy ciagu (56) dajg jego przyblizenie
(z nadmiarem).

Aby oszacowaé blad podanej metody zalézmy dodatkowo, ze

(v) f € C?%([a,b]), wéwczas, zgodnie z twierdzeniem Weierstrassa (twierdzenie 12 §3),
druga pochodna f” jest ograniczona w przedziale [a,b|. Zakladajac, ze z, # « i stosujac
wzér Taylora do przedzialu [, x,,] dostajemy

0= £(a) = flzn) + f'(en) (0 = 20) + o f(e) o = 70)?



gdzie ¢ € (o, z,), a stad

"
o DR [n RS
Ze wzoru rekurencyjnego (56) wynika
$n+1—a=$n—a—M;
f'(n)
co po wykorzystaniu (58) daje
Tpt1l — Q@ = %(a - xn)zjfll(lii)) .

Oznaczajac

M =sup f"’(x), m = inf f'(z)
[a,b] [a,b]

dostajemy oszacowanie bledu w postaci

1 M
(59) ‘Sﬂn_|_]_ — a| S 5(.’13,” — a)2 E
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Z otrzymanego oszacowania wida¢, ze w metodzie Newtona blad (n + 1)-ego przyblizenia
jest proporcjonalny do kwadratu bledu n-tego przyblizenia, co zapewnia szybka, zbieznosé¢

metody.

Przyklad 17. Rozwazmy réwnanie

z?=a (a>1).

Jak wiemy (rozdz.I §2 punkt 7), ma ono w zbiorze liczb dodatnich dokladnie jedno roz-
wiazanie +/a, ktérego przyblizona warto$¢ mozemy obliczyé stosujac metody opisane w

punktach 8, 9 do funkcji
flz)=2*>—a

w przedziale [1, a]. Mamy
f()=1-a<0< f(a)=a’—a

oraz

fll@)=2z,  f'(z)=2,

zatem zalozenia (i) - (v) sa spelione. Stosujac metode siecznych otrzymujemy ze wzoru

(51)
(a — @) (25 — a)

2 _ .2 ’
a® — x;,

T4+l = Tn —
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co po prostych przeksztalceniach daje

Ty, +1
Ty +a

Tpn41 =20

Wobec tego blad przyblizenia x,1 wynosi
0<an+1 :\/a—l'n-H = Cp (\/a—l'n),
gdzie

a—+a

Tp+a’

Cn =
Poniewaz ciag {z,} jest zbiezny do v/a € (1,a), mamy z,, > 1 dla duzych n i stad

a—+a

1+a

0<e, <

Y

co daje
0 < apy1 < cay,

gdzie
a—+/a
14+a

O0<c= <1,

zas$ o, oznacza blad przyblizenia x,,.
Przechodzac do metody Newtona dostajemy z (56)

2

x, —a
Tn+1 = Tpn — o 3
n
czyli po przeksztalceniu prawej strony
2 +a
Tp41 = 2
n

Oznaczajac przez (3, blad przyblizenia z,, w metodzie Newtona otrzymujemy

0<ﬂn+1=$n+1—\/5=M

co daje dla duzych n
1
0< ﬁn+1 < 5[672),
(por. wzor (59)). Z otrzymanych oszacowan widaé, ze dla duzych n ciag {a,, } zachowuje sie

jak ciag geometryczny o ilorazie ¢ € (0, 1), natomiast w ciagu {3, } kazdy nastepny wyraz
jest mniejszy od kwadratu poprzedniego. Oznacza to, ze stosujac metode Newtona, przy
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przejsciu od x,, do z,41 otrzymujemy, dla dostatecznie duzych n, conajmniej podwojong
liczbe doktadnych miejsc po przecinku.

10*. Funkcje wypukle. Niech f bedzie funkcja okreslona w przedziale IP C IR.
Moéwimy, ze funkcja f jest wypukta w przedziale IP, jezeli dla dowolnych zi,2o € IP i
dowolnych liczb nieujemnych A;, A2 spelniajacych warunek

(60) AM+A=1
zachodzi nier6wnosé

(61) fuzy + Aewa) < A f(z1) + Ao f (w2)-
Zauwazmy, ze przyjmujac r1 < Ts oraz £ = A1 + A229 mamy wobec (60)
T = A (21 — T2) + 72 < 2

oraz
T =1+ Aa(x2 — 1) > 21

zatem z € [r1,%3], a wiec réwniez x € IP i lewa strona nieréwnosci (61) jest dobrze
okreslona.

Od funkcji f nie zadamy zadnej regularnosci, moze ona nie by¢ rézniczkowalna, wystar-
czy jedynie, by byla okreslona w pewnym przedziale. W dalszym ciaggu zobaczymy, ze w
klasie funkcji dwukrotnie rézniczkowalnych rozwazana obecnie definicja funkcji wypukte;j
jest réwnowazna tej, ktéra podaliSmy w punkcie 3.

Twierdzenie 6. Funkcja f jest wypukta w przedziale IP wtedy i tylko wtedy, gdy dla
dowolnego przedziatu [a,b] C IP (gdzie a < b) zachodzi nieréwno$é

b—=x T —a
af(a)+b_a

(62) f(z) < f(®)

dla x € [a,b].

DOWOD. Polézmy dla ustalonego z € [a, b

b—x T —a
M= b—a’ A2 = b—a’

Obie liczby A1, Ao sa nieujemne i spelniaja, warunek (60). Zakladajac, ze f jest wypuktla i
przyjmujac 1 = a, x2 = b stwierdzamy, ze

b—=x T —a

b—aa b—abzm

ATy + Aoy =

i wobec tego nieréwnosé (62) wynika z (61).



296

Zalézmy teraz, ze f spelnia warunek podany w twierdzeniu. Udowodnimy, ze f jest
wypukia w IP.

Dla z; = z2 nier6wno$é¢ (61) jest oczywista (przyjmuje ona wtedy postaé réwnosci
f(xz1) = f(x1).) Zalézmy wobec tego, ze liczby x1, x5 sa rézne i niech bedzie z; < z5. Dla
dowolnie obranych liczb nieujemnych A1, A2 spetliajacych (60) potézmy

T = A2+ Aaxa.

Jak juz stwierdziliSmy na poczatku tego punktu, z warunku (60) wynika, ze z € [z, x3].
Ponadto mamy, ponownie wykorzystujac (60),

z=Mx1+ (1 — A1)z = (21 — 22) + 22

skad
Ty — T
A= 2
o — T
a zatem
r—x
Ao=1-X = L
T2 —I1
Mozemy teraz zastosowaé nieréwnos$é (62) przyjmujac a = x1, b = x5, co daje (61). O

A

y

[rys. 51]

Udowodnione twierdzenie ma prostg interpretacje geometryczna. Réwnanie

y(w) = 2 fla)+ T2 50)

okresla prosta wyznaczong przez punkty A = (a, f(a) oraz B = (b, f(b)), zwana, siecznq
wykresu funkcji f. Zbiér punktéw (x,y(x)), gdzie = € [a,b] jest odcinkiem AB ktéry
nazywamy cieciwg wykresu (por. punkt 3). Zatem twierdzenie 6 mozna sformulowaé
nastepujaco (por. rys. 51)
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Twierdzenie 6°. Funkcja f jest wypukla w przedziale IP wtedy i tylko wtedy, gdy jej
wykres lezy pod kazdg cieciwg wyznaczong przez punkty A = (a, f(a)), B = (b, f(b)), gdzie
a,be P, a<b.

Przyklad 18. Sprawdzimy, ze funkcja
f(z) = |z|

jest wypukla w przedziale IP = (—o0,00). Jezeli liczby a,b s tego samego znaku, to
cieciwa AB pokrywa sie z czescia wykresu dla z € [a, b], zatem w nieréwnosci (62) mamy
znak rownosci. Zalézmy wobec tego, ze

a<0<hb.

Réwnanie siecznej ma postaé

b—=zx T —a
y(e) = (=a)y— +by—

zatem
(63) @) —loj = { e A 0=wsh
63 y(x) — x| =

% dla a<z<0.

Poniewaz obie liczby po prawej stronie (63) sa, nieujemne, nieréwnosé (62) jest spelniona
dla z € [a,b]. Zgodnie z twierdzeniem 6 funkcja f jest wypukta. Warunek geometryczny
sformulowany w twierdzeniu 6’ wynika natychmiast z rysunku (rys. 22).

Twierdzenie 7. Niech f bedzie funkcja rozniczkowalng w przedziale IP. Nastepujace
warunki sq rownowazne:
(i) f jest wypukta;

(ii) f' jest funkcjq rosngca;
(iii) dla dowolnych zg,x € IP zachodzi nieréwnosé

(64 f(@) = f'(wo) (@ — wo) + f(wo).
DOWOD. Przeprowadzimy dowdd wedtug schematu
(ii) = (i) = (i) = (ii).

(ii) = (iii).
Wprowadzmy funkcje

g(z) = f(x) = f'(wo)(x — x0) — f(20) (x €TP),

Funkcja g jest rézniczkowalna w IP i przy tym

g'(z) = f'(z) = f'(zo)
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7 zalozenia
>0 dla z> x,

g ()4 =0 dla ==z,
<0 dla =z <z,

wobec tego funkcja g przyjmuje najmniejsza, warto$¢ w przedziale IP w punkcie xy. Ponie-
waz

9(zo) =0,

mamy
g(z) >0

dla z € IP, co jest réwnowazne z nieréwnoscia, (64).

(iii)=(i).
Najpierw udowodnimy lemat dotyczacy funkcji liniowych (jest on oczywisty geometrycznie
- proponujemy Czytelnikowi zrobienie rysunku).

Lemat 1. Jezeliy(z), z(x) sa funkcjami liniowymi oraz dla pewnych a,b (a < b) zachodzq
nierownosci

(65) y(a) = z(a), y(b) = z(b),
to
(66) y(z) > 2(z)

dla dowolnego = € (a,b).
DOWOD LEMATU. Kazdy punkt x € (a,b) mozna przedstawi¢ w postaci

z =ta+ (1—1)b,

gdzie 0 < t < 1 (wystarczy w tym celu przyjaé t = 2=2). Niech

y(x) = Az + B, z(x)=Czx+ D,

wowczas

y(z) =t(Aa+ B) + (1 —t)(Ab+ B)

- z(x) =t(Ca+ D)+ (1 —t)(Cb+ D)

co mozna inaczej zapisac jako
(67) y(@) = ty(a) + (1 - t)y(b)
oraz

(68) z(x) =tz(a) + (1 — t)z(b).
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Poniewaz liczby t, 1 —t sa dodatnie, z (67), (68) i nieréwnosci (65) wynika (66), co koriczy
dowdd lematu.

[rys. 52]

Kontynuujac dowdd twierdzenia obierzmy dowolnie przedzial [a,b] C IP (a < b) oraz
punkt zo € (a,b) i niech prosta [, bedzie styczna do wykresu w punkcie (zo, f(zo)).
Zalozenie (iii) oznacza, ze kazdy punkt wykresu funkcji f lezy nad prostg [, - dotyczy to w
szczegblnosci punktéw A = (a, f(a)) oraz B = (b, f(b)). Na mocy lematu 1 réwniez kazdy
punkt cieciwy o konicach A, B lezy nad prosta l,,, w szczegdlnosci punkt cieciwy o pierwszej
wspotrzedne] zo lezy nad punktem stycznosci (zo, f(xo)). Wobec dowolnosci z¢ € (a,b)
oznacza to, ze cala cieciwa o konicach A, B lezy nad wykresem funkcji f w przedziale [a, b].
Przedzial [a, b] C IP byt réwniez obrany dowolnie, zatem zgodnie z twierdzeniem 6’ funkcja
f jest wypukta w przedziale IP.Przeprowadzone rozumowanie ilustruje rys. 52.

(i)=>(ii).

Dowéd zaczniemy od lematu.

Lemat 2. Dlat; <t < ts i dowolnych y,y1,y2 nieréwnosci

to —t t—1;
69 <
(69) YS ot e
oraz

t—t1 — ta—1
sq rownowazne.

DOWOD LEMATU. Po wykonaniu mnozenia w licznikach po prawej stronie (69) oraz
pomnozeniu obu stron nieré6wno$ci przez mianownik t5 — ¢, dostajemy

yto — yi1ta + y1t < yt1 — Yoty + yol.
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Odejmujac od obu stron ostatniej nieréwnosci wyrazenie yt otrzymujemy

(y—y1)(ta—t) < (y2 —y)(t — 1)

skad po podzieleniu przez dodatnie wyrazenie (to — t)(t — 1) wynika (70). Jak latwo
zauwazy¢, przeprowadzony rachunek wykazuje, ze i na odwrét z (70) wynika (69).

Wré6émy do dowodu twierdzenia. Wobec zalozonej wypuklosci funkeji f i twierdzenia 6
nier6wnos$é (69) jest speliona, jezeli przyjmiemy

t1:a7t:x7t2:b7 ylzf(a)ay:f($)7y2:f(b)
Zgodnie z lematem 2 zachodzi wobec tego nier6wnos¢
<

f(z) — f(a) < f) — 1 (=)

1
(71) T —a b—z

dla dowolnych a, b,z € IP takich, ze a < z < b. Ustalmy teraz dwa punkty zi,z2 € IP
zakladajac, ze £1 < x2 i obierzmy h > 0 tak, by

r1+h < zx9—h.

Z nieréwnosci (71) dla
a=xy, x=x1+h, b=2x9—h

dostajemy
f@i+h) = flz1) _ flwa—h) = f(z1+h)
(72) h = (2 —h) — (z1+ h)
zas dla
a=xz1+h, z=x9—h, b=ux,
mamy
(73) f($2—h)—f($1+h)Sf(372)—f(372—h).

($2—h)—($1+h) h
Z nieréwnosci (72), (73) wynika, ze
flz1+h) = f(z1)

<

h —h ’
co po przejéciu do granicy przy h — 0 daje
f(z1) < f'(z2).
Poniewaz punkty z1, x2 byly obrane dowolnie, ostatnia nieré6wnos¢ oznacza, ze pochodna
f' jest funkcja rosnaca, co konczy dowdd twierdzenia. O

Jak juz wspominaliémy, réwnanie

y = f'(xo)(x — o) + f(wo)

okresla styczna do wykresu funkcji f w punkcie (xg, f(z9)). Wobec tego mozemy podaé
nastepujace sformutowanie geometryczne punktéw (i), (iii) twierdzenia 7.



301

Twierdzenie 7’. Funkcja f rézniczkowalna w przedziale IP jest wypukta wtedy i tylko
wtedy gdy jej wykres lezy nad styczna poprowadzong w dowolnym punkcie (o, f(xo)), gdzie
Ty € IP.

Jezeli f jest dwukrotnie rézniczkowalna w IP, to z punktéw (i), (ii) twierdzenia 7 wynika
natychmiast

Twierdzenie 8. Funkcja f dwukrotnie rézniczkowalna w przedziale IP jest wypukta wtedy
i tylko wtedy gdy f"(x) > 0 dla z € TP.

Zatem podana w tym punkcie ogdlna definicja funkcji wypuklej jest w klasie funkcji
dwukrotnie rézniczkowalnych réwnowazna definicji podanej w punkcie 3.

Twierdzenie 9. Jezeli funkcja f okreslona w przedziale IP jest wypukta, to dla dowolnych
L1,y € IP 1 dowolnych liczb nieujemnych A1, ..., A, spelniajgcych warunek

(74) M+ + A =1
mamy AMx1+ -+ Ay € IP 4 zachodzi nierownosé
(75) f()\liCl -+ "'+)‘nxn) S )\1f(CL'1) ++)\nf(£l7n)

Nier6wnosé (75) nosi nazwe nierdwnosci Jensena.

DOWOD. Zastosujemy indukcje wzgledem n. Dla n = 1 z warunku (74) wynika A\; = 1
i nier6wnosé¢ (75) przyjmuje postaé¢ réwnosci f(z1) = f(z1), za$ dla n = 2 twierdzenie
zawiera sie w definicji funkcji wypuklej. Zakladajac teraz, ze twierdzenie jest prawdziwe
dla n = k > 2 udowodnimy, ze jest ono prawdziwe dla n = k+1. Rozwazmy ukiad punktow
Z1,...,Tk, Tx4+1 € IP 1 uklad liczb nieujemnych Aq,..., Ak, Ag41 spelniajacych warunek

(76) A1t A+ A =1

Nalezy udowodnié, ze

(77) ATy + -+ ATk + Agr1Tk+1 € P

oraz ze zachodzi nier6wnosé¢

(78)  fawr+ -+ M@k + Ae1Zr41) < A f(@1) + - + M (@) + Argr f (@p41)-

Jezeli\, = --- =

A = 0, to wobec (76) musi byé A\g41 = 1 i nieréwnosé (78) przyjmuje
postaé réwnosci f(xgy1) =

f(xgy1). W przeciwnym razie

A=A 4+ >0
i przyjmujac A; = )‘7’ (j =1,...,k) stwierdzamy, ze liczby A} spemiaja warunek (74) z
zastapieniem n przez k. Na mocy zalozenia indukcyjnego mamy Nz + -+ + Az € IP
przy czym zachodzi nier6wnos¢

(79) FON @y + -+ Nzg) < A f(@) + -+ A f ().
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Z definicji liczby A i warunku (76) wynika, ze
)\ + Ak+1 - ]_,

zatem OZnaCZ&jatC
— )/ /

stwierdzamy stosujac nasze twierdzenie dla n = 2, ze

(80) AL+ Agp1Zg41 € P

oraz ze

(81) FOz 4+ Agp12k+1) < Af(2) + A1 f(Tr41)-
Poniewaz

M= (=1,...,k)

oraz
AL = Mz + -+ ATk,

z warunku (80) wynika (77) za$ z nieréwnosci (79), (81) dostajemy (78), co koriczy dowéd
indukcyjny. ]
Przykiad 19. Niech
f(x)=—logz (x > 0).

Poniewaz

1 1
fl<$):_57 f”(x):ﬁ>07

zgodnie z twierdzeniem 8 funkcja f jest wypukla w przedziale IP = (0, 00). Przyjmujac w
twierdzeniu 9

1
A1:A2:---:)\n:—
n
dostajemy
1 1
(82) —log —(#1 4+ +an) < ——(logzy + - +log zs)
dla z1,...,z, € (0,00). Zmieniajac znak po obu stronach nieréwnosci (82) i przeksztalca-

jac prawg, strone (82) otrzymujemy

1
log =(z1+4 -+ x,) > log Y1 Tp,
n

skad wynika

—

(83) V- kg < — (214 + )

3
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dla z1,...,2, > 0 (jezeli niektére liczby x; sa réwne zeru, nieré6wnosé jest oczywista).
Nier6wnoéé (83) nosi nazwe nierdwnosci Cauchy’ego.
Podstawiajac w (83)

1 .
zj=— (y;>0;5=1,...,n)

Yj
otrzymujemy
1 1,1 1
< (et )
VYL "Yn T U1 Yn
skad
n
(84) TR
Y1 Yn

Dla dodatnich liczb 4, ...z, okreslamy ich §rednie arytmetyczna, geometryczna, i harmo-
niczna, nastepujaco:

srednia arytmetyczna

1
A(xl,...,xn) = ﬁ(xl"l"'{"xn),

srednia geometryczna
G(x1y...yTp) = YTy Ty,
$rednia harmoniczna n

H(.T]_,...,.’L'n):ﬁ.
a_i_..._i_a

Z nieréwnosci (83), (84) wynika, ze (por. zadanie 7 rozdz.I §1)

H(z1,...,2) < G(z1,...,2n) < A(z1, ..., 2p).

Na zakoniczenie przyjmijmy, ze funkcja f jest wklesta w przedziale IP jezeli funkcja — f
jest wypukla w tym przedziale (por. punkt 3). Wszystkie nieréwnosci podane poprzednio
dla funkcji wypuklych przenosza sie na funkcje wklesle z tym, ze znak < nalezy zamienié
na > i vice versa.

11*. Funkcje $cisle wypukle. Méwimy, ze funkcja f okres§lona w przedziale IP jest
§cisle wypukta w IP jezeli dla dowolnych z1,xo € IP, (£1 # x2) i dowolnych liczb dodatnich
A1, Ay spehiajacych warunek (60) zachodzi nieréwnosé

FAz1 + Aawa) < A f(z1) + Ao f(z2).

Oczywiscie kazda funkcja §ciSle wypukla w przedziale IP jest wypukla w tym przedziale,
ale nie na odwrét (por. zadanie 38). Twierdzenia udowodnione poprzednio dla funkcji
wypuktych mozna latwo zmodyfikowaé dla funkcji écisle wypuklych.
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Twierdzenie 10. Funkcja f jest Scisle wypukta w przedziale 1P wtedy i tylko wtedy, gdy
dla dowolnego przedzialu [a,b] C IP (gdzie a < b) zachodzi nieréwnosé

b—=zx T —a

F@) < T fla) + T 1)

dla x € (a,b).

Twierdzenie 11. Niech f bedzie funkcjq rézniczkowalna w przedziale IP. Nastepujagce
warunk: sq rownowazne:

(i) f jest Scisle wypukta;

(ii) f' jest funkcjq Scisle rosnaca;

(iii) dla dowolnych x,z¢ € IP (z # xy) zachodzi

nierownosé

f(@) > f'(xo)(x — zo) + f (o).

Twierdzenie 12. Jezeli funkcja f jest scisle wypukta w przedziale IP, to dla dowol-
nych x1,...,x, € IP nie wszystkich rownych miedzy soba oraz dowolnych liczb dodatnich
A1y .oy Ap Spetniajacych warunek (74) zachodzi nierdwnosé

Oz + -+ Apzn) < Auf(z1) +- -+ A f(2n).

Dowody twierdzen 10 - 12 przebiegaja zupelnie podobnie do dowodow twierdzen 6, 7,
9 i pozostawiamy je Czytelnikowi jako ¢wiczenie. 1

Zadania.

1. Udowodni¢, ze funkcja

e dla z >0,
0 dla z<0

ma w punkcie x = 0 pochodne wszystkich rzedéw réwne zeru.
Wskazéwka. Najpierw udowodni¢ metoda, indukcji, ze

8=

1
f™(z) = wn(E)e_ dla z >0,

gdzie w, jest wielomianem (podaé posta¢ wielomianu w, dla n = 1,2). Przy badaniu
kolejnych pochodnych w punkcie x = 0 wystarczy rozwazaé granice prawostronng, ilorazu
réznicowego (dlaczego?). Przy obliczaniu tej granicy wykorzystaé¢ Przyktad 33 §4.

2. Zbada¢ przebieg funkcji f okreslonej w zadaniu 1 i naszkicowaé jej wykres.

3. Niech
f(z) = arctge  (z € (—o0,0)).
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Znale7é wzér rekurencyjny wyrazajacy f(™ () przy pomocy pochodnych tej funkcji niz-
szych rzedéw. Nastepnie obliczy¢ wartosci wszystkich pochodnych funkcji f w punkcie
z =0.

Wskazéwka. Zastosowaé wzér Leibniza do lewej strony tozsamosci

(1+2%)f'(z) = 1.

4. Podaé¢ wzér na n-ta pochodng funkcji

a) fl@)=1 (@#0),
b.) g(z)=logz (z > 0).

5. Postugujac sie¢ wzorem Leibniza znalezé n-ta pochodna funkeji f gdy
a.) f(x)==zlogz (z>0),
log x
b.) f(z)=

(z > 0),

6. Postugujac si¢ wzorem Leibniza znalezé f)(z) oraz ¢(7)(z), jezeli

f(z) =e®sinz, g(z)=e*® cosz.

7. Udowodni¢ wzér Halphena

d* (.1 L) 1
— (2" lex ) = (=1)"z " Lex.
dxm™ ( (=1)

Wskazéwka. Najpierw sprawdzi¢ prawdziwo$¢ wzoru dla n = 1,2, nastepnie zastosowaé
indukcje wzgledem n.

8. Udowodnié, ze jezeli funkcja n-krotnie rézniczkowalna w przedziale IP znika w n 4 1
réznych punktach, to istnieje punkt zq € IP taki, ze f(™ (zq) = 0.

Wskazéwka. Oprzeé sie na twierdzeniu Rolle’a (twierdzenie 10 §4) i zastosowaé indukcje
wzgledem n.

9. Zbadaé, przy jakim naturalnym n funkcja f jest n-krotnie rézniczkowalna w przedziale
(—OO, OO), gdy

a.) [(z) = zlal,

b) f(z)=]z" (keN),
{ xasin% dla z >0,

0 dla z=0.
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10. Niech f bedzie funkcja n-krotnie rézniczkowalng w przedziale IP i niech a € TP.
Udowodnié, ze dla dowolnego z € IP istnieje © € (0,1) takie, ze

(85 f@) = 1@+ 3 E= ) 4 R,
k=1 )
gdzie
_ (‘IE - a)n n—1p(n) /= =
(86) Rn—m(l—@) f™(z), z=a+0(z—a)

(zatem Z jest punktem lezacym miedzy a, x).

Wskazowka.  Zastepujac = przez b (b > a) zastosowaé twierdzenie Lagrange’a
(twierdzenie 11” §4, b = a + h) do funkcji g wprowadzonej w dowodzie twierdzenia 1.
Nastepnie zauwazy¢, ze w twierdzeniu Lagrange’a mozna zalozy¢, ze b < a i rozwazaé
przedzial [b, a].

Uwaga. Wz6r (85) nosi nazwe wzoru Taylora z reszta R, w postaci Cauchy’ego okreslong,
wzorem (86).

11. Zalézmy, ze
(i) f jest (n — 1)-krotnie rézniczkowalna w przedziale P,
(ii) istnieje f(™)(a), gdzie a € IP.
Udowodnié, ze istnieje funkcja n(z) taka, ze
(a) n jest (n — 1)-krotnie rézniczkowalna w IP \ {a},
(b) limg_,4 n(z) = 0,
(c) dla z € IP zachodzi réwnosé

G f@) = f@+ 3 C P 10 + B,
k=1 )

gdzie

(88) R, = M77(317)-

Wskazéwka. Okredlajac dla = # a
n! = (2 —a)k (0
0= a0 = 0= 3 )

wykazaé najpierw stosujac regule de I'Hospitala, ze

lim p(z) = lim D) - f(n—l)(a).

r—a r—a xr—a
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Uwaga. Wz6r (87) nosi nazwe wzoru Taylora 7 reszta, w postaci Peano* okreslona wzorem
(88).

12. Zakladajac, ze
(i) f jest r6zniczkowalna w otoczeniu a € IR,
(ii) istnieje f(a)

udowodni¢ rownosc

lim f(a+h) +f(haé_ h’) — 2f(0,) — f”(a)

h—0

Wskazéwka. Zastosowaé wzory (87), (88) przyjmujac n =2, x =a + h oraz x = a — h.

13. Uogblni¢ twierdzenie sformutowane w zadaniu 12 na przypadek, gdy
(i) f jest (n — 1)-krotnie rézniczkowalna w otoczeniu a € IR,
(ii) istnieje f(™(a).

14. Niech f bedzie funkcja dwukrotnie rézniczkowalna w przedziale IP = (A, o0) i taka, ze
kresy gorne

Mo =sup|f|, M;=sup|f'|, My=sup|f"|
P P P
sg, skonczone. Udowodnié nieréwnosé
M2 < 4MyMs,.

Wskazoéwka. Zastosowaé wzor Taylora (8) przyjmujac n = 2, x = a + 2h (a > A, h > 0),
nastepnie dobra¢ odpowiednio h.

15. Niech f bedzie funkcjg dwukrotnie rézniczkowalna w przedziale IP = (0, 00) i taka, ze
(i) limg_, o0 f(aj) =0,
(ii) f"(x) jest ograniczona w IP.
Udowodni¢, ze
lim f'(z) = 0.

T—>00

Wskazéwka. Wykorzysta¢ zadanie 14.

16. Na przyktadzie funkcji
1
f(z) = =sinz? (z>0)
x
okazacé, ze twierdzenie sformulowane w zadaniu 15 nie jest prawdziwe, jezeli opuscimy

zalozenie (ii).

4Giuseppe Peano (1858 - 1932), matematyk wloski, zajmowat sie logika matematyczna i podstawami
matematyki, podat aksjomatyke liczb naturalnych.
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17. Zbadaé dla jakich a € R zachodzi uogélniona nieréwnosé Bernoulliego (por. rozdz.I
§1 punkt 7)
1+z)*>1+ax (z>-1).

Wskazoéwka. Zbada¢ wypuktosé funkcji

fl)=042)% (z>-1).

18. Pokazac, ze nieréwnosc
o
tgx > x 0<zx< 5)

(por. (39) §1) wynika ze wzoru Taylora w postaci (20).

19. Udowodni¢, ze w kazdym przedziale IPy, = (km — 5, km + %), gdzie k jest liczba
catkowita, lezy dokladnie jedno miejsce zerowe funkcji

p(zr) =tgr —x (zx € R).)

Narysowa¢ wykres tej funkcji.
Wskazéwka. Najpierw rozwazy¢ przedzial IPy, nastepnie zauwazyc, ze

p(x + km) = p(x) — k.

20. Udowodnié, ze w kazdym przedziale IP, = (k7 —7%, kn+7), gdzie k jest liczba calkowita,
rézng od zera, lezy dokladnie jedno miejsce zerowe funkcji

h(z) = 2z — tgx.

Narysowaé¢ wykres tej funkcji.
Wskazéwka. Najpierw rozwazy¢ przedzial Py, nastepnie zauwazy¢, ze

h(z + kn) = h(z) + 2k.

21. Zbadaé ekstrema, i naszkicowaé¢ wykres funkcji

flz)= isinx (x > 0).

™

Wskazéwka. Najpierw zbada¢ zachowanie si¢ funkcji w przedziale (0, %]. Nastepnie za-
uwazy¢, ze w kazdym przedziale Py = (kn — 5, kn+ 5),k = 1,2,...

COS T

f'(@) = ——5p(2),

2
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gdzie
p(z) =tgr —x

i wykorzysta¢ zadanie 19.

22. Zbadaé ekstrema, i naszkicowaé¢ wykres funkcji

f(z) = isinx2 (x > 0).

2

Wskazowka. Podstawiajac t = z° zauwazy¢, ze

cost

fl(z) = Th(t)

w kazdym przedziale Qx = (\/km — 5, /kr + 5), k=1,2,..., gdzie

h(t) = 2t — tgt.
Nastepnie wykorzystac¢ zadanie 20, zaczynajac od badania funkcji f w przedziale (0, /%).

23. Zbadaé ekstrema i punkty przegiecia funkcji

f(x) = cosx.

24. Podac¢ na wsp6lnym rysunku wykresy funkcji

f(z) =log(l+z), g(z)= , h(z) ==
Poréwnaé z nier6wnoscia, (63) §4.

25. Znalez¢ rownania asymptot i narysowaé wykres funkcji

flz)=+v2z? -1

26. Narysowaé wykresy funkcji

1) f@)=e 6 f@)=r,
@) f@=e, () f@)=e" -z (p>0)
®) 1= @) f@)=lgr- 2
@ f@)=55 O f@)=5—a— 2,

2
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badajac ich ekstrema, punkty przegiecia i asymptoty.

27. Zbada¢é ekstrema i punkty przegiecia oraz narysowaé wykresy funkcji

a.) f(z)=zv4— 22, b.) f(z)=z(a—2)* (a>0),
c.) f(z)=3z*—8z%—182% + 1, d.)f(z) =sinz + sin 2z.

28. Zbadaé ekstrema i punkty przegiecia funkcji
f(z) =ax +sinx
w zaleznosci od parametru a. Naszkicowa¢ wykres.
29. Zbadaé ekstrema, punkty przegiecia i asymptoty wykresu funkcji
f(z) = zFe®
w zaleznodci od paramwetru k£ € IR. Naszkicowaé wykres.

30. Zbadaé ekstrema i asymptoty wykresu funkcji

8|~

f(a) =zt
Naszkicowa¢ wykres.

31*. Niech f bedzie funkcja okreslona w przedziale IP i niech dla a € IP

go(x) = M (z€P, z+#a).

r—a

Udowodnié, ze funkcja g, jest rosnaca w IP \ {a} wtedy i tylko wtedy, gdy f jest wypukla
w IP.
Wskazéwka. Mamy udowodnié, ze z nieréwnosci 1 < z2 (z1,z2 € IP \ {a}) wynika

(88) 9a(z1) < ga(z2)-
Nalezy rozwazy¢ przypadki
10 a <z <o, 20 1 < a< Ta, 3% 21 <z <a.
W przypadku 1° i 3% opierajac si¢ na twierdzeniu 6 zauwazyé, ze nieréwno$é (88) jest

réwnowazna wypuklosci funkeji f w przedziale IP. W przypadku 2° zakladajac wypuktosé
funkcji f udowodnié¢ (88) w oparciu o twierdzenie 6 i lemat 2.
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32*. Niech f bedzie funkcja wypukta w przedziale IP i niech xy bedzie punktem wewnetrz-
nym tego przedzialu. Udowodnié, ze f ma w punkcie x(y skonczone pochodne lewostronng
fL(2%) i prawostronna, f! (o), przy czym zachodzi nier6wnosé

fL (o) < fi(wo).
Wskazéwka. Opierajac sie na twierdzeniu 6 i lemacie 2 udowodni¢ nier6wnosé

[@) = f(@o) _ f(y) = f (o)

T — o T Y— %o

dlaz <zg <y (z,y € IP). Nastepnie skorzystaé z zadania 31 i oprze¢ sie na twierdzeniu
o zbieznosci monotoniczne]j (twierdzenie 11 §2).

33*. Udowodnié, ze funkcja wypukla w przedziale IP jest ciagla w kazdym punkcie wew-
netrznym tego przedziahu.

Wskazowka. Niech zy bedzie punktem wewnetrznym przedziatu IP. Opierajac sie na
zadaniu 32 zauwazy¢, ze

lim (f(z) - f(@0)) = lim (f() - f(za)) = 0.

T—>To—

Nastepnie skorzystaé z twierdzenia 10 §2.

34*. Udowodnié, ze funkcja wypukta w przedziale IP nie bedaca stala nie moze osiagaé

swego kresu gérnego w zadnym punkcie wewnetrznym tego przedziahu.
Wskazéwka. Niech
M =sup f <oo
P

i niech zy bedzie punktem wewnetrznym przedziatu IP takim, ze
Wykazaé, ze istnieja punkty a,b € IP spelniajace warunki

19 a<zo<b

20 przynajmniej jedna z liczb f(a), f(b) jest rézna od M.

Nastepnie opierajac sie na twierdzeniu 6 dojs¢ do sprzecznosci.

35*. Poda¢ przyklad funkcji wypuklej w przedziale [a,b] (a,b € R;a < b) nieciaglej w
punktach a,b. Porowna¢ z zadaniem 33.

36*. W jakich przedziatach funkcja
a.) f(x)=sinz, b.) f(z)=cosz

jest wypukla a w jakich wklesta?



312

37*. Ktore z podanych nizej funkcji sa, wypukle wzglednie wkleste w przedziale IP?
. 1
(1) f(x):x2_ﬁ7 ]P:(_OO7_\4/§]7
z| dla |z| <1,
@ s@={ 7 o P (-2,

1 dla 1< |z[<2
(0 dla —-3<z<0,

(iii) f(zr)={ 3z dla 0<z <1, P =[-3,2]
(z—3 dla 1<z<2

(4 dla z=-1,
(iv) f(z)=< 222 dla —-1<z<2, P =[-1,2]

(9 dla z=2
(22 dla —1<2z<0,
(v) f(z)=<¢ = dla 0<z<1, P=(-1,1]

(0 dla z=1
{a: dla —-1<2x<0,

P=(-1,2)
2¢ dla 0<z<?2

(vi) f(z)=

Wskazowka. W punktach (ii) - (vi) narysowaé¢ wykres funkcji f.
38*. Sprawdzié, ze funkcja liniowa
flx)=ax+b
jest wypukla, ale nie jest $ciSle wypukta w przedziale (—oo, 00).
39*. Niech f bedzie funkcja, dwukrotnie rézniczkowalna, w przedziale IP. Udowodnié, ze

jezeli
f'(z) >0 dla zelP,

to f jest Scisle wypukla w IP. Czy prawdziwe jest twierdzenie odwrotne?
Wskazéwka. Zastosowaé twierdzenie 11.

40*. Udowodnié, ze znak réwnosci w nieréwnosci (83) zachodzi wtedy i tylko wtedy gdy
wszystkie liczby x4, ..., x, sg réwne. Wywnioskowa¢ stad, ze

H(z1,...,2y) =G(21,...,2,) = A(Z1, ..., 2y)

wtedy i tylko wtedy gdy
T1 =9 =" "= 2Tp-

Wskazéwka. Opierajac sie na twierdzeniu 11 stwierdzi¢, ze funkcja

f(z)=—logz (xz>0)
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jest $cisle wypukta w przedziale IP = (0, 0c0). Nastepnie zastosowaé twierdzenie 12 i rozu-
mowaé podobnie jak w Przykladzie 19.

41. Niech f bedzie funkcja dwukrotnie rézniczkowalna w przedziale [a,b] spelniajaca
warunek
f'(z)>0 dla a<z<b.

Udowodni¢, ze wowczas

1) < fa)+ 1O W )

dla a < x < b. Jaki jest sens geometryczny tej nieréwnosci?
Wskazéwka. Dowdd jest podobny do dowodu nieréwnosci (16) punkt 3.

42*. Niech f bedzie funkcjg $cisle rosnacs i dwukrotnie rézniczkowalna w przedziale [a, b]
spelniajaca warunki

f(a) <0< f(b), f'"(z)>0 dla a<z<b
i niech{z,} bedzie ciagiem przyblizeri pierwiastka o réwnania
f(z)=0
otrzymanym metoda siecznych (wzér (51)). Udowodnié, ze
<21 <Ta< < Ty <Tpy1 <a<b

dla kazdego n € IN.
Wskazoéwka. Skorzystaé z zadania 41.

43. Zakladajac, ze funkcja f spelnia zalozenia podane w zadaniu 41 udowodni¢ nieréwnosé
f(@) > f(z0) + (= — z0) [ (x0)

dla z,zg € [a,b], =z # ¢ 1podaé jej sens geometryczny.
Wskazéwka. Skorzystaé ze wzoru Taylora przy n = 2.

44*. Niech f bedzie funkcjg $cisle rosnacs i dwukrotnie rézniczkowalna, w przedziale [a, b]
spetiajaca warunki

fl@) <0< f(b); f'(x)>0 dla a<z<b; f(r)>0 dla a<z<hb.
i niech {z,,} bedzie ciagiem przyblizen pierwiastka « réwnania

f(z)=0
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otrzymanym metoda stycznych (wzér (56)). Udowodnié, ze
0< A< 1 <Tp <---<x1<b

dla kazdego n € IN.
Wskazéwka. Skorzystaé z zadania 43.

45*. Niech f bedzie funkcja, $cisle rosnaca, dwukrotnie rézniczkowalna i wklesta w przedzia-
le [a, b] przyjmujaca na jego konicach wartosci ré6znych znakéw. Skostruowaé ciag przyblizen
{z,} pierwiastka o réwnania

f(z)=0

a.) metoda, siecznych,
b.) metoda, stycznych, zakladajac dodatkowo, ze f'(x) # 0 w przedziale [a, b].
Udowodni¢, ze
lim z, = a.

n—00

Co mozna powiedzie¢ o ciagu {z,}, jezeli wzmocnimy zalozenia przyjmujac, ze
f'(z) <0 dla a<z<b?

Wskazéwka. Przeprowadzi¢ rozumowanie podobne jak w punktach 8,9 oraz w zadaniach
42, 44.

46*. Udowodnié, ze réwnanie
3 4+3x-2=0

ma dokladnie jedno rozwiazanie w przedziale (0,1). Znalezé jego przyblizenia stosujac
a.) metode siecznych,
b.) metode Newtona.

47*. Udowodnié, ze réwnanie
e’ +sinz =0

(i) ma dokladnie jedno rozwiazanie w kazdym przedziale (ag, cx) oraz (ck, b), gdzie
ar = —(2k+1)7m, o= —(2k7 + g), by = —2km, k=0,1,2,...

(ii) nie ma innych rozwigzai poza wymienionymi w punkcie (i).
Zmnale7¢ przyblizenia rozwiazania lezacego w przedziale (—75,0) stosujac

a.) metode siecznych,

b.) metode Newtona.
Wskazéwka. Oznaczajac przez f(z) lewa strone réwnania zbadaé przebieg funkcji f w
przedziale [ag, bg].

48*. Wyznaczy¢ przyblizona wartosé liczby e stosujac



a.) metode siecznych,
b.) metode Newtona
do rownania
logz =1

w przedziale [1,4]. Oszacowaé blad otrzymanych przyblizen.

Wskazéwka. Oprzec sie na zadaniu 45.

49*. Wyznaczy¢ przyblizona warto$¢ wyrazen
V3, V5, VT

stosujac do odpowiednio dobranego réwnania
a.) metode siecznych,
b.) metode Newtona.

Oszacowaé blad otrzymanych przyblizen.
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