§7*. Calka Riemanna - Stieltjesa.

1. Calki gorna i dolna Darboux - Stieltjesa. Zalézmy, ze f jest funkcja ograniczona
w przedziale domknietym [a,b] za$§ « funkcja rosnacag w tym przedziale. Podobnie, jak
w §5, bedziemy rozwaza¢ podzialy odcinka [a,b] i odpowiadajace im sumy gérne i dolne
z tym, ze dlugo$¢ Az; przedzialu [z;_1, x;] zastapimy przez przyrost funkcji o na tym
przedziale. Okreslajac podzial II nieréwnosciami

(1) II: a=2o<z1<---<z)p =b
1 przyjmujac

mj; = inf _f, M; = sup f, Aaj = a(z;) — alzrj-1)

[wj—ha;j] [wjfl,wj]

wprowadzimy sume gérng Darbouz - Stieltjesa®
GIL, f,a) = ZM Ao

i sume dolng Darbouz - Stieltjesa

DL f,« ZmJAa]

W rachunkach podanych w §5 istotna role odgrywala nieréwnos¢ Az; > 0. Poniewaz
a jest z zalozenia funkcja rosnaca, mamy réwniez Ac; > 0 i dlatego wigkszo$¢ rozu-
mowarni przeprowadzonych w §5 w przypadku funkcji a(x) = x przenosi sie bez zmian. W
szczegblnosei zbiér sum gérnych odpowiadajacych wszystkim podziatom IT odcinka [a, b]
jest zbiorem ograniczonym i ta sama, wlasno$¢ ma zbiér sum dolnych, kazdy z nich ma za-
tem w zbiorze liczb rzeczywistych kres gérny i kres dolny (por. rozdz. I §2). Przyjmiemy
jako definicje

b

[ fda=mfGu f,a)
b

/ f da=sup DI, f, ).

Ja_ I

Wyrazenia te nazywamy odpowiednio catkq gorng Darbour - Stieltjesa i catka dolnag Dar-
boux - Stieltjesa funkcji f wzgledem funkcji a w przedziale [a, b]. Odpowiednik twierdzenia
3 85 mozna sformutowaé nastepujaco:

1Thomas Jean Stieltjes (1856 - 1894), matematyk holenderski, profesor uniwersytetu w Leydzie,
nastepnie w Tuluzie. Zajmowal sie¢ analiza matematyczna, w szczegdlnosci uogdlnieniem pojecia catki.
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Twierdzenie 1. Jezeli a jest funkcjq rosnaca ciggta zas f funkcjq ograniczonag w prze-
dziale [a,b], to

b
lim G(II, f, )—/fda,

d(II)—0

lim D(II, f,a) = /fda

d(II)—0

DOWOD przebiega podobnie jak w przypadku a(z) = = rozwazanym w §5 (twierdze-
nie 3), jedyna zmiana polega na wykorzystaniu jednostajnej ciaglodci funkcji o w przedziale
[a,b]. Wynika z niej, ze do dowolnie danej liczby n > 0 mozna dobraé¢ 6 > 0 tak, by z
warunku d(II) < § wynikala nieréwnosé

mjax Aoj < 1.

Mnozac ta nier6wnos¢ przez M; > 0 dostajemy
M;Acy; < Mjn,

zatem
MjAOzj S M'r;,

co po zsumowaniu wzgledem j € A daje odpowiednik nieréwnosci (15) §5 w postaci

Z MjAaj < M];)n

JEA
Wystarczy teraz przyjac
€
T okM
dalsze szczegolty dowodu pozostawiamy Czytelnikowi. (Il

2. Calka Riemanna - Stieltjesa wzgledem funkcji rosnacej. W dalszym ciggu
zakladamy, ze f jest funkcja ograniczona w przedziale [a, b], za§ « funkcja, rosnacg w tym
przedziale. Jezeli calki gérna i dolna Darboux - Stieltjesa sg rowne, to méwimy, ze funkcja
f jest calkowalna wzgledem funkcji o na przedziale [a,b]. Wspdlna wartosé calki gérnej
i calki dolnej nazywamy catkq Riemanna - Stieltjesa (lub krécej catkq Stieltjesa) funkcji
f wzgledem funkcji a w przedziale [a,b]. Dla calki Riemanna - Stieltjesa przyjmujemy

oznaczenie
b b
/ fda lub / f(z) da(z)

/fda—/f ) da(z /fda—/fda

dla dowolnej funkcji f catkowalnej wzgledem a na przedziale [a, b].

zatem

Kryterium catkowalnosci podane w §5 dla catki Riemanna przenosi si¢ bez zmian na
przypadek catki Riemanna - Stieltjesa. Mamy wiec
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Twierdzenie 2. Funkcja [ jest catkowalna wzgledem funkcji rosnacej o na przedziale
[a, b] wtedy i tylko wtedy gdy do dowolnie ustalonego € > 0 mozna dobraé podziatIle odcinka
[a, b] tak, by zachodzita nieréwnosé

(2) G, f,a) — D(IL,, f, @) < €.
DOWOD przebiega tak samo jak dowdd twierdzenia 4 §5. |
Stosujac podane kryterium otrzymujemy tatwo

Twierdzenie 3. JeZeli funkcja f jest ciggla w przedziale [a,b], to jest calkowalna na tym
przedziale wzgledem dowolnej rosngcej funkcyi o @ przy tym

b
3 li G(I1 = 1 D(I1 = do.
3) Jm G f,a)= lim DT f,0) Lf’a
DOWOD. Zauwazmy najpierw, ze jezeli a(a) = a(b), to funkcja « jest stala i wéwczas
kazda funkcja f jest catkowalna wzgledem «. Mamy bowiem dla dowolnego podziatu II
odcinka [a, b]
G, f,a) = DL, f,a) =0

/abfda:ffdazo.

Mozemy wiec przeprowadzié dow6d zaktadajac, ze a(a) < a(b).
Calkowalno$¢ funkcji f otrzymujemy rozumujac tak samo, jak w dowodzie twierdzenia
5 §5, nalezy tylko przyjaé

i stad

€
"7 o) —ale)
Stwierdzamy wéwczas, ze
(4) G(L f,a) - DL, f,a) <e,
o ile
(5) d(Il) <4,

gdzie § > 0 jest liczba dobrang do 7, a wiec posrednio do e. Zatem (2) zachodzi dla kazdego
podziatu II, ktérego $rednica speiia nieréwnosé (5). Poniewaz z definicji calki

b

MEL@S/fMSGmﬂM

a

wiec z (4) wynika, ze
b
G(H,f,a)—/ fda<e
oraz

b
/ fda— DI f,a)<e

dla kazdego podziatu II speliajacego warunek (5) - a to oznacza, ze zachodzi (3). O

Stosujac kryterium podane w twierdzeniu 2 udowodnimy jeszcze
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Twierdzenie 4. Jezeli a jest funkcjq rosngcq ciaglta w przedziale [a,b], to kazda funkcja
monotoniczna jest catkowalna wzgledem o na tym przedziale.

DOWOD. Mozemy przeprowadzi¢ dowdd zakltadajac, ze a(a) < «a(b) (por. poczatek
dowodu twierdzenia 3). Przy tym zalozeniu dow4d przebiega podobnie, jak dla catki Rie-
manna (85 twierdzenie 7), nalezy tylko zamiast odcinka [a, b] podzieli¢ na k réwnych czesci
odcinek [a(a), a(b)]. Punkty podziatu II okreslonego nieréwnosciami (1) otrzymujemy z
warunkow

a(b) — oz(a)'

(6) Ol(.??j) = afa) + jdr gdzie di = :

Poniewaz dla ustalonego j
a(zj—1) < afa) + jdi < a(b),

z zalozenia ciaglosci funkcji o wynika, Zze ma ona wlasno§é Darboux (twierdzenie 13
rozdz. III §3), istnieje zatem punkt z; € (z;_1,b) spriniajacy (6). Dla tak dobranego

podziatu II mamy Aa; =d, (j =1,2,...,k), zatem przy zalozeniu monotonicznosci f
G(Hafaa) _D(Hafaa) = dk‘f(b) _f(a)| <eg
jezeli obierzemy k dostatecznie duze. ]

Rozumujac tak samo jak w dowodzie twierdzenia 8 §5 otrzymujemy w oparciu o kry-
terium catkowalno$ci podane w twierdzeniu 2

Twierdzenie 5. Jezeli funkcje f1, fa sa catkowalne na przedziale [a,b] wzgledem funkcji
rosnacej o i ¢ jest dowolng stata, to funkcja

(1) fl + f29 (11) Cf2

réwniez jest catkowalna na przedziale [a, b] wzgledem funkcji o O

3. Calka Riemanna - Stieltjesa wzgledem funkcji o wahaniu skornczonym.
Niech g bedzie funkcjg o wahaniu skoriczonym w przedziale [a, b] i niech

(7) 9(z) = a(z) - f(z)

bedzie jej rozkladem kanonicznym Jordana (por. twierdzenie 6 §6). Mdéwimy, ze funkcja
ograniczona f jest catkowalna wzgledem funkcji g na przedziale [a,b], jezeli istnieja, obie
calki

(8) /abfda, /abfdﬂ-

Ré6znice

(9) /abfdg=/abf(x) dg(a:):/abfda—/abfdﬂ
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nazywamy woéwczas catkq Riemanna - Stieltjesa (lub krécej: catkq Stieltjesa) funkcji f
wzgledem funkcji g w przedziale [a,b]. W szczeg6lnosci mozemy rozwazaé catke (9) funkcji
f o skoniczonym wahaniu w przedziale [a, b], gdyz zgodnie z twierdzeniem 8 §6 funkcja taka
jest ograniczona.

Uwaga. Latwo wykazaé, ze w przypadku funkcji g rosnacej (a wiec majacej skoriczone
wahanie - por. twierdzenie 1 §6) podana definicja calki pokrywa sie z poprzednio rozwazana,
w punkcie 2. Istotnie, dla funkcji g rosnace]

Wi (9) = g(z) — g(a),
zatem w rozkladzie (7) mamy (por. (21), (22) §6)

ga),  Bla) = 5o(a).

Wobec tego dla dowolnego podzialu II odcinka [a, b] okreslonego nieréwnosciami (1)
AO[jZAgj, ABJZO (j:1,2,...,k)

a wiec

G(H,f,a):G(H,f,g), D(H,f,a):D(H,f,g)

oraz

Wynika stad, ze druga z calek (8) istnieje zawsze (i jest réwna zeru), natomiast pierwsza z
tych calek istnieje wtedy i tylko wtedy, gdy funkcja f jest catkowalna (w sensie podanym
w punkcie 2) wzgledem g i przy tym

/abfdg:/abfda.

Jezeli w szczegblnosci g(z) = z, to calka (9) jest catka Riemanna omawiana w §5.

Niech II bedzie podzialem odcinka [a,b] okreSlonym nieréwnosciami (1) i niech
¢(II) = {{;} oznacza ukiad punktéw posrednich tzn. spelniajacych warunek

§€lzjm, 7] G=12,...,k).
Podobnie, jak dla catki Riemanna, wprowadzimy sume przyblizong catki (9)
S(f,0.Lem) = 3 £(&)Ag;,
j=1

gdzie
Agj = Aaj = AP = g(x5) — 9(j-1)-
Udowodnimy
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Twierdzenie 6. Zaloimy, zZe spelniony jest jeden z warunkow
(i) funkcja f jest ciggta w przedziale [a,b], funkcja g ma skoriczone wahanie na tym
przedziale
lub
(ii) f, g sa funkcjami o wahaniu skoviczonym w przedziale [a,b] i funkcja g jest ciggta.
Wéwczas funkcja f jest catkowalna wzgledem funkcji g na przedziale [a, b).
Jezeli {11, } jest dowolnym ciggiem normalnym podziatéw odcinka [a, b] zas £(I1,) dowolnym
uktadem punktow posrednich, to oznaczajgc

Sn = S( 1.9, 11, £(11,))

mamy
b

(10) / fdg= lim S,.
a n—00

Uwaga. Wzér (10) zachodzi w szczegélnosci dla funkcji g(z) = x, wéwcezas calka po
lewej stronie (10) jest calka Riemanna (por. réwnosé (44) §5).

DOWOD. Zalézmy, ze speliony jest warunek (i), wéwczas istnienie calek (8) wynika z
twierdzenia 3, zatem calka (9) istnieje na mocy definicji. Dla kazdego podziatu IT i dowolnie
obranego uktadu punktéw posrednich £(IT) zachodza nieréwnosci

b

(11) DL, f,«a) < / fda <G, f,a)
(12) D(IL f,0) < §(f,0,ILE(IL,) ) < G(IL f, a).

Jak wykazaliSmy w dowodzie twierdzenia 3, do dowolnie obranej liczby ¢ > 0 mozna dobraé
01 > 0 tak, ze dla kazdego podziatu II spelniajacego warunek

d(H) < (51

zachodzi nieré6wnosé

G(H7f7a) _D(H7faa) < %
z ktérej wobec (11), (12) wynika

3

(13) —% < /abfda— S(f,a,H,g(H)) <.

Podobne rozumowanie mozemy przeprowadzi¢ zastepujac funkcje « przez funkcje 3, co
daje

(14) —%<S<f,B,H,§(H))—/abfdﬂ<%
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dla kazdego podziatu Il speliajacego warunek
d(II) < ds,
gdzie liczba 02 > 0 réwniez jest dobrana do €. Nieréwnosci (13), (14) mozemy dodaé stro-

nami zaktadajac, ze w obu sumach przyblizonych mamy ten sam uktad punktéw posrednich
£(IT). Otrzymujemy

(15) < g - $(f.gmem) <o,
o ile
(16) d(IT) < § = min(dy, 62).
Poniewaz z zalozenia

nli_)nolo d(I1l,) = 0,

do liczby 0 mozna dobra¢ N tak, by dla n > N zachodzila nieré6wnosc
d(IL,) < 4.

Wobec tego na mocy (15), (16) mamy

b
/fdg—Sn

dla n > N, przy czym liczba N jest dobrana do ¢, co koriczy dowéd (10).

<eg

Przechodzac do dowodu drugiej czesci twierdzenia zalozymy, ze spelniony jest
warunek (ii). Zgodnie z twierdzeniem 6 §6 mamy rozklad kanoniczny Jordana

f(z) = p(x) — (), 9(z) = a(z) - B(x),

przy czym funkcje «, 8 sa ciagle w przedziale [a,b]. Z twierdzenia 4 wynika, ze kazda z
funkcji p, q jest calkowalna wzgledem funkcji o i wzgledem funkcji [, zas wobec
twierdzenia 5 ta samg wilasno$¢ ma funkcja f jako réznica funkcji catkowalnych. Istniejg
wiec catki (8), a wiec i catka (9) na mocy definicji. Z twierdzenia 1 wynika, ze do dowolnie
ustalonego € > 0 mozna dobra¢ d; > 0 tak, by zachodzily nieréwnosci

b

b b
G(H,f,a)—/fda<%, /fda—D(H,f,a)<

| ™

jezeli

(17) d(II) < 6.
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Wobec tego opierajac sie na (12) dostajemy
/fda——<S(f,aH£ /fda-l——

czyli

(18) —%<S(f,a,H,§(H))—/abfda<%

dla wszystkich podzialéw II speliajacych warunek (17) i dowolnie obranych punktéw
posrednich £(II). Podobnie okazujemy, ze do ustalonego ¢ > 0 mozna dobra¢ liczbe d2 > 0
tak, by z warunku

d(H) < 09

wynikala nieréwnosé

(19) ——</ fdg—8(f,8,1,(m) <

1\:|m

Zakladajac, ze punkty posrednie w sumach przyblizonych w (18), (19) sa te same, otrzy-
mujemy po dodaniu nieré6wnosci

e < 8(f.9.10,¢(m) /fdg<e
dla podzialéw II speliajacych warunek
d(H) <6= min(él, (52)

Stad, podobnie jak w dowodzie pierwszej czesci twierdzenia, wynika

b
/fdg—Sn <e

dla n > N, przy czym liczba N jest dobrana do € - co koniczy dowdd (10). O

Przyklad 1. Obliczymy calke Riemanna - Stieltjesa

1
/ x dz?
0

jako granice ciagu sum przyblizonych. W podanym przykiadzie
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- wobec tego calka istnieje, gdyz funkcja f jest ciagla a funkcja g jest klasy C' w przedziale
[0, 1], zatem ma skoriczone wahanie na tym przedziale (por. Wniosek 1 §6). Podzial IT,,

okreslimy nieréwno$ciami
1 2 n
0<—<=—<--<—=1,
n n n

za$ jako punkt posredni &; przyjmiemy prawy koniec przedziatu [z;_1,z;]. Mamy zatem

Poniewaz )
d(Il,) = - =0,
(L) =

ciag {II,} jest ciagiem normalnym podzialéw przedzialu [0,1] i mozemy stosowaé
wzér (10). Mamy

i wobec tego

Granice ciagu {S,} obliczymy postugujac sie twierdzeniem Stolza (twierdzenie 11 rozdz.
IT §2). Oznaczajac

n
.’L'n:Z](zj—l), yn:n3
j=1
dostajemy na mocy tego twierdzenia

) ) n(2n — 1)
A0 S = I (1)

co po prostych przeksztalceniach w liczniku i mianowniku daje

lim S = I 2n’—n 2
nl—g)lo n_nLI&3n2—3n+1_3.

1
2
/ zde? ==,
0 3

Zatem
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4. Wiasnos$ci rachunkowe catki Riemanna - Stieltjesa. Podane dalej twierdzenia
wynikajg latwo z przejsScia granicznego (10).

Twierdzenie 7 (liniowo$é calki). Jezeli funkcje f, f1, f2, 9, 91, g2 okreslone na
przedziale [a, b] spelniajq zalozenia (i) lub (ii) twierdzenia 6, to dla dowolnych statych cq,co

b b b
(20) / (c1fr + cafa) dg:Cl/ f1 d9+c2/ f2 dg
oraz

b b b
(21) / [ d(c191 + c292) =C1/ fd91+62/ J dga.

DOWOD. Zgodnie z twierdzeniem 9 §6 kombinacja liniowa funkcji o wahaniu skoficzonym
réwniez ma skoniczone wahanie. Wobec tego wszystkie catki we wzorach (20), (21) istnieja,
i sa granicami odpowiednich sum przyblizonych odpowiadajacych ciagowi normalnemu
podzialéw {II,} odcinka [a,b]. Ponadto dla dowolnego podziatu II,, i ukladu punktéw
posrednich £(I1,,)

s(c1f1 + ¢, 9,11, E(Hn)) = cls(flu g,p, §(Hn)) + C2S(f2, 9,n, E(Hn))

oraz
S(f, c191 + C292aHn7§(Hn)) = 015<f7 gl,Hmf(Hn)) +c2 (f, 927Hn7§(Hn)>'

Przejscie do granicy przy n — oo daje (20), (21). O

Twierdzenie 8 (o podziale przedzialu catkowania). Jezeli funkcje f, g spelniajq
jedno z zatozen (i) lub (ii) twierdzenia 6 oraz a < c < b, to

(22) Lbfdgzlcfdg+/cbfdg.

DOWOD. Zgodnie z wnioskiem 2 §6 funkcja o skoriczonym wahaniu w przedziale [a, b]
ma skoriczone wahanie na kazdym z przedzialéw [a, c|, [c, b] - zatem obie catki po prawej
stronie (22) istnieja. Dowdd (22) przebiega podobnie jak dowéd twierdzenia 3 §1 w oparciu
o réwnosé (10). O
Twierdzenie 9 (o calkowaniu przez czesci). Zaldimy, Ze funkcje f, g maja skoriczone
wahanie na przedziale [a,b] i Ze jedna z nich jest ciggta. Wowczas

(23) [ ra=ls] - [sw

DOWOD. Zgodnie z twierdzeniem 6 obie calki istnieja. Dla dowolnego podziatu TI
okreslonego nieréwnosciami (1) otrzymujemy po redukcji

k

k
(24) > f@)Agi + > gl@im)Af; = f(b)g(b) — f(a)g(a).

Jj=1 Jj=1
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Pierwsza suma jest suma, przyblizona calki po lewej stronie (23), w ktérej {; = z; natomiast
druga suma jest suma, przyblizong calki po prawej stronie (23), w ktérej przyjeto {; = x;_1.
Jezeli {II,,} jest ciaggiem normalnym podzialéw odcinka [a, b], to stosujac (24) do podzialu
I1,, przy dowolnie ustalonym n i przechodzac do granicy przy n — oo dostajemy w oparciu

o (10) . i b
/afdg+/agdf=[fgL

czyli (23). O
Twierdzenie 10 (o catkowaniu przez podstawienie). Zaldzmy, ze ¢ jest funkcjq
ciagla Scisle rosnqca w przedziale [a,b] a funkcja f

(i) jest ciagla
lub

(i) ma skoriczone wahanie
na przedziale [p(a), ¢(b)]. Wiwczas

b ©(b)
(25) / f(o(x)) dp(z) = / o

pDowOD. W przypadku (i) superpozycja f(¢(x)) jest ciagla w przedziale [a,b] zas§ w
przypadku (ii) funkcja f ma rozklad Jordana

f(z) =p(z) —q(=),

gdzie p, q sa, funkcjami rosnacymi, zatem superpozycja

flo(x)) = ple(x)) — a(p(2))

ma wahanie skonficzone jako réznica funkcji monotonicznych (por. twierdzenia 1, 9 §6).
Wobec tego do calek wystepujacych w réwnosci (25) stosuje sie twierdzenie 6. Dla dowol-
nego podziatu IT okreslonego nieréwnosciami (1) i dowolnego uktadu punktéw posrednich

¢(II) przyjmijmy

(26) y; =e(z;)  (1=0,1,...,k)
oraz
wowczas

I :pla) =yo <y1 < -+ <y = @(b)

jest podzialem odcinka [¢(a), ¢(b)] zas$ punkty n; (j =1,...,k) sa punktami porednimi
odpowiadajacymi temu podzialowi, przy tym

fle(&))Ap; = f(n;)Ay;
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a stad
(28) S(#(e) @, ILEAD) = S(£, 10, n(IT")).

Z jednostajnej ciaglosci funkcji ¢ w przedziale [a,b] (por. twierdzenie 9 rozdz. III §3)
wynika, ze do dowolnego ¢ > 0 mozna dobra¢ liczbe § > 0 tak, ze z warunku

d(IT) < §

wynika,
d(IT*) < e.

Niech teraz {II,,} bedzie ciagiem normalnym podzialéw odcinka |[a, b], wéwczas mozna do
liczby 6 dobra¢ N tak, by dla n > N speliona byta nieréwnos¢

d(IL,) < 4.

7 nierownosci tej wynika, ze
d(IT}) < e,

jezeli przy ustalonym n podzial IT} jest okre§lony zgodnie z (26). Wobec tego {IL%} jest
ciagiem normalnym podzialéw odcinka [p(a), p(b)]. Z réwnosci (28) wynika, Ze obierajac
przy ustalonym n punkty posrednie zgodnie z (27) mamy

S(£(0)s 0, T €M) ) = S (1,115, n(1T) ).

Po przejsciu do granicy przy n — oo w oparciu o (10) otrzymujemy (25). O

5. Sprowadzanie calki Riemanna - Stieltjesa do calki Riemanna. Obliczanie
calki Riemanna - Stieltjesa przy pomocy przejscia do granicy (10) (jak to zrobilismy w
Przykladzie 1) byloby bardzo niewygodne a nawet w wiekszosci przypadkéw niewykonalne.
Mamy jednak twierdzenia pozwalajace sprowadzi¢ catke Riemanna - Stieltjesa do calki Rie-
manna. Obliczanie tej ostatniej sprowadza sie, jak to wynika z zasadniczego twierdzenia
rachunku catkowego (twierdzenie 5 §1 i twierdzenia 18 §5), do znalezienia funkcji pierwot-
nej. Metody rachunkowe pozwalajace wyznaczy¢ efektywnie funkcje pierwotna (czyli catke
nieoznaczona) danej funkcji ciaglej zostaly oméwione w §2.

Twierdzenie 11. Zalozmy, ze funkcja f
(i) jest ciggla

lub
(ii) ma skoriczone wahanie na przedziale [a,b], za$ funkcja g jest klasy C1 w tym
przedziale.

Wowczas

(29) [ 1= [ @i .
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DOWOD. Z twierdzenia 2 §6 (por. Wniosek 1 §6)wynika, ze g jest funkcja o wahaniu
skoniczonym, oprécz tego jest ciagla z zalozenia. Wobec tego Twierdzenie 6 zapewnia
istnienie calki po lewej stronie i mozliwo$é przejécia do granicy zgodnie ze wzorem (10).
Po prawej stronie mamy catke Riemanna, przy czym w przypadku (i) funkcja podcatkowa
jest ciagla a wiec catkowalna (twierdzenie 5 §5). W przypadku (ii) funkcja f jest catkowalna
jako réznica funkcji rosnacych (por. twierdzenie 6 §6 oraz twierdzenia 7, 8, §5), funkcja
g’ jest calkowalna jako funkcja ciagla, za$ iloczyn funkcji catkowalnych jest calkowalny
(twierdzenie 10 §5). Zatem w obu przypadkach calka po prawej stronie istnieje i jest granica,
ciagu sum przyblizonych zgodnie z twierdzeniem 13 §5. Dow6d réwnosci (29) oprzemy na
wzorze (10) i wzorze (44) §5. Dla dowolnego podziatu IT okreslonego nieréwnosciami (1)

i dowolnego 7 = 1,2,...,k mamy zgodnie z twierdzeniem o wartodci éredniej rachunku
rézniczkowego
(30) Agj = g(x5) — g(zj-1) = ¢'(;) Ay,

gdzie Z; € (zj_1,x;). Przyjmujac

(31) £ =T
w sumie przyblizonej calki po lewej stronie mamy zatem

k

(32) F(&)Ag; = F(£)d (&) Ax;.

Niech teraz {II,} bedzie ciagiem normalnym podzialéw odcinka [a, b]. Jezeli przy ustalo-
nym n obierzemy punkty posrednie zgodnie z warunkiem (31), to z (32) wynika, ze dla
kazdego n zachodzi réwnoscé

S(£,9,n, €(1L) ) = S (o', T, €(11,))

ktéra po przejsciu do granicy daje (29). 0

Uwaga. Jezeli w twierdzeniu 10 funkcja f jest ciagla a funkcja ¢ jest klasy C!' w
przedziale [a, b], to po zastosowaniu twierdzenia 11 réwnosé (25) przyjmuje postaé

b / ¢(b)
| e o= [ i) dy
a v(a)
Jest to znany wzdr na catkowanie przez podstawienie dla calek oznaczonych (por. (2) §3).

Przyklad 2. Obliczymy calke Riemanna - Stieltjesa

jus
2
K:/ sin? z dsin z
0
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stosujac twierdzenie 10. Funkcja
o(z) =sinz

jest Scisle rosnaca w przedziale [0, %], za$ funkcja f(y) = y? jest ciagla. Wobec tego

1 351 1

y
K= 2d:[—]:—.
/Oyy 310" 3

Calke ta mozna rowniez sprowadzi¢ do calki Riemanna opierajac sie na twierdzeniu 11.
Mamy woéwczas
K-
0

ME
[NIE

%
sin®? zcosz dx = / cosx dxr — / cos® z dz
0 0

czyli

NE

Kzl—/ cos® z dz.
0

Catka po prawej stronie byla rozwazana w §3 punkt 2. Przyjmujac n = 1 we
wzorze (8) §3 dostajemy
H 2
/ cos®z dxr = =,
0 3

zatem

podobnie jak poprzednio.

Przyklad 3. W calce Riemanna Stieltjesa

1
A:/ e® d x?
0

mamy
zatem zalozenia twierdzenia 11 sa spelnione i mozemy stosowaé wzér (29). Wobec tego

1
A:2/ ze® dx.
0

Otrzymalismy catke oznaczona, z funkcji ciaglej, do ktérej mozemy zastosowaé catkowanie
przez czesci (por. twierdzenie 1 §3). Zatem

1 1 1 1
ZA = T\/ — T _ T
2A /0 z(e®)" dx [ace }0 /0 e’ dx,
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skad )

A:2[$ew—ew} = 2.
0

Przyklad 4. Obliczymy calke Riemanna - Stieltjesa

B=/3 z® d g(x),

-1

gdzie
0 dla z=-1,
g(z)=<1 dla —1<z<2,
—1 dla 2<ax <3,

stosujac catkowanie przez czesci. Funkcja f(z) = x2 jest ciagta i ma ograniczona pochodna,
w przedziale [—1, 3] a funkcja g jest kawalkami stala, zatem z twierdzen 2, 3 §6 wynika, ze
obie funkcje maja skonczone wahanie. Wobec tego spelnione sa zalozenia twierdzenia 9 i
mozemy stosowaé wzér (23), ktéry daje

3

B=[o%9@)] - [ o) df@)

—1
Aby obliczy¢ calke po prawej stronie zastosujemy twierdzenie 11 a nastepnie podzielimy
przedziat catkowania (twierdzenie 8). Otrzymujemy

3 3
[ @ ds@ =2 [ agw) do=28:+ B
—1 —1
gdzie
2 3
B, :/ zg(x) dz, B, :/ zg(x) dz.
-1 2
W calce By mozemy funkcje g(x) zastapié¢ przez funkcje
gi(z) =1 dla z€[-1, 2]
nie zmieniajac wartosci calki (por. twierdzenie 20 §5), zatem
2
1 2 3
B1=/ rdr = [—:c2] = —
-1
oprocz tego

1.3 5
SRS
2 27 1,7 72
i stad 5
/ 9(x) d f(z) = —2.
-1
Poniewaz

otrzymujemy ostatecznie



594

Twierdzenie 12. Zalizimy, ze f jest funkcjq ciagle a g funkcja kawatkami gtadkq w
przedziale [a,b].  Drugie zatozenie oznacza, Ze istnieje taki skoriczony ciag liczb
¢; (j=0,1,...,p) spetniajacych nierdwnosé

a=cp<c1<---<cp=0b
i taki uktad funkcji by (j=1,...,p), Ze

1° f(z)=hij(x) dla cj_1<z<cj,

2 funkcja h; jest klasy C* w przedziale domknietym [c;_1, c;].
j j J

Wowczas

b b 4
(33) [ rag= [ @@ do+ Y feale).

gdzie
og(a) = lim g(z) — g(a),
(34) og(cj) = lim g(e) - lm g(z) (i=1....p—1),

7g(b) = g(b) — lim g(z).

Uwaga 1. Liczbe o,4(c;) nazywamy skokiem funkcji g w punkcie c; (j = 0,1,...,p).
Mozemy ja tatwo obliczy¢ znajac funkcje h;, mianowicie

og(a) = hi(a) — g(a),
og(ci) = hjta(cj) —hj(e;))  (G=1,...,p—1),
o4(b) = g(b) — hp(b).

Uwaga 2. Calka po prawej stronie (33) jest calka Riemanna w ktérej funkcja podcal-
kowa jest okreslona i ciagta poza skornczona, iloscia punktéw c;. Zgodnie z twierdzeniami
6 1 20 §5 calka ta istnieje i nie zalezy od tego, jak okreslimy wartos$¢ funkcji ¢’ w punktach
skoku c;.

DOWOD. Dla uproszczenia dowodu zalozymy, ze funkcja g ma tylko jeden skok w punkcie
c € (a,b). Zatem
hi(z) dla a<z<cg,
g9(z) =
ho(z) dla c<z<b

przy czym hy jest klasy C!' w przedziale [a,c], za$ hy - klasy C! w przedziale [c,b].
Niech II bedzie podzialem okres§lonym nieréwnosciami (1) i niech ¢ € II. Wéwczas dla
pewnego r

0=Tp<T1 < - <Tp=Cc< Tpy1 <---<xTf =D,
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przy czym punkty
Lo, L1y---9Lp

wyznaczaja, podzial odcinka [a, c] a punkty

LpyTp41y---5Tk

- podzial odcinka [c, b]. Zauwazmy, ze

Agr = g(c) — g(zr—1) = g(c) — ha(c) + hi(c) — g(@r-1)
i podobnie
Agri1 = g(@r41) — g(c) = ha(c) — g(c) + ha(zri1) — ha(c).

Obierajac punkty posrednie w sumie przyblizonej odpowiadajacej podzialowi I w taki
sposéb, by

(35) gr = §r+1 =Ty =G,
mamy zatem

T

k k
(36) Y F(€)AG =D FE)ARG+ Y F(&)Ahz; + £(0)(ha(e) — a(e))-

j=1 7=1 j=r+1

Zalézmy teraz, ze {IL,} jest ciagiem normalnym podzialéw odcinka [a, b, z ktérych kazdy
zawiera punkt c, obierzmy przy ustalonym n punkty posrednie tak, by spelniony byl
warunek (35) i przeksztalémy sume przyblizona zgodnie z (36). Z twierdzen 2, 3 §6 wynika,
ze funkcje g, h1, ho majg skoriczone wahanie odpowiednio w przedziatach [a, b, [a, ], [c,b]
i wobec tego calkujac funkcje ciagly f wzgledem tych funkcji mozemy zastosowaé twier-
dzenie 6. Przechodzac do granicy przy n — oo dostajemy w wyniku (10)

b c b
[ tds= [ san+ [ gm0

Calki po prawej stronie mozemy przeksztalci¢ stosujac twierdzenie 11, co daje

b c b
(37) [ fag= [ r@mie) o+ [ f@me) do+ 1ay(0).
Zauwazmy, ze zgodnie z twierdzeniem 15 §5 suma calek po prawej stronie jest rowna calce

b
| @y @) ds

(por. Uwaga 2), zatem (37) mozna zapisa¢ w postaci

b b
(38) / fdg= / F(@)g' (@) dz + F(D)ay(c).

Przeprowadzenie dowodu w przypadku dowolnego skonczonego ukitadu punktéow skoku
funkcji g pozostawiamy Czytelnikowi jako ¢wiczenie. O

7 twierdzenia 12 wynika
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Whniosek 1. Jezeli f jest funkcja ciagla a g funkcja kawatkami statq w przedziale [a, b),
to przy oznaczeniach twierdzenia 12

b p
(39) | Fas=3"(eayley).

DOWOD. Poniewaz funkcje h; sg stale, pochodna g¢'(z) jest réwna zeru za wyjatkiem
punktéw c;, w ktérych nie jest okreslona i stad calka po prawej stronie (38) jest réwna
Zeru. ]

Przyklad 5. Calke rozwazana w przykladzie 4 mozemy obliczy¢ inaczej stosujac
wzér (39). W przedziale [—1, 3] funkcja g jest kawaltkami stala, ma punkty nieciagtosci

C():—l, Cl=2

i skoki w tych punktach
o4(co) =1, og(c1) = —2.

Wobec tego
3
B :/ z? dg(z) = 2 — 2¢2 = 1.

-1

Przyklad 6. Obliczymy calke Riemanna - Stieltjesa

(10) ¢ [ sdsla)

gdzie
z+2 dla —-2<zx< -1,

g(z) = 2 dla —1<z<0,
2243 dla 0<z<2.

Z twierdzen 2, 3 §6 wynika, ze obie funkcje f(z) = z i g(x) majg skoniczone wahanie,
ponadto funkcja f jest ciagla - mozna zatem zastosowac twierdzenie 9 o catkowaniu przez

czesci. Otrzymujemy
2

2
¢=[os@)] - [ 9@ .
- -2
Poniewaz funkcja f jest klasy C', do calki po prawej stronie mozna zastosowaé twier-
dzenie 11, co daje

2

(41) C = [m g(x)] 2_2 - / g(z) dz.

-2
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Otrzymang catke obliczymy dzielac przedzial catkowania. Mamy

(42) /2g(x)das:/_1(x+2)da:+/o2da:+/02(a:2+3)da:

—2 —2 -1

(w érodkowej calce po prawej stronie mozna przyjaé, ze funkcja podcatkowa jest = 2 w
calym przedziale [—1, 0] - por. twierdzenie 20 §5). Prosty rachunek daje

[33 g(a:)] 2_2 = 14, /_1(1' +2)dx = %

-2

0 2
26
/ 2 dx =2, /(.’I,'2+3)daj:—
-1 0 3

wobec tego z (41), (42) otrzymujemy

9
Y

C==.
6

Calke (40) mozna réwniez obliczy¢ stosujac twierdzenie 12. Funkcja f(x) = x jest ciagla,
natomiast g jest funkcja kawatkami gtadka w przedziale [—2, 2] majaca skok w punktach

C1 = —1, Cy = 0,

przy tym
ag(c1) = 04(cz) = 1.

Zgodnie ze wzorem (33)
2
C:/ zg'(z) dz — 1
—2

przy czym pochodna g¢'(x) nie jest okreslona w punktach skoku, a dla pozostalych

1 dla —2<z<1,
g'(z) = 0 dla -1<z<0,
2¢ dla O0<z <2

2 1 2 93
/ zg'(x) da::/ CEd.’E+2/ 2? dr = =,
—2 —2 0 6

skad po prostych rachnkach otrzymujemy poprzednio otrzymany wynik

Wobec tego

17
C=—.
6
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6. Monotoniczno$é catki Riemanna - Stieltjesa. W przypadku calki Riemanna
monotoniczno$é¢ calki oznacza, ze z nieréwnogdci

(43) H@) < fa@) (v elab])

wynika

(44) [ re@ s [ pe e

(por. twierdzenie 4 §1 i twierdzenie 16 §5). Jezeli obie funkcje sa ciagle i nieujemne
w przedziale [a,b], to nieréwnos$¢ (44) ma oczywisty sens geometryczny: pole zawarte
miedzy osia, x-6w i wykresem wiekszej funkcji jest wieksze. Udowodnimy, ze przy pewnych
zalozeniach catka Riemanna - Stieltjesa ma podobna, wlasnosé.

Twierdzenie 13. Zaktadamy, Ze
AL) funkcje f1, fa spelniaja nieréwno$é (43), funkcja g jest rosnaca w przedziale [a, b)),
B.) spetniony jest jeden z warunkéw:

(i) funkcje f1, f2 sa ciagte w [a, b]
lub

(ii) jedna z funkcji f; (j = 1,2) nie jest ciagta ale ma skoniczone wahanie, lub obie
funkcje f1, f2 majq tq wtasnosé - wowczas zatozymy dodatkowo ciagtosé funkeji g.
Przy podanych zatozZeniach zachodzi nieréwno$é

(45) /abfl dg < /abh dg.

DOWOD. Obie calki istnieja i s granicami sum przyblizonych zgodnie z twierdzeniem
6. Poniewaz dla dowolnego podziatu II okreslonego nieréwnosciami (1) mamy Ag; > 0
(j=1,.2,...,k), z nieréwnosci (43) wynika

S (1,9, LOM) < S(f2,9, 1L, £(11) ).

dla kazdego uktadu punktéw posrednich £(IT). Stad, jezeli {II,,} jest ciagiem normalnym
podzialéw przedziatu [a, b], to

S(f1,9. T, () ) < S(f, 9, T, €(IT))
dla kazdego m € IN. PrzejScie do granicy przy n — oo w oparciu o (10) daje
nieréwnosé (45). O
Zalozenie, ze catkujemy wzgledem funkcji g rosnacej jest istotne, jak wskazuje

Przykilad 7. Niech

1 dla 0<z< g3,
g9(z) = 0 dla ;<z<2,
1 dla 2<2z<1
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1 niech
fAl@) =z,  folz)=1 (a: 30 1]).

Funkcja g jest kawalkami stala, wiec obie calki wyrazaja, sie jako sumy skonczone zgodnie
ze wzorem (39). Mamy

1 2
61=§7 szg’ 09(61):_13 09(62):1’
stad
/1fd_ 1,2 _1 /lfd— 14+1=0
, THTT3T3 Ty o 7T o
Zatem

/Olfldg>/01f2dg

pomimo, ze funkcje f1, fa spehiajg (43) w przedziale [0, 1]. Oczywiscie funkcja g nie jest
rosngca w tym przedziale.

Z udowodnionego twierdzenia wynika latwo

Twierdzenie 14. Zaktadamy, Ze funkcja g jest rosngca w przedziale [a,b] i Ze spetniony
jest jeden z warunkow

(i) f jest ciaglta w [a, b
lub

(ii) f ma skoriczone wahanie, g jest ciggta w [a, b].

Wowczas
b b
| rds|< [ is1dg

DOWOD. Z twierdzenia 7 §6 wynika, ze jezeli funkcja f ma skonczone wahanie, to ta,
sama, wlasnosé ma |f|. Poniewaz

(46)

f@ <@, —f@ <If@) (z€ o)

przyjmujac w twierdzeniu 13 f; = f lub f1 = —f, fo = |f| otrzymujemy

(47) /abfng/:lfldg

oraz (w oparciu o twierdzenie 7)

(18) [cna=-[ra< [ 4

Nieréwnosci (47), (48) daja, (46). O

Bez zalozenia, ze funkcja g jest rosnaca, mozemy uzyskaé jedynie stabsze
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Twierdzenie 15. Zalozmy, Ze funkcje f, g spelniajq jeden z warunkow podanych w
twierdzeniu 6. Wowczas z nieréwnosci

(49) f@ <M (s€ab])

wynika

(50) < MW;(9)-

/abfdg

DOWOD. Dla dowolnego podziatu II przedzialu [a, b] nier6wnosé (49) pociaga za soba,

$(£.9.1€)| < MV (L)

skad

(51) ‘S(f,g,H,ﬁ(H))‘ < MW (g).

Obierajac ciag normalny podzialéw {II,} i punkty &(II,) dostajemy z (51)
[5(1,9. M, €(1)) | < MWE(g)

dla kazdego n € IN. Stad po przejsciu do granicy zgodnie z (10) otrzymujemy (50). O

Zadania.

1. Obliczy¢ calki Riemanna - Stieltjesa

1 1
A:/x2dm2, Bz/wda:?’
0 0
dwoma, sposobami:

a.) stosujac twierdzenie 11,

b.) znajdujac granice ciaggu sum przyblizonych i opierajac si¢ na twierdzeniu 6.
Wskazéwka. W punkcie b.) skonstruowaé sume przyblizong, S,, dzielac przedziat catkowa-
nia na n réwnych czeéci. Nastepnie zastosowaé twierdzenie Stolza (twierdzenie 11 rozdz.IT

§2).

2. Obliczy¢ nastepujace catki Riemanna - Stieltjesa sprowadzajac je do catki Riemanna:

2 z 1
(i) / 22 dlog(1 + z), (ii) / x dsin z, (iii) / x d arctg x.
0 0

-1
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3. Niech
2 dla x=-1,

g(z) = 1 dla —-1<z<0,
3 dla 0<z<1.

Obliczy¢ catki Riemanna - Stieltjesa

1 1
[ caser [ 2 )
-1 -1
dwoma sposobami:

a.) opierajac sie na twierdzeniu 12,
b.) stosujac catkowanie przez czesci i sprowadzajac przeksztalcona, calke do catki Rie-
manna. Sprawdzié, ze obie calki speliaja nieréwnosé (50).

4. Niech
z+2 dla —2<zx<-1,

g(z) = 2 dla —-1<z<0,
2243 dla 0<z<2.

Obliczy¢ catki Riemanna - Stieltjesa

2

0 [ VEww, @ [ T aw,

-2
—zr dla —-2<z<0,

G) [ s i) s sw={

z¢ dla O0<z<2.

5. Obliczyé¢ calki Riemanna - Stieltjesa stosujac odpowiednie podstawienie (por. twierdze-
nie 10):

1 ™
a.) / (14 €%) de®, b.) / sin® z d cos ,
0

1+e?® dla —-1<z<0,

0

1
. de®  gdzi -
¢) [ Jl)de” gdde f(z) {1—63c dla 0<z<l.

6. Zalézmy, ze
a.) f jest funkcja ograniczona, g funkcja stala,
lub
b.) f jest funkcja ciagla, g(x) = ¢ poza skorniczona, iloécig punktéw lezacych w przedziale
otwartym (a, b). Udowodnié, ze
b
/ fdg=0.
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7. Okazaé, ze dla dowolnej funkcji g o wahaniu skoniczonym w przedziale [a, b]

b
/ dg(z) = g(b) — g(a).

8. Zalézmy, ze

(i) f jest funkcja ograniczona w przedziale [a, b], ciagla w tym przedziale poza skoriczona
ilocig punktéw c; € (a,b) (j =1,...,p),

(ii) « jest funkcja rosnaca w przedziale [a, b], ciagla w punktach c;.

Udowodnié, ze f jest calkowalna wzgledem « na przedziale [a, b].

Wskazowka. Zaczaé od przypadku p = 1 i zmodyfikowaé¢ dowdd twierdzenia 6 §5.

/_11fda,

0 dla —-1<z<0, (2) = 0 dla —-1<z<0,
1 dla 0<z<1, ae) = 1 dla 0<z<1;

9. Zbada¢ istnienie calki

jezeli

2) @)= {

0 dla —1<z<0,
b.) f(z) jak w punkcie a.),  a(z)= { . =7

r+1 dla 0<z<1;

0 dla —-1<z<0,
1 dla 0<z<1.

) fa)=ale) = {

Wynik poréwnaé z twierdzeniami 3,4. Czy w podanych przykladach calki gérna i dolna
spelniaja relacje sformutowana w twierdzeniu 17

10. Uogdblni¢ twierdzenia 9 - 12 §5 na przypadek calki Riemanna - Stieltjesa wzgledem
dowolnej funkcji rosnacej a.

11. Niech

) () {az dla 0<z< 7,

a. x) =

g —%x+2 dla 3 <z<m,

fi(x) =0< fa(z) =sinz < f3(xz) =1 dla z€]0,n],

—cosx dla 0<z<m,
g9(z) =

—2cosr—1 dla n <z <2m,
filx) =0< fa(z) =1 dla z €]0,n].
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Jakie nieréwnosci zachodza miedzy catkami fow fidg? Wynik poréwnaé¢ z twierdze-
niem 13.

12. Niech g bedzie funkcja, klasy C* w przedziale [0, 1] taka, ze
1° pochodna ¢’ jest funkcja, liniowa, w kazdym z przedzialéw
1 11 13 3
S O et R i B
[0’ 4]’ [4’2]’ [2’4]’ [4’ ]’
20 g'0)=0=g'(3)=9g'(1)=0, ¢(3)=2, J(G)=-4
Przyjmujac
filx) =0< fa(z) =1 dla =z €]0,1]

sprawdzié, ze

(52) /Olfz dg</01f1 dg.

Dlaczego twierdzenie 13 nie zachodzi w tym przypadku?
Wskazéwka. Calke po lewej stronie (52) mozna obliczyé¢ postugujac sie rysunkiem.

13. Przyjmijmy
flx)=1 dla =z€][0,1]

i niech g bedzie funkcja, okreslona w zadaniu 12. Sprawdzi¢, ze nieréwnosé (46) nie zachodzi.
Ktére z zalozen twierdzenia 14 nie jest spelmione?

14. Zakladajac, ze funkcje f, g spelniaja jedno z zalozen twierdzenia 6 udowodni¢ nieréw-

nosé
b b
/fdg s/ f| dv,

v(z) =W7(9)-

(53)

gdzie

Jaka, postaé¢ przyjmuje nieréwnosé (53) gdy g(z) = x?
Wskazéwka. Najpierw udowodni¢ nieréwnos¢ dla sum przyblizonych, nastepnie przejs¢ do
granicy opierajac sie na wzorze (10).

15. Okazaé, ze z nieréwnosci (53) wynika nieréwnosé (50).
Wskazéwka. Oprzec¢ sie na twierdzeniu 13.

16. Momentem statycznym wzgledem punktu q ukladu punktéw materialnych pq,...,ps 0
masach my, ..., ms; nazywamy sume

s
M = E ijj,
j=1
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gdzie r; jest odlegloicia punktu p; od g. Niech F(z) oznacza mase rozlozona na odcinku
la, z] osi z-6w (0 < a < x < b), przy czym funkcja F' ma skonficzone wahanie na przedziale
[a, b]. Uzasadnié¢, ze calke Riemanna - Stieltjesa

M(F):/abade

mozna uwaza¢ za moment statyczny wzgledem poczatku ukladu wspéirzednych masy
rozlozonej na przedziale [a, b].

Wskazéwka. Rozwazajac podzial I okreslony nieréwnosciami (1) potraktowaé odcinek
[a, b] jako uklad punktéw materialnych. Nastepnie wprowadzié ciag normalny podzialéw i
przej$¢ do granicy opierajac si¢ na twierdzeniu 6.

17. Przyjmujac oznaczenia zadania 16 momentem bezwtadnosci wzgledem punktu q ukladu
punktéw materialnych pq, ..., ps nazwiemy sume

S
2
Q=2 myrj
i=1

Uzasadnié, ze w przypadku masy roztozonej na odcinku [a, b] osi z-6w calke Riemanna -
Stieltjesa

Q(F) :/aba:? dF

mozna uwazaé za moment bezwladnosci tej masy wzgledem poczatku ukladu wspéirzed-
nych.
Wskazéwka - jak w zadaniu 16.

18. Znalezé funkcje F' (zadania 16, 17) i momenty statyczny oraz bezwladnosci wzgledem
poczatku uktadu masy rozlozonej na odcinku [a,b] (0 < a < b), jezeli
(i) masa jest rozlozona w sposéb ciagly ze stala, gestoscia, liniows, ¢,
(ii) w punktach
a=cyp<cr<cg,---<cg=b

skupione sa, masy mg, m1, ..., Ms.

19. Niech f bedzie funkcja, ciagla nieujemna zas g funkcja, cisle rosnaca, w przedziale [a, b].
Przez krzywa K rozumiemy zbiér punktéw (z,y) spehmiajacych warunki

(i) z=g(to),y = f(to), gdy g jest ciagla w o,

(i) ze (g— (to),g+(to)), y = f(to), gdy g nie jest ciagla w to

(oznaczamy

g-(to) = lim g(t),  g4t(0) = lim g(t).)
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Uzasadnié, ze
19 obie granice g_(ty), g4 (to) istnieja,
20 calka Riemanna - Stieltjesa

b
/ £(t) dg(t)

moze by¢ uwazana za miare pola zawartego miedzy krzywa, K a osig z-6w.

Wskazéwka. W punkcie 19 oprzeé si¢ na twierdzeniu o zbieznoéci monotoniczne] (rozdz.
1T §2 punkt 6). W punkcie 2° podaé najpierw sens geometryczny sumy przyblizonej,
nastepnie skorzystaé¢ z twierdzenia 6.

20. Obliczy¢ calki Riemanna - Stieltjesa i podaé ich sens geometryczny opierajac sie na
zadaniu 19:

t dla 0<¢<1,
2t dla 1<t<2,

a.) /02tdg gdzie g(t):{

ME

b.) / cost dsint,

us
2

—t?2 dla —-1<t<0,

1
c.) / t>dg gdzie g(t)=4{ 1 dla t=0,
- 2442 dla 0<t<1.

21. Zakladamy, ze
1% {cg = b, c1,Co,- ..} jest ciagiem cisle malejacym zbieznym do a (a < b),
20 funkcja g jest okreslona w przedziale [a, b], przy czym istnieja stale h,, (n = 0,1,2,...)
takie, ze
g(x) =h, dla z€ (cht1, Cnl,
3% funkcja f jest ciagla w [a, b],
49 szereg

Z on gdzie on, =hp_1—h, (n€NN)
n=1

jest bezwzglednie zbiezny.
Przyjmujac

okazaé, ze

b
(54) [ fdg=t@ao+ 3 feon.
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Wskazowka. Istnienie calki wynika z punktu (ii) zadania 12 §6. Aby udowodni¢ réwnosé
(54) przedstawiamy funkcje g w postaci

g=91+g",
gdzie
. 0 dla a<z<b,
9" (z) =
—og dla z=a,
co daje

(55) /abfdg=/acnfdg1+/cbfdg+/abfdg*

n

przy dowolnie ustalonym n. Dwie ostatnie calki po prawej stronie (55) mozemy obliczyé
stosujac twierdzenie 12, za$ pierwszg calke szacujemy opierajac sie na twierdzeniu 15 i
zadaniu 12 §6 punkt (ii). Po przejsciu do granicy przy n — oo otrzymujemy (54).

22. Zalézmy, ze
19 {cg = b, c1,Co,- ..} jest ciagiem &cisle malejacym zbieznym do a (a < b);
20 funkcje f jest ciagta w przedziale [a, b];
3% funkcja g spelnia warunki

g(z) = hy(z) dla z€ (cpy1, cn] (n=0,1,2,...)

gdzie h,, jest funkcja klasy C! w przedziale [c,11, cy;
49 pochodne A/, sa wspélnie ograniczone tzn. istnieje stata M > 0 taka, ze

T) < a I € l(Cht1, Cn), n=u,1,4,...5
z)| <M dl (Cn+ ) 0,1,2

59 szereg

Y on gdzie op=hn_1(cn) = hn(cn) (n€NN)

n=1

jest bezwzglednie zbiezny.
Woéwczas

b o0 Cn [e's)
(56) INE F@he) dz+ 3 f(en)on:

Wskazowka. Niech

Przyjmujac

gl(x):ZUjp(x—cj) dla a <z <b, g1(a) =0
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okaza¢ najpierw, ze funkcja g; speinia warunki natozone na funkcje g w zadaniu 21 zas
funkcja

g2(z) = g(x) — g91(x)

jest ciagla. Z zadan 12, 13 §6 wynika, ze obie funkcje g1, g2 (a wiec i funkcja g) maja
skoniczone wahanie na przedziale [a, b]. Zgodnie z twierdzeniem 7

/abfdg=/abfdg1+/abfdg2-

Do obliczenia pierwszej calki po prawej stronie stosujemy wzoér (54). Przedstawiajac druga,
catke w postaci

b
/ fdQQZIa+Ka,
a
gdzie

ata b
Ia:/ dga, Ka:/ [ dgo 0<a<b—a)
a ata

dowodzimy w oparciu o zadanie 13 §6 i oszacowanie (5), ze

lim I, =
ai)%l—l— @ 0’

skad wynika istnienie granicy

lim K,
a—0+

oraz réwnosé b
lim K, = f dga.
a—0+ a

Pozostaje do wykazania, ze granica ta daje sie przedstawic¢ jako suma pierwszego z szeregéw
po prawej stronie (56).



