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WSTEP DO TEORII WIELKICH ODCHYLEN
(An Introduction to the theory of large deviations (LDP))

Stynne LLN ( law of large numbers) mowi, ze dla i.i.d. zmiennych loso-
wych (X,,) o skoriczonej wartosci oczekiwanej m

X+ Xot .+ X,
px =ty (1)
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Zatem dla zbioru borelowskiego B takiego, ze m € B¢ (dopetnienie) mamy,ze
P(X € B) — 0. Jak ” szybko” ciag ten zbiega do zera? Teoria wielkich
odchylen zajmuje sie przypadkami gdy zbieznos$é¢ ta jest wykladnicza. Do-
ktadniej, dla sytuacji jak w (1), dowodzi sie, ze instnieje funckcjonal I, ktory
dowolnemu zbiorowi borelowskiemu A przyporzadkowuje liczbe I(A) taka,
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—I(A°) <liminf —P(X € A) <limsup —P(X € A) < I(A), (2)
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gdzie A oznacza domkniecie zbioru A, a A° wnetrze zbioru A.
Planujemy na wykladzie omowic :
i) Miary na przestrzenaich metrycznych, w tym na przestrzeniach Banacha.
ii) Twierdzenie Cramera — LDP dla LLN.
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(iii) Twierdzenie Sanowa dla zasadniczego twierdzenia satystyki matemtycznej
(tzn. o zbieznosci dystrybuany empriycznej do dystrybuanty teoretycznej).
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