
GRAPHICAL MODELS

MODELE GRAFICZNE

Piotr GRACZYK( Université d’Angers)
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1. INTRODUCTION.

Simpson paradox

A university has 48 000 students

Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail

Feminist organizations threaten to close the university,

girl students want to lynch the president!

However, the president of the university proves that the

results R of the exams are conditionally independent

of the sex S of a student, knowing the department

D (notation R ⊥⊥ S|D)
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3 departments

A(literature, history, languages),

B(law),

C(sciences)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail

Girls 3 9 4 4 3 1

Boys 1 3 4 4 9 3

Actually R ⊥⊥ S |D = d for d =A,B,C

The notion of the conditional independence

is necessary to understand the Simpson paradox.
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Graphical coding of conditional independence

Let G be a graph with vertices vi. If 2 vertices vi, vj are

connected by an (undirected) edge, we write vi ∼ vj .

R ⊥⊥ S|D : R 6∼ S no edge between R and S

Results depend on Department (knowing Sex): R ∼ D
S depends on D (knowing Results): S ∼ D

R D S

Remark. D separates R from S

(any path from R to S goes through D. Direct route

from R to S impossible.)
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GRAPHICAL MODELS IN STATISTICS

Consider an undirected graph G = (V,E) where:

• the set of nodes V = {1, . . . , n}
• the set of edges E ⊂ {F ⊂ V | card(F ) = 2}

Any set {i, j} ∈ E will be called an edge. If {i, j} ∈ E,

we write

i ∼ j
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Consider a system of random variables X1, . . . , Xn on

the same probability space (Ω, T , P ).

The information on conditional independence between

the Xi’s is schematized by an undirected graph

G = (V,E) such that

Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ l 6∼ m.

The graph G is called the dependence graph of the

system of random variables X1, . . . , Xn.
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Exercise 1. Alabama murderers. During 10 years, there were
4863 murders in Alabama. 2606 murderers were black, 60 were
sentenced to death, others to prison. All the other 2257 murderers
were white, 52 were sentenced to death, others to prison.
Question 1. Does the proportion of death sentences depend on
the race? Are Alabama judges racist?

When the murdered victim was black, 2320 murderers were black,
12 were sentenced to death. 111 murderers were white, none was
sentenced to death.
When the murdered victim was white, 286 murderers were black,
48 were sentenced to death. 2146 murderers were white, 52 were
sentenced to death.
Question 2. Knowing the victim race, does the proportion of
death sentences depend on the race? Are Alabama judges racist?
Draw the dependence graph.
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2. CONDITIONAL INDEPENDENCE.

In the preceding examples, we used intuitively the no-

tion of CONDITIONAL INDEPENDENCE.

We will present it rigourously in this chapter.
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Revisions on independence of r.v. X,Y
(notation X⊥Y )
Def. X⊥Y if ∀A,B ∈ B
P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)
Equivalently, L(X,Y ) = L(X)⊗ L(Y ) . In case with

density, fX,Y (x, y) = fX(x)fY (y) .

Prop.1. In case with density, X,Y are independent
iff the joint density factorizes fX,Y (x, y) = g(x)h(y).
Proof. Exercise 2.

Equivalent def. of independence: X,Y independent if
L(X|Y ) = L(X) , i.e. ∀A,B ∈ B, with P (Y ∈ B) > 0,

P (X ∈ A | Y ∈ B) = P (X ∈ A)

Exercise 3. Prove the equivalence of 2 definitions of
independence.

10



Independence in a normal (Gaussian) vector:

zeros in the covariance matrix Σ

Let X = (X1, . . . , Xd) be a normal(Gaussian) vector on

Rd, with law N(ξ,Σ).

Exercise 4. Let i 6= j.

1. What is the marginal law of (Xi, Xj)?

2. Show that Xi⊥Xj ⇔ Σij = 0.

Covariance matrix Σ of a Gaussian vector contains:

• marginal covariances

• information on independence: Xi⊥Xj ⇔ Σij = 0

• in practice, correlation ρij =
Σij√

Σii

√
Σjj

≈ 0 ⇒ Xi⊥Xj.
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Remark. In statistics, the discrete case (X(Ω) finite or

countable) may be also considered with density

fX(x) = P (X = x)

w.r. to the counting measure ν =
∑

x∈X(Ω)

δx.

Law of X is µX =
∑

x∈X(Ω)

P (X = x)δx.

Functions on discrete prob. spaces are continuous.

So in the sequel we will write densities. The discrete

case is included.
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Conditional Independence of random variables.

Def. Conditional density

fU |V (u|v) = fU |V=v(u) =
fU,V (u, v)

fV (v)
.

The marginal density is supposed strictly positive:

fV (v) =
∫
fU,V (u, v)du > 0

Prop.2. The conditional density is a probability

density.

Proof.
∫
fU |V (u|v)du =

fV (v)

fV (v)
= 1. �
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Exercise 5. Let (X,Y ) ∼ N(0,Σ) with Σ =

(
2 1
1 1

)

Compute the conditional density fX|Y=y.

Determine the conditional law X|Y = y.
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Definition.

Let X,Y, Z be three random variables on a proba-

bility space (Ω, T , P ).

X and Y are conditionally independent given Z if

L(X| Y, Z) = L(X| Z) .

A possible interpretation: Knowing Z renders Y

irrelevant for predicting X.

Notation: X ⊥⊥ Y |Z.
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(1) In case with density, X ⊥⊥ Y |Z ⇔ fX|Y,Z = fX|Z ,

that is, ∀x, y, z

fX| (Y,Z)=(y,z)(x, y) =
fX,Y,Z(x, y, z)

fY,Z(y, z)
=
fX,Z(x, z)

fZ(z)
= fX|Z=z(x)

(2) X ⊥⊥ Y |Z iff L(X,Y | Z) = L(X| Z)⊗ L(Y | Z) ,

i.e. fX,Y |Z = fX|ZfY |Z .

(consequence of (1); CHECK IT!)

Prop.3. Factorization Property.

X ⊥⊥ Y |Z iff fX,Y,Z(x, y, z) = g(x, z)h(y, z)

Proof. Exercise 6.
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Conditional Independence in a Gaussian vector:

zeros in the precision matrix K = Σ−1

Let X = (X1, . . . , Xd) be a Gaussian vector on Rd, with

law N(ξ,Σ) and invertible Σ.

The matrix K = Σ−1 is called the precision(concentration)

matrix of X.
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This is the precision matrix K = (κij)i,j≤d that appears

in the density f(x) = (2π)−d/2(detK)1/2e−(x− ξ)TK(x− ξ)/2

Example.

X ∼ N(0,Σ) in dim 3. K = (κij)i,j≤3 = Σ−1

f(x1, x2, x3) = (detK)1/2

(2π)3/2 ×

e−(κ11x
2
1 + κ22x

2
2 + κ33x

2
3 + 2κ12x1x2 + 2κ13x1x3 + 2κ23x2x3)/2

Suppose X1 ⊥⊥ X2|X3 ⇔ f(x1, x2, x3) = g(x1, x3)h(x2, x3) =C×

e−(κ11x
2
1 + κ22x

2
2 + κ33x

2
3 + 2κ12x1x2 + 2κ13x1x3 + 2κ23x2x3)/2

Obligatorily 2κ12x1x2 = 0 ⇔ κ12 = 0 .
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Prop.4. Let X be a Gaussian vector in Rd. Denote

V = {1, . . . , d} the index set. Let l,m ∈ V and l 6= m.

Then the marginals Xl, Xm are conditionally inde-

pendent w.r. to all the other variables XV \{l,m}

Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ κlm = 0

i.e. the lm-term of the precision matrix is equal 0.

Proof. The normal density f(x) is a product of e−κijxixj

and e−κiix
2
i /2. By Factorization Property in Prop. 3,

Xl ⊥ Xm |XV \{l,m} if and only if no ”mixed” factor

e−κlmxlxm appears (we apply ln and use the fact that

xlxm 6= a(xl) + b(xm), clear by taking xl = 0 and next

xm = 0). MAKE SURE YOU CAN PROVE IT! �
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3. GAUSSIAN GRAPHICAL MODELS

Let V = {1, . . . , n} and let G = (V,E) be an undirected

graph. Let S(G) = {Z ∈ Sym(n×n)| i 6∼ j ⇒ Zij = 0},
the space of symmetric matrices with obligatory zero

terms Zij = 0 for i 6∼ j.

Definition. The GAUSSIAN GRAPHICAL MODEL

governed by the graph G is the set of all random

Gaussian vectors X = (Xv)v∈V ∼ N(ξ,Σ), with preci-

sion matrix K = Σ−1 ∈ S(G).

By Prop. 4, the GAUSSIAN GRAPHICAL MODEL

governed by the graph G means the constraint of

conditional independence Xl ⊥⊥ Xm |XV \{l,m} for all

graph nodes l 6∼ m non-connected by an edge of G.
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Example 1. Let G :
1• − 2• − · · · − n• be the graph corre-

sponding to the Gaussian graphical model of nearest
neighbour interaction in a Gaussian character. The
graph G is called An.

In the Gaussian character (X1, X2, . . . , Xn), non-neighbours
Xi, Xj, |i− j| > 1 are conditionally independent with
respect to other variables. Only neighbours interact.
K ∈ S(G) is equivalent to K ∈ Sym+(n×n) tridiagonal.

Example 2. The complete graph G (i.e. G contain-
ing all possible edges) defines Gaussian graphical model
containing all Gaussian vectors supported by Rn, with
no constraint. Such model is called saturated.

Example 3. The totally disconnected graph G has
no edges. What is the corresponding Gaussian graphi-
cal model?
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MORE on CONDITIONAL LAWS IN GAUSSIAN

CASE

Let X be a Gaussian N(ξ,Σ) vector in Rd.

Partition X =

(
X1
X2

)
into X1 ∈ Rr and X2 ∈ Rs, with

r + s = d, and, similarly, ξ =

(
ξ1
ξ2

)
.

Partition mean vector, covariance and precision matrix

accordingly in bloc

(
r × r r × s
s× r s× s

)
matrices as

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, K =

(
K11 K12
K21 K22

)

with Σ21 = ΣT
12 and K21 = KT

12. Suppose Σ invertible.
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Prop.5. The conditional law X1| X2 = x2 ∼ Nr(ξ1|2,Σ1|2)
where

ξ1|2 = ξ1+Σ12Σ−1
22 (x2−ξ2) and Σ1|2 = K−1

11 = Σ11−Σ12Σ−1
22 Σ21.

Prop. 5 implies
Cor.6 (i) The precision matrix of X1|X2 equals K11.

(ii) Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ κlm = 0

(iii) X1 and X2 are independent if and only if

the bloc Σ12 = 0 if and only if the bloc K12 = 0.

Exercise 7. Prove Corollary 6.

We will use the symbol ∝ ”is proportional to”,
e.g. if φ is the N(0,1) density, then φ(x) ∝ e−x2/2.
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Proof of Prop.5.

Note that the bloc multiplication gives the real number

(x− ξ)TK(x− ξ) = (x1 − ξ1)TK11(x1 − ξ1) +

2(x1 − ξ1)TK12(x2 − ξ2) + (x2 − ξ2)TK22(x2 − ξ2).

In the following, we point out the argument x1 of the

density fX1|X2
and we push x2 to the constant factor:

fX1|X2
(x1|x2) ∝ fN(ξ,Σ)(x1, x2) ∝

exp{−(x1−ξ1)TK11(x1−ξ1)/2−(x1−ξ1)TK12(x2−ξ2)} ∝
exp{xT1 [K11ξ1 −K12(x2 − ξ2)]− xT1K11x1/2} =

exp{xT1K11[ξ1 −K−1
11 K12(x2 − ξ2)]− xT1K11x1/2} ∝

exp{−(x1 −m)TK11(x1 −m)/2}
with m = ξ1 −K−1

11 K12(x2 − ξ2). Next we use formulas

K−1
11 = Σ11−Σ12Σ−1

22 Σ21 and K−1
11 K12 = −Σ12Σ−1

22 fol-

lowing from the Lemma. �
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Lemma 7. Let the invertible matrix Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then

K = Σ−1 =

(
(Σ11 −Σ12Σ−1

22 Σ21)−1 S

ST (Σ22 −Σ21Σ−1
11 Σ12)−1

)
where S = −Σ−1

11 Σ12(Σ22 −Σ21Σ−1
11 Σ12)−1 =

− (Σ11 −Σ12Σ−1
22 Σ21)−1Σ12Σ−1

22 .

Proof. One has the decomposition (easy to check) Σ =(
Ir 0

Σ21Σ−1
11 Is

)(
Σ11 0

0 Σ22 −Σ21Σ−1
11 Σ12

)(
Ir Σ−1

11 Σ12
0 Is

)
.

Use this and

(
I A
0 I

)−1

=

(
I −A
0 I

)
to express Σ−1 as a

product of 3 matrices. From this, get K22 and S. By
symmetry of indices 1 and 2, get K11. DO IT YOUR-
SELF! �
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Precision matrix K = Σ−1 of a Gaussian vector

contains:

• conditional precision matrices (KX1|X2
= K11)

• information on conditional independence:

Xl ⊥⊥ Xm |XV \{l,m} ⇐⇒ κlm = 0 (l 6= m)
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• In practice, we use conditional correlation (l 6= m)

ρlm|V \{l,m} =
Cov(Xl,Xm|XV \{l,m})

V ar(Xl|XV \{l,m})
1
2V ar(Xm|XV \{l,m})

1
2

= −κ̃lm

where κ̃lm
df
= κlm√

κll
√
κmm

is an element of the so-called

scaled precision matrix K̃.
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The formula ρlm|V \{l,m} = −κ̃lm is justified by:

Klm|V \{l,m} =

(
κll κlm
κlm κmm

)

Σlm|V \{l,m} = K−1
lm|V \{l,m} = 1

k

(
κmm −κlm
−κlm κll

)
,

where k = detKlm|V \{l,m}.

END THE PROOF YOURSELF
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If ρlm|V \{l,m} = −κ̃lm ≈ 0 ⇒

we naturally conjecture that

Xl ⊥⊥ Xm |XV \{l,m}

To be serious:

we should prove it

we should test it statistically
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Exercise 8. Let X ∼ N3(0,Σ) with covariance matrix

Σ =

1 1 1
1 2 1
1 1 2

 .
0. Are there Xi independent?

1. Find the precision matrix K. Are there Xi condi-

tionally independent? Draw the dependence graph.

2. Find the marginal law of (X1, X2).

3. Find the conditional law of (X1, X2)|X3 = x3.

4. Compute the scaled precision matrix K̃.

5. Find the conditional correlations

ρX1,X2|X3=x, ρX1,X3|X2=x and ρX2,X3|X1=x.
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Example. Marks of 88 students in 5 exams: N5(ξ,Σ)
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Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Definition
Examples

Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentrations (on or above diagonal) and
partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics
Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Definition
Examples

Graphical model for mathmarks

Mechanics

Vectors

Algebra

Analysis

Statistics

��
��
��

PPPPPP ��
��

��

PPPPPPc
c

c
c
c

This analysis is from Whittaker (1990).
We have An, Stats⊥⊥Mech,Vec |Alg.

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Gaussian Graphical Models

Steffen Lauritzen
University of Oxford

CIMPA Summerschool, Hammamet 2011, Tunisia

September 8, 2011

Steffen Lauritzen University of Oxford Gaussian Graphical Models


