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1. INTRODUCTION.
Simpson paradox

A university has 48 000 students
Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail
Feminist organizations threaten to close the university,
girl students want to lynch the president!

However, the president of the university proves that the
results R of the exams are conditionally independent
of the sex S of a student, knowing the department
D (notation R 1L S|D)



3 departments

A (literature, history, languages),
B(law),

C(sciences)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail
Girls 3 O 4 4 3 1
Boys 1 3 4 4 9 3

Actually |R 1L S |D =d|for d =A,B,C

The notion of the conditional independence
IS necessary to understand the Simpson paradox.
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Graphical coding of conditional independence
Let G be a graph with vertices v;. If 2 vertices v;,v; are
connected by an (undirected) edge, we write [v; ~ v;].

R1 S|D: R4S no edge between R and S

Results depend on Department (knowing Sex): R~ D
S depends on D (knowing Results): S~ D

R~ 9

Remark. D separates R from S
(any path from R to S goes through D. Direct route
from R to S impossible.)



GRAPHICAL MODELS IN STATISTICS

Consider an undirected graph G = (V, E) where:
e the set of nodes V ={1,...,n}
e the set of edges E C {F C V| card(F) = 2}

Any set {i,j} € E will be called an edge. If {i,j} € F,
we write
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Consider a system of random variables Xq,...,X; on
the same probability space (2,7, P).

The information on conditional independence between
the X;'s is schematized by an undirected graph
G = (V, E) such that

The graph G is called the dependence graph of the
system of random variables X1,..., X.



Exercise 1. Alabama murderers. During 10 years, there were
4863 murders in Alabama. 2606 murderers were black, 60 were
sentenced to death, others to prison. All the other 2257 murderers
were white, 52 were sentenced to death, others to prison.
Question 1. Does the proportion of death sentences depend on
the race? Are Alabama judges racist?

When the murdered victim was black, 2320 murderers were black,
12 were sentenced to death. 111 murderers were white, none was
sentenced to death.

When the murdered victim was white, 286 murderers were black,
48 were sentenced to death. 2146 murderers were white, 52 were
sentenced to death.

Question 2. Knowing the victim race, does the proportion of
death sentences depend on the race? Are Alabama judges racist?
Draw the dependence graph.






2. CONDITIONAL INDEPENDENCE.

In the preceding examples, we used intuitively the no-
tion of CONDITIONAL INDEPENDENCE.

We will present it rigourously in this chapter.



Revisions on independence of r.v. XY

(notation X_1Y)
Def. X1Y if VA,B € B

P(XeAYeB)=P(XeAP(Y € B)

Equivalently, [£(X,Y) =L(X)® L(Y)|. In case with

density, | fx y(z,y) = fx (@) fy(y)|

Prop.1l. In case with density, X, Y are independent

Iff the joint density factorizes

fxy(z,y) = glx)h(y).

Proof. Exercise 2.

Equivalent def. of independence: X,Y independent if

LX|Y)=L(X)| i.e. VA, B € B,
P(XeA|YeB)=

with P(Y € B) > 0,
P(X € A)

Exercise 3. Prove the equivalence of 2 definitions of

independence.
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Independence in a normal (Gaussian) vector:
zeros in the covariance matrix >

Let X = (Xq,...,X4) be a normal(Gaussian) vector on
R%, with law N(¢, ).

Exercise 4. Let 1 # 5.
1. What is the marginal law of (X;, X;)7
2. Show that XiJ_Xj = Zij = 0.

Covariance matrix > of a Gaussian vector contains:
e Marginal covariances

e iInformation on independence: | X;1X; < 2,;,;=0

~0 = X;1X;.
V2iiy 2

e iN practice, correlation Pij =
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Remark. In statistics, the discrete case (X (2) finite or
countable) may be also considered with density

fx(@) =P(X ==z)

w.r. to the counting measure v = Z Op.
reX ()
Law of X is ux = >  P(X =z)ds.
reX ()

Functions on discrete prob. spaces are continuous.

So in the sequel we will write densities. The discrete
case is included.
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Conditional Independence of random variables.

Def. Conditional density

fuv(u,v)
fr(w)

The marginal density is supposed strictly positive:

fr(v) = /fU,V(uaU)du >0

fovwlv) = fuy=.(u) =

Prop.2. The conditional density is a probability
density.

fr(v)
fr(w) '

Proof. /fU|V(u|'U)du=

13



Exercise 5. Let (X,Y) ~ N(0,X) with X = (

Compute the conditional density fx|y—,-

Determine the conditional law X|Y = y.

2 1
1 1
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Definition.

Let X,Y,Z be three random variables on a proba-
bility space (2,7, P).

X and Y are conditionally independent given ~Z if
LX|Y,Z)=L(X]| Z)|

A possible interpretation: Knowing Z renders Y
irrelevant for predicting X.

Notation: X 1l Y |Z.
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(1) In case with density, | X Il Y |Z < fxyv,z = x|z
that is, Vz,vy, 2z

fX,Y,Z(m7y7Z) L fX,Z(CUaZ) .
Ixioa=wao) =00 T T e xe=)

(2) X LY |Z iff |[L(X,Y| 2) = L(X| Z2) @ L(Y| Z)

Le. |fxyiz = Ixizlv|z |
(consequence of (1); CHECK IT!)

Prop.3. Factorization Property.

X1y ‘Z IfF fX,Y,Z(wayaz) — g(az,z)h(y,z)
Proof. EXxercise 6.
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Conditional Independence in a Gaussian vector:
zeros in the precision matrix K = > 1

Let X = (X1,...,X ) be a Gaussian vector on R?, with
law N (&,X) and invertible X,

The matrix K = X1 is called the precision(concentration)
matrix of X.
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This is the precision matrix K = (k;;j); j<q that appears
T
in the density f(z) = (2r)~42(det K)1/2¢—(z = &) K(z —£)/2

Example.
X ~N(0,%) indim 3. K = (k) j<3= X1

det K)1/2
f(x1,20,23) = ((e%):»,)/z X

2 > 2
o— (k1121 + k2275 + k3375 + 2K127172 + 2K137173 + 2K237273) /2

Suppose| X1 1L Xo|X3| & f(z1,22,23) = g(21,23)h(x2,23) =CX
o— (k1127 + K2ow3 + k3373 + 2K102120 + 2K132173 + 2K03T213) /2

Obligatorily 2k12x120o =0 & |k1p = 0.
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Prop.4. Let X be a Gaussian vector iIn R?, Denote
V ={1,...,d} the index set. Let I[;m € V and [ = m.

Then the marginals X;, X,, are conditionally inde-
pendent w.r. to all the other variables Xy ¢ 1

Xl 1 Xm |XV\{l,m} <~ Rlm = 0

I.e. the Im-term of the precision matrix is equal O.

Proof. The normal density f(z) is a product of e~ ®is%i?J
and e_"iixf/Q. By Factorization Property in Prop. 3,

X; L Xm | Xy\ymy if and only if no "mixed” factor
e FMimTi¥m gppears (we apply In and use the fact that
xjxm 7= a(x;) + b(xm), clear by taking x; = 0 and next
xm = 0). MAKE SURE YOU CAN PROVE IT! []
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3. GAUSSIAN GRAPHICAL MODELS

Let V ={1,...,n} and let G = (V, E) be an undirected
graph. Let S(G) ={Z € Sym(nxn)| it j = Z;; =0},
the space of symmetric matrices with obligatory zero
terms Z;; = 0 for i £ j.

Definition. The GAUSSIAN GRAPHICAL MODEL
governed by the graph G is the set of all random
Gaussian vectors X = (Xy),ey ~ N(&,X), with preci-
sion matrix K = X~1 € S(G).

By Prop. 4, the GAUSSIAN GRAPHICAL MODEL
governed by the graph ¢ means the constraint of
conditional independence X; 1L X |Xy~ g,y for all
graph nodes [ 4 m non-connected by an edge of G.
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Example 1. Let G: l— % _ ... _ e be the graph corre-

sponding to the Gaussian graphical model of nearest
neighbour interaction in a Gaussian character. The
graph G is called A,,.

In the Gaussian character (X1, Xo, ..., X,), non-neighbours
X, Xj, |t —j| > 1 are conditionally independent with
respect to other variables. Only neighbours interact.

K € S(G) is equivalent to K € Sym™T (nxn) tridiagonal.

Example 2. The complete graph G (i.e. G contain-
ing all possible edges) defines Gaussian graphical model
containing all Gaussian vectors supported by R"™, with
no constraint. Such model is called saturated.

Example 3. The totally disconnected graph G has
no edges. What is the corresponding Gaussian graphi-
cal model?
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MORE on CONDITIONAL LAWS IN GAUSSIAN
CASE

Let X be a Gaussian N(&,X) vector in RY.

Partition X = <§1> into X7 € R" and X, € R%, with
2

r+ s =d, and, similarly, £ = (2)

Partition mean vector, covariance and precision matrix
T XTr rXs
SXTr 8§$XS

s — (=11 212\ g (E11 Ko
201 222/ K1 Koo

accordingly in bloc ( ) matrices as

with 57 = =1, and K1 = K{,. Suppose ¥ invertible.
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Prop.5. The conditional law X | X5 = x5 ~ Nr(§1|2, Z1|2)
where

§1)0 = €1+2122521($2—€2) and 2,5 = K1_11 = Z11—2122521221-

Prop. 5 implies
Cor.6 (i) The precision matrix of X1|X» equals K.

(ii) Xl Al Xm |XV\{l,m} < Rlm — 0

(iii) X7 and X, are independent if and only if
the bloc 21, =0 if and only if the bloc Ki5, = 0.

EXxercise 7. Prove Corollary 6.
We will use the symbol o« "is proportional to"”,

e.g. if ¢ is the N(0,1) density, then ¢(z) o e~ /2.
24



Proof of Prop.5.

Note that the bloc multiplication gives the real number
(2 —O)TK(@—¢) = (z1 — &) Ky1(21 — &) +

2(z1 — &) Kio(wo — €2) 4 (w2 — &) Koo (xp — £2).

In the following, we point out the argument zq1 of the
density fx,|x, and we push z5 to the constant factor:
Fxy1xs(@1lz2) o< fye sy (@1, T2) o

exp{—(z1—£1)T K11(21-¢1)/2—(z1—£1) T K12(20—£2)}
exp{z{ [K11&1 — K12(z2 — £2)] — 21 K1121/2} =

exp{z] K11[¢1 — K{{ K12(w2 — €)] — 2] K1121/2}
exp{—(z1 — m)T K11(z1 — m)/2}

with m = &1 — Kl_llK]_Q(CEQ — &5). Next we use formulas
Kl_ll = 211—2122521221 and K1_11K12 = —2122521 fol-
lowing from the Lemma. []
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Lemma 7. Let the invertible matrix = (le ZlQ).

201 222
Then
—3y-1_ <(211 — Y105 555 01) 7! S . )
st (o0 —Z01571%10)7 8

where S = —ZIlllzlz(ZQQ — 22112;11212)—1 =
— (Z11 — T12555%501) 110355

Proof. One has the decomposition (easy to check) > =

I 0\ [Z11 0 Iy Zﬁlzlz
551577 Is)\ 0 oo — 351571515/ \0 I, '
-1
: I A I —A
Use this and (O I> = (O 7
product of 3 matrices. From this, get Koo and S. By
symmetry of indices 1 and 2, get K17. DO IT YOUR-

SELF! [

) to express ¥~ 1 as a
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Precision matrix K = >-! of a Gaussian vector
contains:

e conditional precision matrices (Kyx | x, = K11)

e iINformation on conditional independence:
X AL Xm |XV\{l,m} — Ky =0 (I #m)
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e In practice, we use conditional correlation (I = m)

Cov( Xy, Xm| X\ {1,m1) ~

— —Rlm

Plm|V\{l,m} = 1 1
Var(X| Xy q1,m1) 2V ar(Xm| Xyn (1,m}) 2

~ df -
where k;,, = W_;\l/”m IS an element of the so-called

scaled precision matrix K.
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The formula | py,, v\ {1,m} = —FKim | 1S Justified Dy:

Kim|v\{t;m} = (R” le>

K/lm /fmm

1 1 Fmm —Klm
ZimV\{tm} = Bimjy\gimy = & (—f«:zm Kl )
where k = det Kim|v\{1,m}-

END THE PROOF YOURSELF
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T prmv\{t;m} = —Kim = 0 =

we naturally conjecture that

Xy AL Xom | Xy {1,m)

To be serious:
we should prove it

we should test it statistically
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Exercise 8. Let X ~ N3(0,X) with covariance matrix

1 11
> =11 2 1
1 1 2

0. Are there X, independent?

1. Find the precision matrix K. Are there X; condi-
tionally independent? Draw the dependence graph.

2. Find the marginal law of (X7, X5).

3. Find the conditional law of (X1, X»)|X3 = z3.

4. Compute the scaled precision matrix K.

5. Find the conditional correlations

PX1,Xo| X3=21 PX1,X3|Xo=2 ANd PX, X3|X =2
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Example. Marks of 88 students in 5 exams: Ng(§,X)

Kent and Bibby (1979). [ WHITTAKER]

Table 1.1.1: Marks in five mathematics exams for 88 students. From Mardia,

T

me ve al an st | me ve al an st | me ve al an st
77 82 67 67 81| 30 69 50 52 45 62 44 36 22 42
63 78 80 70 81| 46 49 53 59 37| 48 38 41 44 33
75 73 71 66 81} 40 27 54 61 61 34 42 50 47 29
55 72 63 70 68| 31 42 48 54 68| 18 51 40 b6 30
63 63 65 70 63| 36 59 51 45 514 35 36 46 48 29
53 61 72 64 73| 56 40 56 b54 35| 59 B3 37 22 19
51 67 65 65 684 46 656 57 49 32| 41 41 43 30 33
50 70 68 62 HG| 45 42 b5 56 40| 31 B2 37T 27 40
62 60 58 62 70| 42 60 H54 49 33 17 H1 52 35 41
64 72 60 62 45| 40 63 53 54 25| 34 30 50 47 35
52 64 60 63 54| 23 55 59 HI 44| 46 40 47 29 17
5 67 b9 62 44| 48 48 49 bH1 37| 10 46 36 47 39
50 B0 64 55 63| 41 63 49 46 34| 46 37 45 15 30
65 63 58 56 371 46 52 53- 41 40| 30 34 43 46 18
31 B5 60 57 T3] 46 61 46 38 41 13 51 50 25 31
60 64 56 b4 40) 40 57 5T 52 31| 49 B0 I8 23 9
44 69 53 53 53| 49 49 45 48 39| 18 32 31 45 40
42 69 61 55 45{ 22 58 B3 56 41 8 42 48 26 40
62 46 61 57 451 35 60 47 b4 33| 23 38 36 48 16
31 49 62 63 62 48 b6 49 42 32| 30 24 43 33 %
44 61 B2 62 46 31 57 H0 B4 ¥ 3 9 51 47 40
49 41 61 49 64 ] 17 B3 BT 43 51 7 51 43 17 22
12 58 61 63 67! 49 &7 47 39 26 ) 15 40 43 23 18
4¢ 53 49 62 47 59 HO 47 15 46 15 38 39 28 17
54 49 56 47 63| 37 bH6 49 28 45 5 30 44 36 18
54 53 46 b59 44| 40 43 48 21 61| 12 3¢ 32 35 21
44 56 b5 61 38| 35 35 41 51 B 5 .26 15 20 20
18 44 50 57 81 38 44 564 47 M 0 40 21 9 14
46 52 65 50 351 43 43 38 34 49
32 45 49 57 64| 39 46 46 32 43
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Definition
Examples

Gaussian graphical models

Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentrations (on or above diagonal) and
partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis  Statistics

Mechanics 5.24 —2.44 —2.74 0.01 —0.14
Vectors 0.33 10.43 —4.71 —0.79 —0.17
Algebra 0.23 0.28 26.95 —7.05 —4.70
Analysis —0.00 0.08 0.43 0.88 —2.02
Statistics 0.02 0.02 0.36 0.25 6.45

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Definition
Examples

Gaussian graphical models

Graphical model for mathmarks

Vectors Analysis

Algebra

Mechanics Statistics

This analysis is from Whittaker (1990).
We have An, Stats 1l Mech,Vec | Alg.

Steffen Lauritzen University of Oxford Gaussian Graphical Models
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