GRAPHICAL MODELS 2020 - GAUSSIAN VECTORS: BASICS

CASE OF DIMENSION 1. $X \sim \mathcal{N}\left(m, \sigma^{2}\right) ; \quad$ parameters $m \in \mathbb{R}, \sigma^{2}>0$,
Density with respect to the Lebesgue measure

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}, \quad m \in \mathbb{R}, \sigma^{2}>0
$$

Characteristic function for $m \in \mathbb{R}, \sigma^{2} \geq 0$ (we include $\delta_{m}=\mathcal{N}(m, 0)$)

$$
\phi_{X}(t)=\mathbb{E} e^{i t X}=e^{i t m-\frac{1}{2} t^{2} \sigma^{2}}, \quad t \in \mathbb{R}
$$

CASE OF DIMENSION n.
Definition. Let $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathcal{R}^{n}$ and $C=\left(c_{k l}\right)$ real symmetric non-negative definite $n \times n$ matrix (with eigenvalues $d_{k} \geq 0$). A random vector $X={ }^{t}\left(X_{1}, \ldots, X_{n}\right)$ is called Gaussian, $X \sim \mathcal{N}(m, C)$ if it has the characteristic function

$$
\phi_{X}(t)=\mathbb{E} e^{i\langle t, X\rangle}=e^{i\langle t, m\rangle-(1 / 2)\langle C t, t\rangle} .
$$

Definition of Gaussian density. Let K be a real symmetric positive definite $n \times n$ matrix (with eigenvalues $d_{k}>0$).

The Gaussian density is defined by

$$
f_{m, K}(x)=\frac{|K|^{1 / 2}}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}\langle K(x-m), x-m\rangle\right\}, \quad x \in \mathcal{R}^{n},
$$

où $|K|=\operatorname{det} K$.
Properties of Gaussian vectors. 1. The function $f_{m, K}$ is a probability density.
Let X be a random vector with density $f_{m, K}$. The characteristic function of X is

$$
\phi_{X}(t)=e^{i\langle t, m\rangle-\frac{1}{2}\langle C t, t\rangle}, \quad C=K^{-1}
$$

2. (degenerate Gaussian vectors) When C is not inversible, the law $\mathcal{N}(m, C)$ exists. It is called degenerate Gaussian.
3. Let $Y \sim \mathcal{N}(0, I d)$ the standard Gaussian vector and C real symmetric non-negative definite $n \times n$ matrix (with eigenvalues $d_{k} \geq 0$). Let $C^{1 / 2}$ the square root matrix of C (if the diagonalization of C is $C=U D^{t} U$ then $C^{1 / 2}=U D^{1 / 2} t$.

Then $X=C^{1 / 2} Y \sim \mathcal{N}(0, C)$. In particular, if C has some zero eigenvalues, X is concentrated on the subspace $\operatorname{Image}\left(C^{1 / 2}\right) \neq \mathbb{R}^{n}$ and X has not a density.

Let $m \in \mathbb{R}^{n}$. Then $Z=m+C^{1 / 2} Y \sim \mathcal{N}(m, C)$. if C has some zero eigenvalues, Z is concentrated on the set $m+\operatorname{Image}\left(C^{1 / 2}\right) \neq \mathbb{R}^{n}$ and Z has not a density.
4. Let $Z \sim \mathcal{N}(m, C)$. Then $\mathbb{E} Z=m$ and $\operatorname{Cov} Z=C$.
5. Components X_{k}, X_{l} of a Gaussian vector X are non-correlated if and only if X_{k}, X_{l} are independent (it is false without hypothesis of a Gaussian vector!)
6. A random vector $X={ }^{t}\left(X_{1}, \ldots, X_{n}\right)$ is Gaussian if and only if for all vectors $v=$ ${ }^{t}\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{R}^{n}$ the linear combination $\langle X, v\rangle=v_{1} X_{1}+\cdots+v_{n} X_{n}$ is a Gaussian random variable.
7. Marginal variables X_{k} of a Gaussian vector X are Gaussian and $X_{k} \sim \mathcal{N}\left(m_{k}, c_{k k}\right)$.

Let $I \subset\{1, \ldots, n\}$. Marginal subvectors X_{I} of a Gaussian vector X are Gaussian and $X_{I} \sim \mathcal{N}\left(m_{I}, C_{I}\right)$.

GRAPHICAL MODELS 2020 - GAUSSIAN VECTORS: EXERCISES

1. The characteristic function $\phi_{(X, Y)}$ of a random vector ${ }^{t}(X, Y)$ equals for $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$
(a) $\varphi_{(X, Y)}\left(t_{1}, t_{2}\right)=e^{-\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right)}$
(b) $\varphi_{(X, Y)}\left(t_{1}, t_{2}\right)=e^{-\frac{1}{2} t_{1}^{2}}$
(c) $\phi_{(X, Y)}\left(t_{1}, t_{2}\right)=e^{-\frac{1}{2}\left(t_{1}^{2}+2 t_{1} t_{2}+t_{2}^{2}\right)}$
(d) $\phi_{(X, Y)}\left(t_{1}, t_{2}\right)=e^{-\frac{1}{2}\left(t_{1}^{2}-2 t_{1} t_{2}+t_{2}^{2}\right)}$

Determine the law of the vector ${ }^{t}(X, Y)$ and $\operatorname{Cov}(X, Y)$.
2. Let X a Gaussian random vector with density of the form

$$
f(x)=c \exp \left\{-\frac{1}{2}\langle K x, x\rangle\right\}, \quad x \in \mathbb{R}^{n}
$$

for
(a) $K=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right), \quad n=2$
(b) $K=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3\end{array}\right), \quad n=3$.

1. Determine c.
2. Find $\operatorname{Cov} X$.
3. Are there independent components of X ?

Does existance of 0 in K implies that there are independent components of X ?
3. Let X and Y with law $\mathcal{N}(0,1)$ and independent. Show that $X+Y$ et $X-Y$ are independent and give their laws.
4. Let $U={ }^{t}(X, Y, Z)$ a random vector in $\left(\mathbb{R}^{3}, \mathcal{B}\left(\mathbb{R}^{3}\right)\right)$ with density

$$
f_{U}(x, y, z)=\frac{1}{(\sqrt{2 \pi})^{3}} \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}+2 z^{2}+2 y z\right)\right) .
$$

(a) Show that U is a Gaussian vector.
(b) Give $\operatorname{Cov} U$, the covariance matrix.
(c) Are variables X, Y, Z independent? Some of them are pairwise independent?
(d) Consider $V={ }^{t}(X, Y)$.
i. Give $\operatorname{Cov} V$.
ii. Give the law of V.

