
University of Wrocław

Faculty of Mathematics

and Computer Science

Mathematical Institute

speciality: actuarial and financial
mathematics

Uniwersytet Wrocławski

Wydział Matematyki

i Informatyki

Instytut Matematyczny

specjalność: matematyka
aktuarialno-finansowa

Natalia Jeszka

Gromov-Hausdorff on a circle
Gromov-Hausdorff na okręgu

Master’s thesis
written under the supervision of

dr Piotr Dyszewski

Praca magisterska
napisana pod kierunkiem
dr. Piotra Dyszewskiego



1 Introduction

The complexity of some random structures, especially the most general ones, may
effectively prevent a deeper understanding of certain characteristics of considered object.
Even though this difficulty might be partially overcome e.g. by introducing a second level
of randomness (like a stochastic process), we are going to realize that the most reliable
way to the complete comprehension of the analysed structure is the simplification.

In our case the mentioned random but simplified structure will be a graph with fixed
outline, namely a cycle, so the randomness will not come from uncertain neighbourhoods of
vertices but from the random distances between any two neighbours. Thinking of random
distances, it naturally comes up by itself to consider random metric spaces which the graph
might be perfectly well. The machinery provided a.o. by Burago, Burago and Ivanov in [2]
allows then to, having already a sequence of such random metric spaces, formulate a limit
theorem which introduces a fine approximation of the graphs.

Our main goal will be proving exactly such a theorem, and we are going to achieve it in
a couple of varying cases, depending on the considered random metric. One might suspect
that with number of vertices growing larger and larger (and with proper scaling of the
distances between the vertices), a cycle graph is going to have a shape of a circle. Indeed,
it will appear so – but only under assumption that distance between any two vertices won’t
be significantly larger than the distance between any other two. What will giving up on
this assumption change? These notably large distances which will become allowed are
going to produce random “gaps” in the circle so the limit object will be a random sum of
arcs. This structure we may imagine as
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1.1 The model under study

Let us reckon a sequence of i.i.d. random variables (Yi)i∈[n] such that Yi > 0 and
where, as usually, [n] = {1,2, . . . , n}. (For now we don’t make further assumptions on the
distribution of Yi, as we would like to consider various cases in the future.)

We assign Yi as weights to the edges of a cyclic graph on n vertices such that edge
(k, k+1) has weight Yk for k = 1, . . . , n−1, and edge (n,1) has weight Yn. To this weighted
graph we will refer to as Cn. It will be treated as a metric space and when we do not define
the metric explicitly we understand that it is given by weights Yi, to be precise: by the
formula

dCn(1, k + 1) =min(
k

∑
i=1
Yi,

n

∑
i=k+1

Yi)

which in a moment is going to become clearer. Some cases require normalization of these
weights and then the metric will be given.

1.2 First passage percolation

In the light of our further interests in the limit behaviour of Cn, the study of first passage
percolation on the graph might be considered a side comment. However, it provides much
deeper understanding of the structure of Cn as well as the natural metric on this graph.
Thanks to that, it may serve as an interesting introduction and become an ingathering of,
henceforward, very useful facts.

The percolation model is supposed to imitate the progressive exploration of the graph
in which the cost of traveling between the adjacent vertices is given by the weight of the
appropriate edge. The distance between any two vertices is then the minimal weight of a
path connecting them i.e.

d(i, j) = min
π∶i→j

∑
e∈π

Ye.

For now, we would like to consider only weights with EYi =m <∞. In the far future, after
this case is already well understood, we will give up on this assumption, letting m =∞.

The concept of moving on the cycle is now therefore quite simple as any two vertices
i, j are connected by exactly two paths (of lengths ∣i − j∣ and n − ∣i − j∣) so, in order to
formalize our fist observations, it seems convenient to denote the length of the path from
vertex 1 to k + 1 by

Sk =
k

∑
i=1
Yi

and the distance on Cn by

dCn(1, k + 1) =min(Sk, Sn − Sk).

Moreover, as the weights are i.i.d., it should be probable that the above value is obtained
for the shorter of the two possible paths. It indeed turns out to be so, which can be put
in the following
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Lemma 1.1. Let ϵ > 0 and m < ∞. For sequence {kn}n such that n(ϵ + 1
2) ⩽ kn ⩽ n for

every n, we have
P[Skn < S

′
n−kn]

0
Ð→ .

Above S′n−kn = ∑
n−kn
i=1 Y ′i for some Y ′i

d
= Yi.

Before proving the lemma let us note that it actually formalizes prior intuitions. First
of all, by the choice of kn, path corresponding with Skn is the longer one (in the sense of
having more elements). What is more, if Hn denotes the distance between vertex 1 and
another randomly chosen vertex of Cn, and Un has uniform distribution on [n], then

Hn
d
= SUn ∧ S

′
n−Un

.

That is due to the fact that P[Hn < t] = P[SUn < t ∨ Sn−Un < t] = P[SUn ∧ Sn−Un < t]. The
lemma claims that the probability of obtaining this minimum above for the sum consisting
of more elements, approaches 0 in the limit. Therefore it indeed convinces that the optimal
path on the cycle is given by the shorter arc.

Proof. For the proof we rearrange

P[Skn < S
′
n−kn] = P[

kn

∑
i=1
Yi −

n−kn
∑
i=1

Y ′i < 0] = P[
n−kn
∑
i=1

Yi − Y
′
i +

kn

∑
i=n−kn+1

Yi < 0].

Basing on the law of large numbers and the choice of kn, we would like to approximate

kn

∑
i=n−kn+1

Yi ≈ (2kn − n)m ⩾ 2ϵnm > 0

and
n−kn
∑
i=1

Y ′i − Yi = o(n)

because E[Y ′i − Yi] = 0. That would explain vanishing of the probability above:

P[Skn < S
′
n−kn] ≈ P[2ϵnm + 0 < 0] = 0.

To do this formally, let us split the considered event

{
n−kn
∑
i=1

Yi − Y
′
i +

kn

∑
i=n−kn+1

Yi < 0}

into a disjoint union to obtain three addends converging (by the law of large numbers) to
0 and addend:

P[
n−kn
∑
i=1

Yi − Y
′
i +

kn

∑
i=n−kn+1

Yi < 0, ∣
∑
n−kn
i=1 Yi − Y

′
i

n − kn
∣ < ϵ2, ∣

∑
kn
i=n−kn+1 Yi

2kn − n
−m∣ < ϵ2] ⩽

P[−ϵ2(n − kn) +m(2kn − n) − ϵ2(2kn − n) < 0] = P[m(2kn − n) < ϵ2kn] ⩽

P[2mnϵ < ϵ2n] = P[2m < ϵ].
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Because ϵ was arbitrary, so without loss of generality ϵ <m/2, it altogether assures that

P[
n−kn
∑
i=1

Yi − Y
′
i +

kn

∑
i=n−kn+1

Yi < 0]
n
Ð→ 0.

Now that we are certain which is the optimal path on the cycle and therefore – what
is the proper way of measuring distances, we would also like to ask what is usual distance
between two randomly chosen vertices (when n is getting large). It turns out that the
answer to that question is already within our reach and can be specified in the explicit
form of the limit distribution.

However, for the clarity, we will precede by proving a few simple proprieties of conver-
gence in probability and distribution which may already be familiar from the probability
theory courses. The first of those lemmas assures that if a sequence of random variables
converges almost surely, we may only look on some random (but diverging to +∞ in prob-
ability) indices and observe the same limit.

Lemma 1.2. Let Zn, An and A be random variables such that Zn
P
Ð→∞ and An

a.s.
ÐÐ→ A as

n→∞. In such case
AZn

P
Ð→ A.

Proof. Let us fix δ,M > 0, and as often while dealing with convergence in probability, split

P[∣AZn −A∣ > δ] = P[∣AZn −A∣ > δ,Zn ⩾M] + P[∣AZn −A∣ > δ,Zn <M].

We assumed that P[Zn ⩾M]
1
Ð→ with n→∞ and therefore

P[∣AZn −A∣ > δ,Zn <M]
0
Ð→ .

As for the first component of the sum, from the definition of the almost sure convergence

1 = P[∃M > 0 ∀n >M ∣An −A∣ < δ] = lim
M→∞

P[∀n >M ∣An −A∣ < δ],

where last equality holds by the continuity of measure as the sequence of events

{{∀n >M ∣An −A∣ < δ}}M∈N

is ascending. Meanwhile

0
M→∞
←Ð P[∃n >M ∣An −A∣ > δ] ⩾ P[∣AZn −A∣ > δ,Zn ⩾M],

and the claim follows.

The lemma above is needed as the justification of the following expansion of the law of
large numbers.
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Corollary 1.3. For Sn, Un and m = EYi defined previously we have

SUn

Un

P
Ð→m.

Proof. Clearly Un
P
Ð→ ∞, and from the strong law of large numbers Sn

n

a.s.
ÐÐ→ m. Applying

Lemma 1.2 secures the claim.

Next step leading to the understanding of the mean distance between random vertices
in the cycle is another simple exercise saying that if we uniformly choose one integer from
the interval of length n and divide by this length, in fact we choose one of the equidistant
points in the interval (0,1]. Increasing n refines the partition, so for n large we actually
pick a point from (0,1).

Proposition 1.4. For the random variable Un

n the limit distribution is uniform on (0,1).

Proof. For the justification, it’s enough to compute the limit of the distribution function:

P[
Un
n
≤ t] = P[Un ≤ nt] =

⌊nt⌋

n

n
Ð→ t = P[U ≤ t].

We are now approaching, already announced, main statement of this section which
describes the limit law of the mean distance between two points on the cycle. Of course,
it confirms all the presumptions suggesting that, having one vertex fixed, it’s enough to
choose the second one uniformly and measure the shorter arc.

Theorem 1.5. Let V ∼ U(0,1) and m <∞. Then

Hn

n
⇒ (V ∧ (1 − V ))m.

Proof. The convergence above follows easily from our initial analysis of the Cn properties.
An elegant way of concluding it uses the continuous mapping theorem.

To that end, let us first notice that the function f(x, y, z) = (xy)∧ (z(1−x)) is clearly
continuous as the composition of continuous functions. Further on, observe that considered
random variable is of the form

Hn

n

d
= (

SUn

Un
⋅
Un
n
) ∧ (

Sn−Un

n −Un
⋅
n −Un
n
) .

Now, as n−Un ∼ U[n−1], Lemma 1.2 gives the convergence Sn−Un

n−Un

P
Ð→m while the Corollary

1.3 provides SUn

Un

P
Ð→m. In the Proposition 1.4 we just noticed that Un

n ⇒ V. To arrive at the
conclusion, it is enough to combine the above observations and apply continuous mapping
theorem:

(
SUn

Un
⋅
Un
n
) ∧ (

Sn−Un

n −Un
⋅
n −Un
n
)⇒ (mV ) ∧ (m(1 − V )) .
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2 Gromov-Hausdorff distance and other technicalities

Having already introduced the space, a graph on n vertices, whose limit we’ll be looking
for while n will be getting larger, we are still in need of the language which allows us to
speak about the limit of metric spaces at all. It means that we would like to be able to
measure distances between metric spaces and, as a consequence, say that two metric spaces
are “close” (or “far”) form each other.

As it turns out, the concept of Hausdorff and Gromov-Hausdorff distance is going to be
very useful here. We shall now, following [2], introduce both definitions and restate some
of the facts and properties applicable for us in the future.

Wherever W , X, Xn or Z will be appearing below, they always denote arbitrary metric
spaces with metrics dW , dX , dXn and dZ respectively.

Definition 2.1. Suppose W and X are both subspaces of Z. We define the Hausdorff
distance between W and X via

dH(W,X) = inf{r > 0 ∶X ⊆ Ur(W ), W ⊆ Ur(X)},

where Ur(S) denotes the r-neighbourhood of the set S i.e. Ur(S) = {x ∶ dZ(x,S) < r}.

We may actually think of the Hausdorff distance as of the longest distance from some
point of W to any point of X (in the sense of metric on Z) and the other way around, i.e.

dH(W,X) =max{sup
x∈X

dZ(x,W ), sup
w∈W

dZ(w,X)} ,

however, as the previous formula is going to be more convenient for us, we keep it an
original definition.

Let us note now that, even though the Hausdorff metric might seem very natural
way of measuring distance between metric spaces, it strongly requires the existence of
the superspace Z. We would like to be able to give up on this assumption and define
distinct metrics on W and X. For this purpose, form the Hausdorff we derive the Gromov-
Hausdorff metric in the most intuitive way: we look for the closest isometric embeddings
of W and X into the common superspace Z and take the Hausdorff distance (which for
such embeddings is already well defined):

Definition 2.2. The Gromov-Hausdorff distance between spaces W and X is given via

dGH(W,X) = inf{r > 0 ∶ (∃W
′
≅W, X ′ ≅X, Z ⊇W ′,X ′) dH(W

′,X ′) = r}.

Above the mark ≅ denotes the isometric isomorphism between the spaces.

Moreover, the sequence Xn converges in the Gromov-Hausdorff sense to X when

lim
n→∞

dGH(Xn,X) = 0.
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Remark 2.3. Considering any metric spaces X ′ ≅ X and X ′n ≅ Xn such that X ′,X ′n ⊆
Z, directly from the definition of Gromov-Hausdorff distance we have dGH(Xn,X) ⩽

dH(X
′
n,X

′). As a consequence, convergence in Hausdorff sense may imply convergence
in Gromov-Hausdorff sense, i.e. if dH(X ′n,X ′)

0
Ð→, then also dGH(Xn,X)

0
Ð→ .

With the tool for measuring how close the two metric spaces are from each other, let us
now also provide a handful of theory which in some cases makes the computations of the
Gromov-Hausdorff distance much easier. It will concern a simple concept of correspondence
relation.

Definition 2.4. The correspondence between sets W and X is the set R ⊆ W ×X such
that

∀w ∈W ∃x ∈X (w,x) ∈R and ∀x ∈X ∃w ∈W (w,x) ∈R.

The above definition refers to the relation in which every element of W has some
related element of X and symmetrically: every element of X is related to some element of
W . Having this in mind, we come across the simplest possible example: for any surjection
f ∶W →X, we can define a correspondence as

R = {(w, f(w)) ∶ w ∈W}.

This form is so well-known that it is often refered to as the correspondence associated with
function f .

All the correspondences that we will consider on the following pages will be associated
with some surjections, therefore let us not dwell upon other forms of correspondences but
investigate its possible usefulness. Due to that, we need to introduce one more concept:

Definition 2.5. Given the correspondence R ⊆W ×X, we compute its distortion as

dis(R) = sup{∣dW (w,w′) − dX(x,x′)∣ ∶ (w,x), (w′, x′) ∈R}.

When R is associated with f ∶W →X, the formula above may be simplified:

dis(R) = sup
w,w′∈W

∣dW (w,w
′
) − dX(f(w), f(w

′
))∣.

Remark 2.6. Obvious but important observation to be made here is that ifR is associated
with an isometry from W to X, then dW (w,w

′) = dX(f(w), f(w
′)) for all w,w′ which

means that dis(R) = 0. (In fact, the opposite implication is also true, i.e. if dis(R) = 0,
then R is associated with some isometry – but this property would not be that useful for
us.)

When it comes to usefulness, we can easily see the utility of the above comment after
we get familiar with the following
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Lemma 2.7. We can express the Gromov-Hausdorff distance between W and X as

dGH(W,X) =
1

2
inf
RW↔X

(dis(R))

where the infimum is taken over all correspondences RW↔X between W and X. It might
be, in other words, stated as

dGH(W,X) = inf{r > 0 ∶ ∃RW↔X dis(R) < 2r}.

The proof basis on the triangle inequality and, even though it is not very complicated
one, we shall provide just a brief idea and for the details refer to Bugaro et al. [2].

Sketch of proof. Without loss of generality assume that W,X ⊆ Z for some Z, and take
r > 0 such that dH(W,X) < r. Then

R = {(w,x) ∶ w ∈W, x ∈X, dZ(w,x) < r}

is a well-defined correspondence. Triangle inequality assures dis(R) < 2r which gives us
(⩽) inequality from the claim.

For the remaining (⩾) inequality, consider arbitrary correspondenceR with dis(R) = 2r.
It’s enough to metrize W ∪X in such way that

dW∪X ∣W×W = dW , dW∪X ∣X×X = dX and dH(W,X) < r in (W ∪X,dW∪X).

It can be obtained by setting dW∪X(w,w′) = dW (w,w′), dW∪X(x,x′) = dX(x,x′) and

dW∪X(w,x) = inf{dW (w,w
′
) + r + dX(x,x

′
) ∶ (w′, x′) ∈R}

for w,w′ ∈ W and x,x′ ∈ X. The first two conditions are then obviously satisfied. The
last one can be checked as well, and the idea behind it is that we’ve defined dW∪X such
that it sets distance between w and x to be equal to r when (w,x) ∈ R and close to r

otherwise.

We conclude that when dealing with Gromov-Hausdorff distance directly from definition
begins to seem overwhelming, it’s enough to define such correspondences between spaces
Xn and X that their distortions tend to 0 with n →∞. By the above lemma, that would
presently mean that Xn converge to X in the Gromov-Hausdorff sense.

3 Case of finite mean

Our main interest now will be examination of the “shape” of Cn when n →∞. At the
beginning we will stay with the EYi =m <∞ but next section will serve as its supplement
with EYi =∞.
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As it was already announced, one can suspect that the more vertices we join in the
cycle and zoom out, the more it will look like a circle. However, this intuition seems to
be true only in the finite mean case. When mean begins to be infinite, there appears a
possibility that, even when there are plenty of vertices, a space between two consecutive
ones happens that large that after zooming out we observe “a gap” in the limit circle.

To avoid these gaps in the finite mean case, we need to make sure that presence of large
edges is quite improbable – and this fact, provided exactly by the finiteness of the mean,
will be the contents of the next lemma.

Lemma 3.1. In the considered case m <∞ we observe

nP[Yi > n]
n
Ð→ 0.

Proof. Let us first note that 1{Yi>n} ⩽
1{Yi>n}Yi

n and thus

P[Yi > n] = E[1{Yi>n}] ⩽ E[
1{Yi>n}Yi

n
] =

E[1{Yi>n}Yi]
n

.

So nP[Yi > n] ⩽ E[1{Yi>n}Yi] and by the integrability of Yi we may use dominated conver-
gence theorem to write

lim
n→∞

E[1{Yi>n}Yi] = E[Yi limn→∞
1{Yi>n}] = 0.

Remark 3.2. Following the proof we make sure that lemma remains true after dividing
Yi by any constant c > 0, i.e. in the form nP[Yi > nc]

n
Ð→ 0.

This simple fact has a natural, equally simple consequence: if a large weight appears
in the graph with very low probability, then even the largest present edge should seem
insignificant with comparison to the remaining ones. It will be the contents of the next
lemma, for which needs we will denote

Mn =max
i∈[n]

Yi

and stay with this notation later on, if necessary.

Lemma 3.3. With all of the introduced notation, in the case m <∞ we have

P[2Mn > Sn]
n
Ð→ 0.

Perhaps the statement is clearer when rewritten as: P[Mn > Sn −Mn]
0
Ð→ . Here we see

that lemma investigates the probability of one edge in the graph being greater than the
sum of all other edges – so the probability of event that going from some vertex to one
of the neighbours is optimal via all remaining vertices, not directly via shared edge. Of
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course, as we already discussed, to make it probable, there would also need to be a chance
that in the cycle there is at least one large weight. However, as the previous lemma states,
probability of such event is approaching 0 in limit, therefore the probability of having an
edge larger than whole remaining arc will behave alike.

Proof. Similarly to the proof of Lemma 1.1, we would like to aproximate Sn by nEYi.
Again, for a fixed ϵ > 0, we do it by splitting:

P[2Mn > Sn] = P[2Mn > Sn, ∣
Sn
n
−m∣ > ϵ] + P[2Mn > Sn, ∣

Sn
n
−m∣ ⩽ ϵ].

By the law of large numbers, we should only care about the second component because
the first disappears in the limit: P[2Mn > Sn, ∣

Sn

n −m∣ > ϵ]
n
Ð→ 0.

And when it comes to mentioned second part:

P[2Mn > Sn, ∣
Sn
n
−m∣ ⩽ ϵ] = P[2Mn > Sn, n(m + ϵ) ⩾ Sn ⩾ n(m − ϵ)] ⩽

P[2Mn > Sn, Sn ⩾ n(m − ϵ)] ⩽ P[2Mn > n(m − ϵ)] = P[Mn >
n(m − ϵ)

2
] ⩽

nP[Yi >
n(m − ϵ)

2
]
n
Ð→ 0.

Above the convergence follows from Lemma 3.1 and the last inequality is a consequence of
the simple observation that

P[Mn > a] ⩽ P[Y1 > a] + P[Y2 > a] + ⋅ ⋅ ⋅ + P[Yn > a] = nP[Yi > a]

for any a (as the maximum has to be obtained for some of Yi so in fact P[Mn > a] = P[Yi > a]
for some i).

Remark 3.4. Just like in case of the previous lemma, we can notice that a constant here
doesn’t really play a role. Having constant 2 in the formula of the lemma provides nice,
already discussed interpretation. However, following the proof, we notice that 2 can be
replaced with any c > 0 and the statement stays true.

As we have already previewed in the introduction, the natural metric on the cycle
comes, of course, from the percolation – so is given by the weights of the edges. Let us
recall that we denoted it by dCn . So for example, dCn(1, k) = Sk−1 ∧ (Sn − Sk−1).

Despite the fact that dCn is here the most natural metric, it leads to the graph of
(random) girth Sn and thus if the limit object was circle, it should be of circumference
Sn. We would like to normalize this metric such that the radius of the limit circle becomes
equal to 1 (so both girth and circumference are 2π, so much less confusing than previously).
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3.1 Stochastic normalization

First and probably the simplest idea of such a normalization is clearly by 2π/Sn. Its
main disadvantage is stochastic nature (which luckily, with some effort, can be removed;
we are going to provide an argument for convergence also in this case).

However, as it’s simpler, it allows to see desired convergence much more straightforward
than its deterministic analogue. Thanks to that it will be very useful, especially because we
are still in need of some examples of measuring the Gromov-Hausdorff distance. And this
quite directly normalized metric dCn will allow us to vividly describe Gromov-Hausdorff
distance between the cycle Cn and the circle C = {x ∈ R2 ∶ ∣∣x∣∣ = 1}.

Theorem 3.5. Consider Xn = (Cn,
2πdCn
Sn
) and X = (C, dC), where dC denotes the length

of the shorter arc on the circle. For such metric spaces, as n→∞, we observe

Xn
P
Ð→X

in the Gromov-Hausdorff sense.

Proof. We would like to show that

dGH(Xn,X)
n
Ð→ 0.

Having in mind Remark 2.3, it’s enough to define metric spaces X ′n ≅ Xn, X ′ ≅ X and
Z ⊇X ′n,X

′ such that dH(X ′n,X ′)
P
Ð→ 0.

As the planar graph and the unit circle naturally live on the plane, we might want to
metrize R2 such that it is possible to isometrically embed there both Xn and X. However,
note that the only crucial aspect of this metric on R2 would be preserving distances on
the unit circle (outside this circle we could define distances freely, just to keep the metric
axioms true). Therefore, we realize that metrizing only the circle and embedding Xn and
X there will work perfectly well for us.

Having that in mid, we consider Z = X ′ = X = (C, dC) and below define isometry
ψ ∶ Cn → C for which we would have dH(ψ(Xn),X

′)
P
Ð→ 0 (and for which we will write

X ′n = ψ(Xn)).

We would like ψ to map the vertices of Cn on the circle, preserving distances given by
the normalized weights 2πYi

Sn
. It can be obtained simply by fixing one point on the circle,

say (0,1), mapping vertex 1 on this point and, having that, mapping 2 on the point which
is exactly 2πY1

Sn
clockwise distant form 1 on the circle (so with respect to dC). Similarly we

proceed for 3, . . . , n − 1.

It may not be obvious at first glance that ψ is well defined, i.e. that after repeating
this operation n− 1 times, the remaining arc has length exactly 2πYn

Sn
. Luckily, it is in fact

so because:
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2π −
2π

Sn

n−1
∑
i=1

Yi = 2π −
2π

Sn
(Sn − Yn) =

2πYn
Sn

.

To prove required convergence, let us now fix any ϵ > 0 and show that

P[dH(X ′n,X
′
) ⩽ ϵ]

n
Ð→ 1.

That means we would like to understand

inf{r > 0 ∶X ′n ⊆ Ur(X
′
), X ′ ⊆ Ur(X

′
n)}.

At the beginning, note that first condition is trivial because for any r > 0 we have
X ′n ⊆ X

′ ⊆ Ur(X ′) (let us recall: X ′n are points representing vertices of the graph mapped
on the circle and X ′ is the full circle). This observation reduces formula above to the

inf{r > 0 ∶X ′ ⊆ Ur(X
′
n)}.

Translating, we ask how probable it is that, for very small r, taking r-neighbourhood of
the points on circle, we would cover whole circle. And, as the intuition suggests, it turns
out that when n→∞ so we have more and more of these points, it becomes very probable.

The neighbourhood Ur(x) for some x ∈Xn is an arc of length 2r (r to the left of x and
r to the right of x). Considering two consecutive points x1, x2 ∈X ′n, we may ask: how large
should r be to entirely cover the arc between x1 and x2 with Ur(X

′
n)? Simply, it should

be at least the half of the distance between those points. And now: considering all pairs of
consecutive points, how large r do we need to cover all the arcs with Ur(X ′n)? Of course,
it’s enough to cover the longest arc (if for some r the neighbourhood Ur(X

′
n) covers the

longest “gap” between points of X ′n, it clearly covers all shorter ones). Therefore

inf{r > 0 ∶X ′ ⊆ Ur(X
′
n)} =

1

2

2πMn

Sn
.

Summarizing, we end up with

P[dH(X ′n, Y
′
) < ϵ] = P[

πMn

Sn
⩽ ϵ] = P[Mn ⩽

ϵ

π
Sn]

which looks quite familiar to the result of Lemma 3.3, just with different constant. Fortu-
nately, we already noticed in the Remark 3.4 that this constant is not important and can
be replaced. Thus the lemma provides

P[Mn ⩽
ϵ

π
Sn]

n
Ð→ 1

which completes the case of stochastic normalization.
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3.2 Deterministic normalization

As previously announced, we would now like to put some effort in normalizing metric
on Cn with deterministic constant. Originally the part responsible for randomness in
the normalization was Sn which is, as we always hope, well approximated by nm. This
approximation is the only change in the statement of the following theorem with comparison
to Theorem 3.5, so the limit object remains the same and we can recall it to be the unit
circle C = {x ∈ R2 ∶ ∣∣x∣∣ = 1} with the shorter arc metric dC .

Theorem 3.6. Consider Xn = (Cn,
2πdCn
nm ) and X = (C, dC). For such metric spaces, as

n→∞, we have
Xn

P
Ð→X

in the Gromov-Hausdorff sense.

Even though the variation seems minor, it requires significant modification of the proof.
Trying to follow the proof of the stochastic normalization case would fail in the moment of
defining function ψ which in its primary form would not be an isometry here (e.g. because
the girth of the Cn is not anymore 2π but instead 2π ± δ for some small δ). Keeping ψ

as an isometry would require changing the distinguished circle for one with circumference
equal to girth of Cn and that would also call for reconsideration of the form of X. To
avoid these complications (and also: present another way to deal with Gromov-Hausdorff
convergence), we reach for already introduced language of correspondences and distortions.

To recall the application of Lemma 2.7: if we succeed in defining such correspondences
between spaces Xn and X that their distortions tend to 0 in probability, we actually
show Gromov-Hausdorff convergence of Xn to X (also in probability), so we prove stated
theorem – and this is our current intention.

We will associate our correspondence with a surjection f ∶ C → Cn because it is the most
natural way to define such a relation. And as distortion estimates how much differently
corresponding spaces measure distances, we would like f to be “as close to isometry as
possible”.

Let us begin the construction of f with the mapping ψ ∶ Cn → C used in the stochastic
normalization case. We have already noticed that it is not an isometry, however it is close
enough to isometry for us (the only distance which it may not preserve is between n and 1,
and the deviation there is rather insignificant). We can imagine reversed operation: taking
a point which lies on the circle and is associated with a vertex of the cycle and assigning
this vertex as value at considered point of the circle. When it comes to not yet considered
points of C, we would like f to map them on the closest possible vertex of Cn (these vertices
are already located on the circle, so it makes sense to say which is the closest with respect
to dC). Slightly more formally:

14



Proof of Theorem 3.6. Let us divide the unit circle {x ∈ R2 ∶ ∣∣x∣∣ = 1} into n arcs of a
random length such that the first one is Y1+Yn

Sn
π and the k-th one: Yk+Yk−1

Sn
π long (for

k = 2, . . . , n). For the sake of clarity, we say that those arcs are open on the right and
closed on the left when considered clockwise on the circle. The function f ∶ C → Cn is then
defined as

f(x) = k

when x lies in the k-th arc of the circle.

This function is obviously a surjection and therefore defines correspondenceR = {(x, f(x)) ∶
x ∈ C} between the circle and the cycle. Its distortion is then computed as follows.

Consider x,x′ ∈ C. If both x and x′ are in the same arc (let’s say it is k-th arc), we
have:

dCn(f(x), f(x
′
)) = dCn(k, k) = 0

and
dC(x,x

′
) ⩽

2Mn

Sn
π

as this is the bound for the length of any arc.

Therefore, in this case, the probability that the supremum appearing in the definition
of distortion will be large indeed disappears at infinity:

P
⎡
⎢
⎢
⎢
⎢
⎢
⎣

sup
x,x′∈C

in the same arc

∣dC(x,x
′
) − dCn(f(x), f(x

′
))∣ > ϵ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

P
⎡
⎢
⎢
⎢
⎢
⎢
⎣

sup
x,x′∈C

in the same arc

dC(x,x
′
) > ϵ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⩽ P [
2Mn

Sn
π > ϵ] = P [Mn >

ϵ

2π
Sn]

n
Ð→ 0

and final convergence is again the result of the Lemma 3.3 together with the Remark 3.4.

On the other hand, assume that x and x′ lie in different arcs. For simplicity, let’s
suppose that x is in the first arc and x′ in the k-th one. It’s enough to consider only this
case thanks to possibility to renumerate arcs. Then:

dCn(f(x), f(x
′
))

2π

nm
= dCn(1, k)

2π

nm
=

((Y1 + ⋅ ⋅ ⋅ + Yk−1)
2π

nm
) ∧ ((Yk + ⋅ ⋅ ⋅ + Yn)

2π

nm
) = (Sk−1

2π

nm
) ∧ ((Sn − Sk−1)

2π

nm
)

and

((
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)
2π

Sn
) ∧ ((Sn − (

Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
))

2π

Sn
)

⩽ dC(x,x
′
) ⩽

((
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
)
2π

Sn
) ∧ ((Sn − (

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
))

2π

Sn
) .
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For clarification, imagine situations of placing x and x′ first in the closer endpoints of
arcs 1 and k, and second in the further endpoints of these arcs – in these cases we see that
distance between considered points has to be larger that at least one of the arcs of lengths
(Y1

2 + Y2 + ⋅ ⋅ ⋅ + Yk−2 +
Yk−1
2
) 2π
Sn

and (Sn − (Yn2 + Y1 + ⋅ ⋅ ⋅ + Yk−1 +
Yk
2
)) 2π

Sn
and shorter then

both arcs of lengths (Yn2 + Y1 + ⋅ ⋅ ⋅ + Yk−1 +
Yk
2
) 2π
Sn

and (Sn − (Y12 + Y2 + ⋅ ⋅ ⋅ + Yk−2 +
Yk−1
2
)) 2π

Sn
.

It justifies the above bounds.

Examining those bounds, we observe that if we could only replace nm by Sn, then
during subtraction (needed to compute distortion) a lot of addends would simplify and
most probably we would be able to finish with calculation similar to the one performed in
the first part of the proof. As this seems to be the main problem, again, we hope to engage
the law of large numbers to find a solution. Indeed, this will soon be the case, however,
let us first write explicitly:

sup
x,x′∈C

x in 1st arc, x′ in kth arc

∣dCn(1, k)
2π

nm
− dC(x,x

′
)∣ =

∣((
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)∧ (Sn − (

Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
)))

2π

Sn
−

(Sk−1 ∧ (Sn − Sk−1))
2π

nm
∣∨

∣((
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
) ∧ (Sn − (

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)))

2π

Sn
−

(Sk−1 ∧ (Sn − Sk−1))
2π

nm
∣ .

We shall quickly simplify this expression by noting that, in probability, when Sk−1 <

Sn − Sk−1 then also

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
< Sn − (

Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
)

and
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
< Sn − (

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
) .

Therefore

∣(
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)
2π

Sn
− Sk−1

2π

nm
∣ ∨

∣(
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
)
2π

Sn
− Sk−1

2π

nm
∣ ∨

∣(Sn − (
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
))

2π

Sn
− (Sn − Sk−1)

2π

nm
∣ ∨

∣(Sn − (
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
))

2π

Sn
− (Sn − Sk−1)

2π

nm
∣ .

We will argue that all of the differences converge to 0 in probability. Let us begin with
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rearranging the first one:

Sk−1
2π

nm
− (

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)
2π

Sn
=

Sk−1 (
2π

nm
−
2π

Sn
) +

2π

Sn
(Sk−1 − (

Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
)) =

Sk−12π(Sn − nm)

nmSn
+
2π

Sn
(
Y1
2
+
Yk−1
2
) .

We again treat both components separately. The first disappears almost surely because
Sk−1 < Sn and due to the strong law of large numbers:

Sk−12π(Sn − nm)

nmSn
=
2π

m
⋅
Sk−1
Sn
(
Sn
n
−m) ⩽

2π

m
(
Sn
n
−m)

a.s.
ÐÐ→ 0.

The second can be bounded:

2π

Sn
(
Y1
2
+
Yk−1
2
) ⩽

2πMn

Sn

and by Lemma 3.3 and Remark 3.4 we know that the above fraction is arbitrary small with
probability approaching 1 when n→∞.

Likewise, for the second difference in the maximum representing value of distortion:

(
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
)
2π

Sn
− Sk−1

2π

nm
=

(
Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
− Sk−1)

2π

Sn
+ Sk−1 (

2π

Sn
−

2π

nm
) =

(
Yn
2
+
Yk
2
)
2π

Sn
+
2π

m
⋅
Sk−1
Sn
(m −

Sn
n
) ⩽

2πMn

Sn
+
2π

m
(m −

Sn
n
)

P
Ð→ 0,

and for the third:

(Sn − Sk−1)
2π

nm
− (Sn − (

Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
))

2π

Sn
=

(Sn − Sk−1) (
2π

nm
−
2π

Sn
) + ((Sn − Sk−1) − Sn + (

Yn
2
+ Y1 + ⋅ ⋅ ⋅ + Yk−1 +

Yk
2
))

2π

Sn
=

2π

m
⋅
Sn − Sk−1

Sn
(
Sn
n
−m) + (

Yn
2
+
Yk
2
)
2π

Sn
⩽
2π

m
(
Sn
n
−m) +

2πMn

Sn

P
Ð→ 0,

and for the fourth:

(Sn − (
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
))

2π

Sn
− (Sn − Sk−1)

2π

nm
=

(Sn − (
Y1
2
+ Y2 + ⋅ ⋅ ⋅ + Yk−2 +

Yk−1
2
) − (Sn − Sk−1))

2π

Sn
+ (Sn − Sk−1) (

2π

Sn
−

2π

nm
) =

2π

Sn
(
Y1
2
+
Yk−1
2
) +

2π

m
⋅
Sn − Sk−1

Sn
(m −

Sn
n
) ⩽

2πMn

Sn
+
2π

m
(m −

Sn
n
)

P
Ð→ 0.

Summarizing, dis(R) P
Ð→ 0 and therefore (Cn,

2πdCn
nm )

P
Ð→ (C, dC) in the Gromov-Hausdorff

sense.
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4 Case of infinite mean

Now as we already know the limit object in the case of finite mean, we will also find
out that Cn behaves analogously when expectation of the edges’ weights is infinite. We
consider their distribution given via:

P[Yi > x] = x−α

for some α ∈ (0,1) and all x ⩾ 1.

It clearly contradicts the assumptions of Lemma 3.1. Also, the intuitive difference is
that presently we can actually expect few huge edge weights among several significantly
smaller. All of that clearly means that the Lemma 3.3 as well doesn’t have to be true now.

Despite the lack of these tools, we still are able to somehow understand the distribution
of Sn. It involves some theory of α-stable laws, which we now recall after Durrett [3].

4.1 α-stable laws

We are going to motivate our reasoning by the underneath theorem.

Theorem 4.1. Let Y1, Y2, . . . be i.i.d. random variables such that:

1. limx→∞ P[Y1 > x]/P[∣Y1∣ > x] = θ ∈ [0,1] and

2. P[∣Y1∣ > x] = x−αl(x)

for some α < 2 and some function l satisfying limx→∞ l(tx)/l(x) = 1 for all t > 0. Then

∑
n
i=1 Yi − bn
an

⇒ L as n→∞

where L has non-degenerate distribution and

an = inf{x ∶ P[∣Y1∣ > x] ⩽ 1/n}, bn = nE[Y11{∣Y1∣⩽an}].

Such distributions, i.e. distributions of L above form, are usually called stable or α-
stable. Formally, L is said to have a stable law when L d

=
∑k

i=1 Li−dk
ck

for some constants ck, dk

and sequence of i.i.d. random variables Li
d
= L, for every k. However, it is a consequence

of another theorem that one can unambiguously characterise stable laws by limit laws of
∑k

i=1 Yi−dk
ck

for some sequence of i.i.d. Yi.

Let us now make two quick comments on the statement of the theorem. First one is
purely nomenclatural but useful while working with the literature on the subject, second
actually simplifies the claim of the theorem for our needs.

Remarks 4.2. 1. Function l fulfilling mentioned condition limx→∞ l(tx)/l(x) = 1 for
all t > 0 is often called slowly varying.
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2. It can be shown that if α < 1 (which is true in our case), we can let bn = 0 and the
statement of the theorem remains true.

We are now going to reinterpret the foregoing theorem for our needs. At the beginning,
notice that both assumed conditions are trivial in our case as our variables Yi are non-
negative, so:

1. limx→∞ P[Y1 > x]/P[∣Y1∣ > x] = limx→∞ P[Y1 > x]/P[Y1 > x] = 1 and

2. P[∣Y1∣ > x] = P[Y1 > x] = x−α ⋅ 1 and l(x) = 1 is slowly varying (likewise every
constant).

Like we already remarked, because we consider only α ∈ (0,1), we can forget about the
centring bn in the statement of the theorem. Let us compute scaling constant:

an = inf{x ∶ P[Y1 > x] ⩽
1

n
} = inf{x ∶ x−α ⩽ n−1} = inf{x ∶ x ⩾ n1/α} = n1/α.

As we were denoting ∑ni=1 Yi = Sn, all the preceding observations justify the following

Corollary 4.3. In the case of P[Yi > x] = x−α for α ∈ (0,1) and x ⩾ 1 we have

n−1/αSn ⇒ L as n→∞

for some α-stable L.

Unfortunately, described convergence isn’t good enough for us as it only allows to
follow Sn as a sequence. For the technical reasons it would be more convenient to be able
to consider a stochastic process defined for t ∈ [0,1] but somehow reflecting behaviour of
{Sk}k⩽n. The definition of such a process is quite natural, we simply write

Ln(t) = n
−1/αS[nt].

Having succeeded in defining it for all t ∈ [0,1], we would like to, from now on, work
in the Skorokhod space D[0,1] of càdlàg functions on [0,1] (i.e. functions continuous on
the right with limits on the left). It seems reasonable to consider such a space because of
the following

Claim 4.4. The processes (Ln(t))t∈[0,1] defined as above are random elements of D[0,1].
It is the direct result of the observation that

Ln(t) =
n−1
∑
k=0

n−1/αSk1[ k
n
, k+1

n
)(t).

The connection between processes Ln and considered graph is now straightforward. In
fact, of the vertices of Cn we can think as of the points on [0,1], scaled later to [0,2π] and
“wrapped in circle”, i.e.:

Gn = {e
2πi

Ln(t)
Ln(1) ∶ t ∈ [0,1]} .
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Claim 4.5. Indeed, it can be formalized by noting that (Gn, dC) ≅ (Cn,
2πdCn
Sn
) as the

mapping
e
2πi

Ln(t)
Ln(1) ↦ k

for t ∈ [k−1n , kn) is a well-defined isometry.

Being able to describe Cn in terms of Ln, we suppose that understanding the limit of
processes Ln will be useful in order to understand the limit of Cn as well. Therefore let us
reach out to Resnick [5] for the following:

Theorem 4.6. Let {Xn,j ∶ j ⩾ 1} be a sequence of i.i.d. random vectors such that

nP[Xn,1 ∈ ⋅]
ν
Ð→ (⋅)

for some Lévy measure ν, and in the sense of vague convergence of measures. Assume also
that

lim
ϵ→0

lim sup
n→∞

nE[(Xn,1)
2
1{∣Xn,1∣⩽ϵ}] = 0.

Then the process defined via

Xn(t) =
[nt]
∑
k=1
(Xn,k −E[Xn,k1{∣Xn,k ∣⩽1}])

converges weakly to a Lévy jump process with Lévy measure ν. Mentioned convergence
holds in the sense of convergence in the space of all càdlàg functions on [0,1] (usually
denoted by D[0,1]) equipped with the J1 metric which will be introduced at the beginning
of the following subsection.

But first, to adopt this theorem for our needs, let us consider

Xn,k = n
−1/αYk

and check that such a sequence satisfies the assumptions of the theorem.

As we consider the distribution P[Xn,1 > t] = P[n−1/αY1 > t] = P[Y1 > tn1/α] = t−αn−1,
it follows that

nP[Xn,1 > t] = t
−α
= ν(t,∞)

which is a Lévy measure, i.e.

∫
R∖{0}

(∣y∣2 ∧ 1)ν(dy) <∞.

Indeed,

∫
R∖{0}

(∣y∣2 ∧ 1)ν(dy) = ∫(0,∞)
(y2 ∧ 1)ν(dy) = ∫

1

0
y2ν(dy) + ∫

∞

1
1ν(dy)

and both integrals are finite as:

∫

∞

1
1ν(dy) = ν(1,∞) = 1−α = 1
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and by Radon-Nikodym theorem

∫

1

0
y2dν = ∫

1

0
y2
dν

dλ
dλ = ∫

1

0
y2αy−α−1dλ = α∫

1

0
y−α+1dy =

α

2 − α
.

Also, the second assumption is true because:

nE[(Xn,1)
2
1{∣Xn,1∣⩽ϵ}] = nE[n

−2/αY 2
1 1{∣n−1/αY1∣⩽ϵ}] = n

1− 2
αE[Y 2

1 1{Y1⩽ϵn1/α}] =

n1−
2
α ∫

∞

0
P[Y 2

1 1{Y1⩽ϵn1/α} > t]dt = n
1− 2

α ∫

ϵ2n
2
α

0
P[ϵn

1
α ⩾ Y1 >

√
t]dt =

n1−
2
α ∫

ϵ2n
2
α

0
P[Y1 >

√
t] − P[Y1 > ϵn

1
α ]dt = n1−

2
α
⎛

⎝
∫

ϵ2n
2
α

1
t−α/2dt − (ϵ2n

2
α − 1) (ϵn

1
α )
−α⎞

⎠
=

n1−
2
α
⎛

⎝

(ϵ2n
2
α )1−

α
2 − 1

1 − α
2

− ϵ2−αn
2
α
−1
+ ϵ−αn−1

⎞

⎠
=
ϵ2−α − n1−

2
α

1 − α
2

− ϵ2−α + ϵ−αn−
2
α

and therefore limϵ→0 lim supn→∞ nE[(Xn,1)
2
1{∣Xn,1∣⩽ϵ}] = 0.

To apply the theorem we shall compute also the term E[Xn,k1{∣Xn,k ∣⩽1}] appearing in
the claim. It is equal to

E[Xn,k1{∣Xn,k ∣⩽1}] = n
− 1

αE[Yk1{Yk⩽n 1
α }
] = n−

1
α ∫

n
1
α

0
P[Yk > t]dt = n−

1
α ∫

n
1
α

1
t−αdt =

n−
1
α

1

1 − α
((n

1
α )

1−α
− 1) =

1

n(1 − α)
−

1

n
1
α (1 − α)

.

Therefore defining

Xn(t) =
[nt]
∑
k=1
(Xn,k −E[Xn,k1{∣Xn,k ∣⩽1}]) =

[nt]
∑
k=1

⎛

⎝
n−1/αYk −

1

n(1 − α)
+

1

n
1
α (1 − α)

⎞

⎠
=

Ln(t) −
[nt]

n(1 − α)
+

[nt]

n
1
α (1 − α)

,

by the above theorem we know that such processes have a weak limit. Denote it by
Xn(t)⇒X(t) and notice that

Ln(t) =Xn(t) +
[nt]

n(1 − α)
−

[nt]

n
1
α (1 − α)

⇒X(t) +
t

1 − α
.

It justifies that Ln indeed converges weekly in D[0,1] and we can denote its limit by L. As
X is Lévy process with Lévy measure ν so with characteristic function E [eisX(t)] = etψ(s)

for
ψ(s) = ∫

∞

1
(eisx − 1)αx−α−1dx + ∫

1

0
(eisx − 1 − isx)αx−α−1dx,

therefore L is Lévy process with characteristic function E [eisL(t)] = et(ψ(s)+
is

1−α ).
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4.2 Stochastic normalization

We already know that processes Ln are elements of the Skorokhod space D[0,1] and
that they converge in distribution to L. By the merit of the Skorokhod’s representation
theorem, it means almost sure convergence in the sense of the metric on D[0,1] for some
version of Ln and L. This metric we now introduce after Skorokhod [6].

Definition 4.7. Let D[0,1] be the space of all càdlàg functions on [0,1] and Λ be the
family of increasing, continuous surjections from [0,1] to [0,1]. For x, y ∈ D[0,1] we define
the distance by

dJ1(x, y) = inf
λ∈Λ
{∣∣λ − I ∣∣∞ ∨ ∣∣x − y ○ λ∣∣∞}

where I stands for identity mapping and ∣∣ ⋅ ∣∣∞ denotes the supremum norm.

In the light of the above definition, it would be convenient to understand the con-
vergence of Ln in D[0,1] as almost sure convergence of the mentioned versions of these
processes. It means the existence of λn ∈ Λ such that

λn ⇉ I and Ln ○ λn ⇉ L.

Let us recall that we were interested in finding the limit object for Gn = {e
2πi

Ln(t)
Ln(1) ∶ t ∈

[0,1]}. Knowing that Ln ⇒ L, we would now want to infer that also

Ln(⋅)

Ln(1)
⇒

L(⋅)

L(1)
.

It is the result of the fact that Ln(1)
P
Ð→ L(1) (in R) which can be deduced from the two

following lemmas.

Lemma 4.8. Let fn, f be càdlàg on [0,1] and x ∈ [0,1] be the continuity point of f . If
fn → f in D[0,1], then also fn(x)→ f(x) in R.

Proof. Take λn ∈ Λ indicating the convergence fn → f in D[0,1], i.e. such that

supt∈[0,1] ∣λnt − t∣ < ϵ/2 and supt∈[0,1] ∣fn(t) − f(λnt)∣ < ϵ/2

for any ϵ.

Now, respectively by: the triangle inequality, convergence fn → f in D[0,1] and conti-
nuity of f at x we have:

∣fn(x) − f(x)∣ ⩽ ∣fn(x) − f(λnx)∣ + ∣f(λnx) − f(x)∣ < ϵ/2 + ϵ/2 = ϵ.

Claim 4.9. Lévy process L is continuous in probability at any point t ∈ [0,1] so considering
any sequence tn → t we have L(tn)

P
Ð→ L(t) (for the justification, see Resnick [5]).
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It now clearly confirms supposition that Ln(1)
P
Ð→ L(1) in R, and we are now ready to

prove required weak convergence, i.e. we can state:

Lemma 4.10. Consider processes Ln defined above and their limit Lévy process L. Then
“normalized” processes also converge weakly to the “normalized” limit:

Ln(⋅)

Ln(1)
⇒

L(⋅)

L(1)
.

Proof. Take λn ⇉ I such that Ln ○ λn ⇉ L and for t ∈ [0,1] write

∣
Ln(λn(t))

Ln(1)
−
L(t)

L(1)
∣ ⩽ ∣

Ln(λn(t))

Ln(1)
−
L(t)

Ln(1)
∣ + ∣

L(t)

Ln(1)
−
L(t)

L(1)
∣ =

∣Ln(λn(t)) −L(t)∣

Ln(1)
+
L(t) ∣L(1) −Ln(1)∣

Ln(1)L(1)
⩽
∣Ln(λn(t)) −L(t)∣

Ln(1)
+
∣L(1) −Ln(1)∣

Ln(1)

n
Ð→ 0

by the uniform convergence of Ln ○λn, the convergence of Ln(1) and the fact that, by the
definition, Ln(1) = n−1/αSn > 0 almost surely.

We are also already able to spot the property which the limit process inherits from the
sequence Ln:

Lemma 4.11. Process L is non-decreasing in probability.

Proof. Begin with observing that processes Ln are non-decreasing by definition (as increas-
ing sums of non-negative random variables). It means that Ln(t) −Ln(s) ⩾ 0 for s < t. In
such case

L(t) −L(s) ⩾ (L(t) −Ln(t)) + (Ln(s) −L(s))
n
Ð→ 0

because of just claimed continuity of L at both s and t, and convergence of Ln to L at the
continuity points, so by 4.8 and 4.9.

Let us now have a look at the images of processes discussed in the previous lemma, so

Im (
Ln(t)
Ln(1))t∈[0,1]

and Im ( L(t)L(1))t∈[0,1]
.

These both are clearly subsets of the interval [0,1], first represented by n dots, second –
by line segments. So by “wrapping them around” and scaling (i.e. by applying t ↦ e2πit

mapping) we indeed obtain subsets of unit circle: scaled version of cycle Cn (which we have

already denoted by Gn) and a random sum of arcs G = {e2πi
L(t)
L(1) ∶ t ∈ [0,1]} .

The convergence we have just shown in Lemma 4.10 gives us therefore a fine candidate
for the limit of (Gn, dC), namely (G, dC). However, we haven’t yet computed Gromov-
Hausdorff distance neither between mentioned images, nor between Gn and G (as these
distances are not necessarily equal), so we shall still check that the known convergence of
processes ( Ln(t)

Ln(1))t∈[0,1]
implies the Gromov-Hausdorff convergence of spaces (Gn, dC).
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Let us present the proof of this fact as a simple combination of several lemmas.
Of course, first of them is Lemma 4.10. As it claims that processes ( Ln(t)

Ln(1))t∈[0,1]
and

(
L(t)
L(1))t∈[0,1]

are “close” to each other as the elements of D[0,1], it should also imply that
already introduced images of these processes are “close” as the subsets of the interval [0,1].

Lemma 4.12. For the random elements of D[0,1] such that Ln
a.s.
ÐÐ→ L we have

dH ((Im(
Ln(⋅)

Ln(1)
) , d) , (Im(

L(⋅)

L(1)
) , d))

a.s.
ÐÐ→ 0

where d(x, y) = ∣x − y∣ denotes the usual metric on [0,1].

Proof. Let λn testify the convergence Ln
a.s.
ÐÐ→ L (provided by the Skorokhod’s representa-

tion theorem). As, by definition, those λn are surjections, they do not affect the images:

Im(
Ln(t)

Ln(1)
)
t∈[0,1]

= Im(
Ln(λn(t))

Ln(1)
)
t∈[0,1]

(thanks to that, we may actually think of λn only as of some disturbance of time when
given value occurs).

Furthermore,

dH ((Im(
Ln(λn(⋅))

Ln(1)
) , d) , (Im(

L(⋅)

L(1)
) , d)) ⩽ ∣∣

Ln(λn(⋅))

Ln(1)
−
L(⋅)

L(1)
∣∣
∞

which is true directly from the definition of the Hausdorff distance: if we consider

r = ∣∣
Ln(λn(⋅))

Ln(1)
−
L(⋅)

L(1)
∣∣
∞
,

then clearly

Im (
Ln(λn(⋅))
Ln(1) ) ⊆ Ur (Im (

L(⋅)
L(1))) and Im ( L(⋅)L(1)) ⊆ Ur (Im (

Ln(λn(⋅))
Ln(1) ))

and Hausdorff distance was defined as the infimum over all r fulfilling the above condition.

But, by the Lemma 4.10, we know that ∣∣Ln(λn(⋅))
Ln(1) −

L(⋅)
L(1) ∣∣∞

n
Ð→ 0 which justifies the

claim of this lemma.

As the next lemma convinces, we actually already know enough. That means, if the
two subspaces of the interval are close in the Hausdorff sense (which we already know),
and we “wrap them around” and scale, they will remain close in the same sense – just as
subspaces of the circle.

Lemma 4.13. Let A,B ⊆ [0,1] be metric spaces with the usual metric on the interval.
Then

dH (e
2πiA, e2πiB) ⩽ 2πdH(A,B)

where e2πiA, e2πiB are subspaces of the unit circle with the metric dC .
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Proof. Let us take r = dH(A,B) i.e. the smallest satisfying A ⊆ Ur(B) and B ⊆ Ur(A). It
is enough to show that

e2πiA ⊆ U2πr(e
2πiB) and e2πiB ⊆ U2πr(e

2πiA)

(in fact, by the symmetry, it is enough to show just one of the above inclusions which we
shall now do).

Take x ∈ e2πiA. Such x is of the form e2πia for some a ∈ A. Therefore d(a, b) < r for some
b ∈ B as A ⊆ Ur(B). But that means dC(e2πia, e2πib) < 2πr where, of course, e2πib ∈ e2πiB.
So dC(x, e2πiB) < 2πr and equivalently x ∈ U2πr(e

2πiB).

We have been foreshadowing the main statement of this section a couple of times, so it
might be already seen as a consequence of the last lemmas. However, for the completeness
and clarity, let us now formulate it once again and combine the justified facts to argue for
its truthfulness.

Theorem 4.14. Let Ln(t) = n−1/αS[nt] and denote its limit in D[0,1] by L. Consider

Xn = (Cn,
2πdCn
Sn
) and X = ({e

2πi
L(t)
L(1) ∶ t ∈ [0,1]} , dC). For such metric spaces, as n → ∞,

we have
Xn

P
Ð→X

in the Gromov-Hausdorff sense.

Proof. Recalling the processes

Gn = {e
2πi

Ln(t)
Ln(1) ∶ t ∈ [0,1]} and G = Y ,

by Claim 4.5 and Remark 2.3, for the proof of the theorem, it is enough to show the
Hausdorff convergence (Gn, dC)

P
Ð→ (G, dC), i.e.

dH ((Gn, dC), (G, dC))
P
Ð→ 0.

The above is a consequence of the inequality provided by the Lemma 4.13:

dH ((Gn, dC), (G, dC)) ⩽ dH ((Im(
Ln(t)

Ln(1)
) , d) ,(Im(

L(t)

L(1)
) , d))

which right hand side, by the Lemma 4.12, disappears when n→∞.
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4.3 Deterministic normalization

Correspondingly to the finite mean case, again, we would like to replace stochastic
normalization constant 2π

Sn
in the metric considered on the graph by some deterministic

constant. This matter seems to cause more trouble now as we no longer have the law of
large numbers to approximate Sn with, so coming up with a deterministic substitute of
the 2π

Sn
is not that straightforward anymore.

Luckily, we have already studied Sn long enough to be able to foresee its behaviour
also in the infinite mean case. In particular, we have Corollary 4.3 on our side and by its
merit we may wish that n1/αL(1) would be a good replacement. However, L is random
itself, so it is no help for the stochastic normalization issue.

Therefore we shall stay with the n1/α alone. Omitting the scaling by L(1) should
now clearly affect the proprieties of the limit object. So far we’ve succeeded in choosing
normalization constants such that the circle visible in the limit was a unit one; it was
possible because we took care to keep the girth of the cycle equal (in stochastic cases) or
close (in deterministic case) to 2π. Presently, so considering the metric 2πdCn

n1/α the girth
becomes equal exactly 2πn−1/αSn, so by the 4.3 – close to 2πL(1). This shall be the
circumference of the circle being the superset of the random sum of arcs which appears in
the limit.

All of that is gathered and formalized in the

Theorem 4.15. Let, again, Ln(t) = n−1/αS[nt] and denote its limit in D[0,1] by L. Con-

sider Xn = (Cn,
2πdCn
n1/α ) and X = (L(1){e2πi

L(t)
L(1) ∶ t ∈ [0,1]} , dC). For such metric spaces, as

n→∞, we have
Xn

P
Ð→X

in the Gromov-Hausdorff sense.

The argument here is quite similar to the finite mean case: we again define a corre-
spondence between the graph and the limit subset of the circle (let us from now on refer
to this limit object as L(1)G, in consistency with the previous notation). And again, we
would like to associate this correspondence with a surjection and we want it to be “close
to identity”, so we divide L(1)G into smaller, random arcs such that every arc consists of
these points on the circle which are the closest to the same vertex of the cycle (of course,
closest with respect to dC). A function mapping elements of the same arc on the adequate
vertex is now, clearly, a surjection and seems to be “as near to identity as possible” which
suggests that the distortion of the associated correspondence should be small enough –
which we shall formalize and compute.

Proof. Let us begin by taking λn which, as always, indicate the convergence of Ln to L in
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D[0,1], and noting that, by similar argument to the one given in Claim 4.5,

(Cn,
2πdCn
n1/α

) ≅ (Ln(1)Gn, dC)

for Ln(1)Gn = {Ln(1)e
2πi

Ln(t)
Ln(1) ∶ t ∈ [0,1]} = {Ln(1)e

2πi
Ln(λn(t))

Ln(1) ∶ t ∈ [0,1]} as those λn are
surjections. Thanks to that we only need to define the correspondences Rn between
Ln(1)Gn and L(1)G which we do via the condition:

(x, y) ∈Rn ⇐⇒ ∃t ∈ [0,1] (y = L(1)e
2πi

L(t)
L(1) , x = Ln(1)e

2πi
Ln(λn(t))

Ln(1) ) .

The above formula means that a single point of Ln(1)Gn is corresponding to all of the

points L(1)e2πi
L(t)
L(1) for t for which Ln(λn(t)) is constant. It’s worth noting here, that even

though Ln is constant on the intervals of length 1
n , namely for t ∈ [ kn ,

k+1
n
), the lengths of

arcs produced by these constant values of Ln, so lengths of arcs from Ln(1)e
2πi

Ln(λn(k/n))
Ln(1) to

Ln(1)e
2πi

Ln(λn((k+1)/n))
Ln(1) , are given by the weights Yk. Therefore the construction is indeed

quite parallel to the the previous case where we’ve been dividing the full circle into arcs of
random length.

Now, recalling the definition of distortion, we have:

dis(Rn) = sup{∣dLn(1)Gn(x,x
′
) − dL(1)G(y, y

′
)∣ ∶ (x, y), (x′, y′) ∈Rn} =

sup
t1,t2∈[0,1]

∣(dC (Ln(1)e
2πi

Ln(λn(t1))
Ln(1) , Ln(1)e

2πi
Ln(λn(t2))

Ln(1) )) − dC (L(1)e
2πi

L(t1)
L(1) , L(1)e

2πi
L(t2)
L(1) )∣ .

Considering t1 < t2 above, we get

dC (Ln(1)e
2πi

Ln(λn(t1))
Ln(1) , Ln(1)e

2πi
Ln(λn(t2))

Ln(1) ) =

2πLn(1)(∣
Ln(λn(t1))

Ln(1)
−
Ln(λn(t2))

Ln(1)
∣ ∧ ∣1 − ∣

Ln(λn(t1))

Ln(1)
−
Ln(λn(t2))

Ln(1)
∣∣) =

2π(Ln(λn(t2)) −Ln(λn(t1))) ∧ 2π(Ln(1) +Ln(λn(t1)) −Ln(λn(t2)))

and similarly

dC (L(1)e
2πi

L(t1)
Ln(1) , L(1)e

2πi
L(t2)
L(1) ) = 2π(L(t2) − L(t1)) ∧ 2π(L(1) + L(t1) − L(t2)).

Therefore

dis(Rn) =2π sup
t1<t2
(∣Ln(λn(t2)) −L(t2) +Ln(λn(t1)) −L(t1)∣ ∨

∣Ln(1) −L(1) +Ln(λn(t1)) −L(t1) +Ln(λn(t2)) −L(t2)∣) ⩽

2π (2 sup
t1

∣Ln(λn(t1)) −L(t1)∣ + 2 sup
t2

∣Ln(λn(t2)) −L(t2)∣ + ∣Ln(1) −L(1)∣)
n
Ð→ 0

by the uniform convergence Ln ○ λn ⇉ L which follows from the definition of convergence
in D[0,1].
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5 Visualisations and possible extensions

In a couple of various cases we have stated and proven that the cycle graph converges
to the circle or its subset, and among all the technical details we are now in danger of
loosing a natural, picturesque interpretation of such theorem. To avoid this danger and
summarize our accomplishments, we shall visualise how the Cn outlines C or G better and
better with the growth of n.

Below we can see the case of finite mean, precisely for α = 2.

In the infinite mean case the limit object is the random sum of arcs. We simulate it
for α = 0.8.

The observations confirm statements of the theorems which means that the outline of
the limit objects becomes clearer when n grows larger. However, as the results for n = 1000
are not yet very satisfying, we assume that the rate of convergence is not too high.

Another interesting question that might be asked having the plots to study, is the
behaviour of the limit when α → 1 from above:
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or from below:

Analyzing the plots, we might have reasons to assume that this limit with α → 1 should
also be a unit circle. Still, we are not able to see it undoubtedly, as we can only simulate
graphs with too few vertices:

References

[1] Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, 2013.

[2] Burago, Dmitri, Yuri Burago, and Sergei Ivanov. A course in metric geometry. Vol.
33. American Mathematical Society, 2022.

[3] Durrett, Rick. Probability: theory and examples. Vol. 49. Cambridge university press,
2019.

29



[4] van der Hofstad, Remco. “Stochastic processes on random graphs.” Lecture notes for
the 47th Summer School in Probability Saint-Flour 2017 (2017).

[5] Resnick, Sidney I. Heavy-tail phenomena: probabilistic and statistical modeling.
Springer Science & Business Media, 2007.

[6] Skorokhod, Anatolii V. “Limit theorems for stochastic processes.” Theory of Probability
& Its Applications 1.3 (1956): 261-290.

30


