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Introduction

In 1937, Fisher [9] and simultaneously Kolmogorov, Pietrowski, Piskunov [12] in their study
on the evolution of biological populations, introduced the following heat equation:

(0.1)
∂u

∂t
= ∆u+ u(1− u)

where u = u(x, t), x ∈ R, t ≥ 0. Currently, (0.1) is known as Fisher – Kolmogorov, Pietrowski,
Piskunov equation (FKPP) and has found extensive applications in modeling population
growth and wave propagation in various fields, including physics and chemistry.

The FKPP equation is known for its specific stable solutions of the form

u(x, t) = v(x± ct)

for some speed c > 0 and shape v – an increasing function such that

lim
z→−∞

v(z) = 0, lim
z→+∞

v(z) = 1.

Such solutions are called travelling wave solutions and are of significant interest in studying
this equation. Important connected aspect of the FKPP equation is the long-term behaviour of
solutions, including the shape of the limiting solution and the asymptotic position of the FKPP
front. For some initial conditions branching Brownian motion can help in the exploration of
these problems.

Branching Brownian motion (BBM) is a continuous time spatial branching process defined
as follows. At time t = 0, a single particle starts at origin and moves as a standard Brow-
nian motion. At random time with distribution Exp(1) it divides into two particles. Those
new particles moves as independent Brownian motions, each having a random lifetime with
distribution Exp(1). They split in the same fashion as their parent.

Both FKPP and BBM can be seen as modelling the evolution of a population. While the
FKPP equation is deterministic and considers the population as a whole, the BBM model is
stochastic and explicitly incorporates individual variation. Despite their differences, these two
models are directly related to each other by McKean’s duality.

As McKean has shown in [13] if one calls Rt the position of the rightmostpart particle in
a BBM then the distribution function of Rt, that is

u(x, t) = P(Rt > x)

is a solution of FKPP equation with a initial condition u0(x) = 1{x<0}. What’s more, if m(t)
denotes the median of u, i.e. u(m(t), t) = 1/2, then

u(x+mt, t) → v(x), t → ∞

and v is the wave solution of FKPP at speed 21/2.
In this paper, we consider a model that can be interpreted as a discrete version of branching

Brownian motion with selection, called N–branching random walk (N–BRW). It is a system of
N particles positioned on the real line, which evolves through iterations following a specific set
of rules. In each iteration, every particle undergoes a splitting process, resulting in two offspring
particles. These particles then perform random jumps, guided by a prescribed displacement
distribution supported on R. The system retains only N rightmost particles, discarding the
remaining ones.

This model was first introduced in 1997 by E. Brunet and B. Derrida in [4]. The inspiration
for this model stemmed from Derrida’s earlier investigations into directed polymers. As N–
BRW can be seen as a discrete version of branching Brownian motion with selection, it can be
assumed that some of the connections with FKPP equation remain. In the mentioned paper
Brunet and Derrida demonstrated by simulations that, as N grows to infinity, there arises
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a connection between the velocity of rightmost particle of N–BRW and a discrete version of
the FKPP equation with a cutoff value of 1/N , that is

(0.2)
∂u

∂t
= ∆u+ u(1− u)1{u ≥ 1/N}.

Interestingly, depending on the distribution of jumps, the behaviour of N–BRWs for large N
differs significantly. The properties of this system are now well understood in the case where
the displacement distribution admits exponential moments and in the case of displacements
with regularly varying tails.

In the case of displacements admitting exponential tails in 1997 Brunet and Derrida in [4]
gave non-rigorous arguments on the speed of convergence and the spatial distribution that
later obtained rigorous proofs. Bérard and Gouéré in [6] proved that the asymptotic speed
converges to a finite limiting speed as N → ∞, with a slow rate (logN)−2. So this limiting
speed is the same as the speed of the rightmost particle in a classical branching random walk
without selection with exponentially decaying tails. In [8], [2] can be found arguments on the
spatial distribution that the fraction of particles to the right of a given position at a given time
evolve according to discrete analogue of FKPP equation. There are also results on the shape
of genealogy in this case that can be found in [5].

In the case of displacements with polynomial tails, in 2014 Bérard and Maillard in [1] proved
that the speed of the particle cloud grows as aN/ log2N in N , and the propagation is linear
or superlinear (but at most polynomial) in time. In the classical branching random walk
without selection in a heavy-tailed setting the propagation is exponentially fast in time, so
these behaviours differ. In 2022, Penington, Roberts and Talyigás in [14] showed that in this
case the majority of the population is located close to the leftmost particle and found the
typical large time shape of the genealogy.

In this paper, we consider the case of semiexponential displacements and we are mainly
interested in the behaviour of the maximal position of the system.

The main objective of this paper was to investigate the behaviour of the rightmost position’s
speed in the N–BRW as N becomes large. However, we encountered more significant challenges
than initially anticipated, and as a result, we were only able to obtain partial asymptotic results.
To establish our proof, we followed the methods employed in the case where the displacement
distribution admits exponential moments, as outlined in [6]. In their work, they extensively use
the results from [11] on the branching random walk killed below a linear space–time barrier.
The basis of their proof involved comparing the particle system with a family of N independent
branching random walks killed below a linear space–time barrier.

Specifically, they required the asymptotic analysis of the probability that an infinite ray
exists within the branching random walk, consistently positioned above the line with a slope
of γ − ϵ, where γ denotes the asymptotic speed of the rightmost position in the branching
random walk. So our work to prove the result involved determining similar asymptotics in our
specific case.

The paper is organised as follows. In Section 1 we formally state the problem and the
main result of the paper (Theorem 1.1). In Section 2 we investigate previously mentioned
asymptotics in the branching random walks killed below a linear space–time barrier. Section
3 provides a discussion of various elementary properties of the model we consider useful in the
sequel. Sections 4 and 5 collectively present the proof of Theorem 1.1, as they contain the
proofs of both the upper and lower bounds stated in the theorem.
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1. Statement of the results

1.1. The model with selection. Let c : R → [0,+∞) be a locally bounded function and
such that c(x)

x→∞−−−→ C, where C ∈ (0,+∞). Then let the distribution p on R be of the form

p([x,+∞)) = c(x)e−λxr
for x > 0,

for some r ∈ (0, 1), λ > 0 and has finite expectation.
We consider a discrete-time particle system of N particles on R evolving through the re-

peated application of branching and selection steps defined as follows:
• Branching: each of the N particles is replaced by two new particles; the position of each

new particle is that of the original particle shifted by a random walk step, according
to the distribution p, where the steps for different particles are independent.

• Selection: only the N rightmost particles are kept among the 2N obtained at the
branching step, to form the new generation of N particles.

We call this system a N–particle branching random walk. Every repetition of the branching-
selection mechanism we call a step.

The formal definition of this system appears later, namely in Section 3. We give two for-
malisation of this system: in terms of Markov chain on the space of point measures and in
terms of branching random walks, that are defined in section 2.

1.2. Main result. Let XN
n be the positions of the population at the step n. Then maxXN

n

is the position of the rightmost particle of such population.

Theorem 1.1. The limit vN = limn→∞maxXN
n /n exists almost surely and in L1 and there

exist such α∗, α
∗ ∈ R, 0 < α∗ ≤ α∗ that

(1.1) α∗ ≤ lim inf
N→∞

vN
(logN)1/r−1

≤ lim sup
N→∞

vN
(logN)1/r−1

≤ α∗.

The proof of Theorem 1.1 is split into three parts: the proof of the existence of vN (Section
3, Proposition 3.13), the proof of the lower bound in (1.1) (Section 4) and the proof of the
upper bound in (1.1) (Section 5).

It should be emphasised that the existence of vN follows from general and known arguments
and we adapt the proof formulated in [6]. The main contribution of this paper in the investiga-
tion of the behaviour of N–BRW with semiexponential increments is finding the asymptotics
of vN , so exactly the proof of the existence of α∗ and α∗ such that (1.1).

2. Killed branching random walk

In this section we consider a different model. It is called branching random walk with binary
spitting and we denote it as BRW. It is somehow similar to the model defined in subsection 1.1,
but starts with only one particle and doesn’t consist on the selection step. As mentioned in
the introduction, we want to investigate branching random walks killed below a barrier and
some of the results given in this section will be useful in the proof of Theorem 1.1.

At the beginning of this section we formally introduce the BRW. Defining it requires recalling
some definitions and notations concerning trees.

2.1. The model without selection. By the binary tree we mean the set of finite words

T = {∅} ∪
∞⋃
n=1

{0, 1}n.

∅ is called a root, for u, v ∈ T, uv denotes the concatenation of u and v. If v = u0 or v = u1
then u is called a parent of v. More generally, if v = uw for some u,w ∈ T, then we say that
u is an ancestor of v and we write u ≤ v. In the sequel, for fixed vertex u, v ≤ u means all
the ancestors of u including u and v < u means all the ancestors of u excluding u.
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Given m ≥ 1, we say that a sequence u0, . . . , um ∈ T is a descending path if, for all i ∈ J1,mK,
ui−1 is the parent of ui, where Jk, lK := {k, k + 1, . . . , l} for k < l.

We also let |u| be the length of the word u and we call it the depth of u. And by T(n) we
mean all the vertices of T of depth n.

Definition 2.1. BRW is a pair (T,Φ), where T is a binary tree, and Φ : T → R is a random
map, such that Φ(∅) = 0 and

Φ(v) =
∑
v≤u,
v ̸=∅

Xv,

where {Xv}v∈T\{∅} are i.i.d. random variables with common distribution p.

2.2. Definitions and statement of the main result.

Definition 2.2. Given α > 0 and n ∈ N, we say that a vertex u ∈ T is (α, n)–good if there
exists a finite descending path u =: u0, u1, . . . , un, such that Φ(ui)−Φ(u0) ≥ αn1/r−1i for all
i ∈ J1, nK.

For this model, we are interested in the probability that in BRW there exists a descending
path above the barrier, so the probability of the existence of such (α, n)–good particles. So for
α > 0 and n ∈ N we consider an event that in BRW the root is (α, n)–good. Let

Aα,n = {∃u ∈ T : |u| = n,Φ(v) ≥ αn1/r−1|v| for all v ≤ u}.

Let the probability of this event be

ρ(α, n) = P[Aα,n],

and let us also define
r(α, n) = − log ρ(α, n).

The main result of this section is stated below.

Theorem 2.3. There exists a sequence {nk} such that for every α > 0, r(α, nk)/nk converges.
Then

r(α) := lim
k→∞

r(α, nk)/nk

is continuous and strictly increasing. What’s more

λγr0 ≤ r(α) ≤ (λαr) ∧

(
λ

(
λα

log 2

)r/(1−r)
)

where γ0 ∈ (0, (α/ log 2)1/(1−r)) is such that λγr0 = γr−1
0 α− log(2).

The proof of this theorem is split into a series of propositions and lemmas. We start with
finding the bounds on r(α, n)/n. Then we prove the existence of such sequence {nk} that
r(α, nk)/nk converges for all α rational. By some technical lemmas we are able to extend the
definition of r(α) to all α ∈ R. At the end we check that such function is actually continuous
and strictly increasing.

2.3. Bounds on r(α, n). The first step to prove Theorem 2.3 is finding the bounds on r(α, n).
We will give two upper bounds. Depending α and r the first or the second gives a better
estimate.

Although we start with a simple remark on the distribution p, that will be useful in all the
paper.

Remark 2.4. Since c is locally bounded and it converges, it is also bounded. Thus in the sequel
M stands for the bound of c, so M > 0 is such that c(x) ≤ M for all x ∈ R.
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Upper bound on r(α, n). The idea behind the first proof is that since all the jumps are non
negative, then it is enough for the path to meet the conditions of Aα,n to perform an sufficiently
big jump at first generation.

Proposition 2.5. For any α > 0 we have

lim sup
n→∞

r(α, n)

n
≤ λαr

Proof. Take R ≥ 0 and let γ := α + Rn1−1/r. Assume that BRW is such that in the first
generation exists one particle u1 that performs jump not less than γn1/r. It happens with
probability

1−
(
1− P(X ≥ γn1/r)

)2
= 2P(X ≥ γn1/r)(1 + o(1)).

If we also assume that in this BRW exists a descending path u2 ≤ · · · ≤ un such that Xuk
≥ −R

for all k ∈ J2, nK, then such BRW meets the condition of Aα,n. It follows from the fact that
for all k ∈ J1, nK we have

Φ(uk) ≥ γn1/r − kR ≥ αn1/r−1k = αn1/r−1|uk|.

To find the probability that there exists such a descending path that all the jumps are ≥ −R

let us consider a Galton–Watson process {Z(R)
n }n≥0 with the offspring distribution

(2.1)
P(ξ = 0) = p((−∞,−R))2, P(ξ = 2) = p([−R,+∞))2,

P(ξ = 1) = 2p((−∞,−R))p([−R,+∞)).

Then the probability of the existence of the mentioned path is non-smaller than the probability
of the survival of {Z(R)

n }. Since Eξ = 2p([−R,+∞)), then for R large enough the process is
supercritical. By Theorem 4.3.12. in [7] (p. 232) P[(∀n) Z(R)

n ≥ 1] = q > 0.
So for every n ∈ N,

ρ(α, n) ≥ 2P(X ≥ γn1/r)(1 + o(1)) · q

= 2c(αn1/r) exp {−λγrn}(1 + o(1)) · q,

thus by the definition of γ,

(2.2) − log ρ(α, n)

n
≤ − 1

n
log
(
2c(αn1/r)(1 + o(1))q

)
+ λ(α+Rn1−1/r)r.

Since r < 1 and the term log
(
2c(αn1/r)q(1 + o(1))

)
is bounded, by letting n → ∞ in (2.2) we

conclude the lemma. □

To prove the next upper bound we will use the following lemma on the supercritical Galton–
Watson process. It is adapted from [6], but we prove it for completeness.

Lemma 2.6 (Lemma 3. from [6]). Let (Mn)n≥0 denote the population size of a supercritical
Galton–Watson process with square-integrable offspring distribution started with M0 = 1. Let
m := EM1 > 1, then there exists r > 0 such that, for all n ≥ 0,

P(Mn ≥ mn) ≥ r.

Proof. Let us denote as m, σ2 the mean and the variance of the offspring distribution, respec-
tively. By the assumption on the process m > 1 and σ2 < ∞. Let Wn = Mn/m

n, then by the
second moment method

P
(
Mn

mn
≥ 1

)
≥ (EWn)

2

EW 2
n

.
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By the definition of Wn we have EWn = 1, so it is enough to find the second moment of Wn.
By Example 4.4.9. in [7] (p. 283) we have that EW 2

n = 1+σ2 1−m−n

m(m−1) . So for all n ≥ 1 we have

P(Mn ≥ mn) ≥ 1

1 + σ2 1−m−n

m(m−1)

> 0.

□

Proposition 2.7. For any α > 0 we have

lim sup
n→∞

r(α, n)

n
≤ λ

(
λα

log 2

)r/(1−r)

.

Proof. We saw in the previous proof that one particle that performs a jump big enough can
enable its descendants of several future generations to meet the condition of Aα,n. The idea
of this proof is similar to the previous one. Only this time we take into account also the
reproduction of these offspring and the possibility of them performing another big jump. So
we look how big jump is needed at first generation to trigger a chain reaction, i.e. for some of
the offspring already meeting the condition of Aα,n to perform a next similar big jump with
big probability.

Similarly as in the previous proof we fix R ≥ 0 and consider the Galton–Watson process
{Z(R)

n }n≥1 with offspring distribution given by (2.1). Let denote mR := Eξ = 2P(X ≥ −R).
Let

β0 = (1 + δ)

(
λ(α+Rn1−1/r)

logmR

)1/(1−r)

for some δ > 0. Assume that a BRW is such that in the first step one particle, called u1,
performs jump not less than β0n

1/r. This happens with probability 2P(X ≥ β0n
1/r)(1+ o(1)).

Let k1 = n β0

α+Rn1−1/r . Assume also that in the BRW there exists a descending path u1 ≤
· · · ≤ uk1 , |ui| = i for i ≤ k1 and Xui ≥ −R. Then for i ∈ J1, k1K we have

Φ(ui) ≥ β0n
1/r −Ri ≥ αn1/r−1i = αn1/r−1|ui|.

So such path meets the condition of Aα,n. By Lemma 2.6 we know that for R large enough
there are ≥ mk1

R such paths with probability ≥ q for some q > 0. Now, we show that with big
probability between that many descendants there appear a big jump.

So assume that Z
(R)
k1

≥ mk1
R . For n sufficiently large one of these mk1

R particles performs a
jump not less that β0n

1/r with probability ≥ 1
2 . It follows from the definition of β0, since

(logmR)β0

α+Rn1−1/r
− λβr

0 = ((1 + δ)− (1 + δ)r)

(
λ(α+Rn1−1/r)

logmR

)1/(1−r)

> 0

and using the inequality 1− x ≤ e−x we have for n large enough

P(max
|v|=k1

Xv ≥ β0n
1/r) ≥ 1−

(
1− P(X ≥ β0n

1/r)
)mk1

R

≥ 1− exp {−mk1
R P(X ≥ β0n

1/r)}

= 1− exp {−mk1
R c(β0n

1/r) exp {−λβr
0n}}

≥ 1− exp

{
−M exp

{
n
(
(logmR)

β0

α+Rn1−1/r
− λβr

0

)}}
≥ 1

2
.
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Let the particle that performed second big jump be called uk1 . Let now k2 = 2n β0

α+Rn1−1/r .

Then again with probability greater than P(Z(R)
k1

≥ mk1
R ) there exist more than mk1

R particles
v, descendants of uk1 , |v| = k2 such that for any k1 ≤ i ≤ k2 and any offspring ui ≤ v, |ui| = i
we have that

Φ(ui) ≥ 2β0n
1/r −Ri ≥ αn1/r−1i.

And one of them performs a jump not less than β0n
1/r with probability ≥ 1

2 . This jump
enables n β0

α+Rn1−1/r more generations to meet the condition of Aα,n, so it prolongs our path.

After K := ⌈α+Rn1−1/r

β0
⌉ such steps we obtain the whole descending path needed in Aα,n.

So
ρ(α, n) ≥ 2P(X ≥ β0n

1/r)(1 + o(1))(1/2)KP(Z(R)
k1

≥ mk1
R )K

≥ 2c(β0n
1/r)(1 + o(1))(1/2)KqK exp {−λβr

0n}
thus

− log ρ(α, n)

n
≤ − 1

n
log {2c(β0n1/r)(1 + o(1))(1/2)KqK}+ λβr

0.

Since the term log {2c(β0n1/r)(1 + o(1))(1/2)KqK} is bounded and mR
R→∞−−−−→ 2, by letting

n → ∞ and taking arbitrarily large R we conclude the lemma. □

Lower bound. Now we give a lower bound which is more complicated than the previous ones,
but its main idea is similar – we again investigate the big jumps performed by the walk.

We again start with a remark on the distribution p that will be useful in the proof of the
bound.

Remark 2.8. By the assumptions p has finite expectation. Although it doesn’t have to have
finite any other moments. If we assume that p is the distribution on [0,+∞), then it has all
moments finite and it follows from the computations.

Let X be a variable with distribution p, then for every k we have

E[Xk] = k

∫ ∞

0
xk−1P(X > x)dx ≤ kM

∫ ∞

0
xk−1e−λxr

dx

=
kM

rλk/r

∫ ∞

0
t
k
r
−1e−tdt < ∞.

Theorem 2.9. For any α > 0 we have

λγr0 ≤ lim inf
n→∞

r(α, n)

n
,

where γ0 ∈ (0, (λα/ log 2)1/(1−r)) is such that λγr0 = γr−1
0 α− log(2).

Remark 2.10. It may not be obvious at first, but γ0(α) ∈ (0, (λ log 2/α)1/(r−1)) given as
λγr0 = γr−1

0 α − log 2 actually grows with α. It follows from the Implicit function theorem,
which applied to f(α, γ0) = γr−1

0 α− λγr0 − log 2 gives that γ′
0(α) =

γ0
γ0rλ−(r−1)α > 0 for γ0 > 0

and α > 0. What’s more γ0(α)
α→+∞−−−−−→ +∞.

Proof. First, let us notice that w.l.o.g. we can assume that p is the distribution on [0,+∞),
just replacing X – variable with distribution p, by X+ = X1{X≥0}, since the probability of
the existence of a descending path for such changed distribution is definitely non smaller.

Let Hk = {∃u ∈ T : |u| = k, Xu ≥ γn1/r} and H0 = (
⋃n

k=1Hk)
c. Then we have

ρ(α, n) =

n∑
k=1

P(Aα,n ∩Hk ∩ (

k−1⋃
j=1

Hj)
c) + P(A ∩H0).(2.3)
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Denote as Sm the sum of m independent variables of distribution p. Let also E = γn1/r. Then
we have

(2.4)

P(Aα,n ∩Hk ∩ (
k−1⋃
j=1

Hj)
c)

≤ P(∃|u| = k : (∀v ≤ u)
∑

∅<w≤v
w ̸=∅

Xw ≥ αn1/r−1|v|, (∀v < u)Xv < E, Xu ≥ E)

≤ P(∃|u| = k :
∑
v<u
v ̸=∅

Xv ≥ αn1/r−1(k − 1), (∀v < u)Xv < E, Xu ≥ E)

≤ E

[ ∑
|u|=k

1

{∑
v<u
v ̸=∅

Xv ≥ αn1/r−1(k − 1), (∀v < u)Xv < E, Xu ≥ E

}]

= 2k · P
(
Sk−1 ≥ αn1/r−1(k − 1), (∀i ∈ J1, k − 1K)Xi < E, Xk ≥ E

)
≤ 2k · P

(
k−1∑
i=1

X
(E)
i ≥ αn1/r−1(k − 1)

)
· P(Xk ≥ γn1/r),

where X
(E)
i = Xi1{Xi<E}. By Chebyshev’s inequality and the independence of X(E)

i we have
that

(2.5)
P

(
k−1∑
i=1

X
(E)
i ≥ D

)
≤ exp {−sD} E

[
exp

{
s
k−1∑
i=1

X
(E)
i

}]

= exp {−sD} E
[
exp {sX(E)}

]k−1
,

so by (2.4) and (2.5) we conclude that

(2.6)
P(A ∩Hk ∩ (

k−1⋃
j=1

Hj)
c) ≤

≤ 2k · exp {−sαn1/r−1(k − 1)} E
[
exp {sX(E)}

]k−1
P(Xk ≥ γn1/r).

At the end of the proof we show that for s = λEr−1/(1 + 2ϵ) for ϵ > 0

E
[
exp {sX(E)}

]
≤ 1 + s · E[X] + o(s).(2.7)

Using the inequality 1 + x ≤ ex on the RHS of (2.7) it implies that

E
[
exp {sX(E)}

]k−1
≤ exp {s(k − 1)E[X] + ko(s)},(2.8)

so by (2.6)

(2.9)
P(Aα,n ∩Hk ∩ (

k−1⋃
j=1

Hj)
c) ≤

≤ 2kc(γn1/r) exp {−sαn1/r−1(k − 1) + s(k − 1)E[X] + ko(s)− λγrn}.
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Similarly

(2.10)

P(Aα,n ∩H0) =P
(
∃|u| = n : (∀v ≤ u)

∑
w≤v
w ̸=∅

Xw ≥ αn1/r−1|v|, (∀v ≤ u)Xv < E

)

≤P
(
∃|u| = n :

∑
v≤u,
v ̸=∅

Xv ≥ αn1/r, (∀v ≤ u)Xv < E

)

≤E

∑
|u|=n

1

{∑
v≤u,
v ̸=∅

Xv ≥ αn1/r, (∀v ≤ u)Xv < E

}
≤2n · P

(
Sn ≥ αn1/r, (∀i ∈ J1, nK)Xi < E

)
≤2n · P

(
n∑

i=1

X
(E)
i ≥ αn1/r

)
≤2n exp {−sαn1/r}E

[
exp {sX(E)}

]n
≤2n exp {−sαn1/r + snE[X] + no(s)}.

So by (2.3), (2.9) and (2.10) we get that

(2.11)

ρ(α, n) ≤M exp {−λγrn}
n∑

k=1

2k exp {−sαn1/r−1(k − 1) + s(k − 1)E[X] + ko(s)}

+ 2n exp {−sαn1/r + snE[X] + no(s)}

≤M exp {−λγrn} 2 exp {o(s)}
1− 2 exp {−sαn1/r−1 + sE[X] + o(s)}

+ 2n exp {−sαn1/r + snE[X] + o(sn)}

≤MH exp {−λγrn}+ 2n exp {−sαn1/r + snE[X] + o(sn)}

where H = 2 exp {o(s)}/(1− 2 exp {−sαn1/r−1 + sE[X] + o(s)}) and supposing that

(2.12) 2 exp {−sαn1/r−1 + sE[X] + o(s)} < 1,

since we used a formula for the sum of a geometric series. The definition of s, s = λ(γn1/r)r−1/(1+
2ϵ) yields that the assumption (2.12) is equivalent to the assumption

γ <

(
(log 2 + sE[X] + o(s)) · 1 + 2ϵ

λα

)1/(r−1)

.

So by (2.11) we have
ρ(α, n) ≤ MH exp {−λγrn}+

+2n exp {λγr−1(−αn+ n2−1/rE[X])/(1 + 2ϵ) + o(n2−1/r)}

Let bn = λγr−1n2−1/rE[X]/(1 + 2ϵ) + o(n2−1/r), then we have

log n
√
ρ(α, n) ≤

≤ log n
√

M exp {−λγrn}+ exp {−λαγr−1n/(1 + 2ϵ) + n log 2 + bn}.
Since bn ≪ n, then

(2.13) lim sup
n

log n
√

ρ(α, n) ≤ max {−λγr, log 2− λαγr−1/(1 + 2ϵ)}.
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And by the fact that s
n→∞−−−→ 0, then (2.13) holds for all for every γ <

(
log 2 · 1+2ϵ

λα )
)1/(r−1)

and we can minimize it by γ. Let f(γ) = −λγr, g(γ) = log 2− λαγr−1/(1 + 2ϵ). f is strictly
decreasing and g is strictly increasing, they are both negative for considered γ. Then minimum
of max {f(γ), g(γ)} is reached in γ0 such that f(γ0) = g(γ0). Since ϵ can be taken arbitrarily
small, the conclusion follows.

Proof of (2.7). In this proof we follow [10] (more precisely the proof of (18) in the proof
of Theorem 2).

Using the estimate ex ≤ 1 + x+ 1
2x

2 + · · ·+ xk/k! + (1/(k + 1)!)xk+1ex, we have

(2.14) E
[
exp

{
sX(E)

}]
≤ 1 + sE[X(E)] +

1

2
s2E[(X(E))2] + · · ·+ sk

k!
E[(X(E))k]

+
sk+1

(k + 1)!
E[(X(E))k+1 exp

{
sX(E)

}
].

By Remark 2.8 we know that lim supE E[(X(E))k] < ∞ for every k. So it suffices to show that
the term E[(X(E))k+1 exp

{
sX(E)

}
] remains bounded for n → ∞.

Fix ϵ > 0. Due to Cauchy-Schwarz inequality,

(2.15) E
[
(X(E))k+1 exp

{
sX(E)

}]
≤ E

[
(X(E))(k+1)(1+ϵ)/ϵ

]ϵ/(1+ϵ)
E
[
exp

{
(1 + ϵ)sX(E)

}]1/(1+ϵ)
.

Again, by Remark 2.8 the first term on the RHS of (2.15) remains bounded for n → ∞, so we
only investigate the second term.

Now we use the fact that for a non-negative random variable X and t,K > 0 we have

E
[
exp

{
tX1{X≤K}

}]
=

∫ K

0
tetsP[X > s]ds+ 1− (etK − 1)P(X > K).

We get that for n large enough

E
[
exp {(1 + ϵ)sX(E)}

]
≤1 +

∫ E

0
(1 + ϵ)s exp {(1 + ϵ)sx}P(X > x)dx

≤1 +

∫ E

0
M(1 + ϵ)s exp {(1 + ϵ)sx− λxr}dx.

Taking s = λEr−1/(1 + 2ϵ) we have

E
[
exp {(1 + ϵ)sXE}

]
≤ 1 +M

∫ E

0
λEr−1 exp

{
1 + ϵ

1 + 2ϵ
λEr−1x− λxr

}
dx

= 1 +M

∫ 1

0
λEr exp

{
λEr

(
1 + ϵ

1 + 2ϵ
y − yr

)}
dy.

Since 1+ϵ
1+2ϵ ≤ 1− δ for some δ > 0 and for y ∈ [0, 1] we have y − yr ≤ 0, so

E
[
exp {(1 + ϵ)sX(E)}

]
≤ 1 +M

∫ 1

0
λEr exp {λEr(−δy)}dy

= 1− M

δ
[exp {−λErδ} − 1]

= 1− M

δ
[exp {−λγrnδ} − 1] .
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So the second term in (2.15) also remains bounded for n → ∞. □

2.4. Definition of the rate function.

Proposition 2.11. There exist a sequence nk such that r(α, [βnk])/[βnk] is convergent for
any rational α, β > 0.

Proof. By the lemmas 2.5, 2.7 and 2.9 we know that r(α,[βn])
[βn] is bounded for every α and β.

So, for every α and β, and for every sequence {nk} there exists such a subsequence {nki} that
r(α, [βnki ])/[βnki ] converges.

Now, let {(αk, βk) : k ∈ N} be the sequence of all the pairs of positive rational numbers.
We construct a sequence {nk} in a following way:

(1) In first step, as {n1
k} we take the sequence such that r(α1, [β1n

1
k])/[β1n

1
k] converges and

take n1 := n1
1;

(2) In mth step, as {nm
k } we take a subsequance of {nm−1

k } such that r(αm, [βmnm
k ])/[βmnm

k ]
converges. Take nm = nm

m.
From the construction {nk} follows that it is convergent for every rational α, β > 0. □

In the sequel for a rational α > 0 we will write

(2.16) r(α) = lim
k→∞

r(α, nk)/nk,

where {nk} is the sequence obtained by Lemma 2.11.
We aim for the extension of the definition of r(α) for all α ∈ R. For this purpose we will

prove the continuity of r(α) for α ∈ Q+.
Firstly we prove a technical lemma on the convergence in (2.16).

Lemma 2.12. For a rational α > 0,
r(α, nk ± 1)

nk
→ r(α).

Proof. Since Aα,n+1 ⊆ Aα,n for every n ∈ N, then ρ(α, n+ 1) ≤ ρ(α, n), so

r(α, n+ 1)

n
≥ r(α, n)

n
.

So lim infk
r(α,nk+1)

nk
≥ r(α). Similarly we get that lim supk

r(α,nk−1)
nk

≤ r(α).

To get the second inequality, at the end of the proof we show that for m large enough

(2.17) c(ε(m)m1/r)e−λε(m)rm · ρ(α,m) ≤ ρ(α,m+ 1),

where ε(m) = α
((

1 + 1
m

)1/r − 1
)
.

Then, taking m = nk we get that

(2.18) −
log c(ε(nk)n

1/r
k )

nk
+ λε(nk)

r +
r(α, nk)

nk
≥ r(α, nk + 1)

nk
.

Since c is bounded and ε(m)
m→∞−−−−→ 0, by taking k → ∞ in (2.18) we get that lim supk

r(α,nk+1)
nk

≤
r(α). Similarly, taking m = nk − 1 we get that

− log c(ε(nk − 1)(nk − 1)1/r)

nk
+ λε(nk − 1)r · nk − 1

nk
+

r(α, nk − 1)

nk
≥ r(α, nk)

nk
.

So lim infk
r(α,nk−1)

nk
≥ r(α) and it will finish the proof.

To prove (2.17) consider an event B such that in BRW in the first generation there exists
a particle v1 that performs a jump Xv1 ≥ ε(m)m1/r, and then its descendants perform an
independent BRW that belongs to Aα,m. It formally means that in T exists a descending path
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v1 ≤ v2 ≤ · · · ≤ vm+1, such that Φ(v1) ≥ ε(m)m1/r and Φ(vi) − Φ(v1) ≥ αm1/r−1(i − 1) for
i ≥ 2. By the independence of the jumps the probability of BRW belonging to B is equal

p([ε(m)m1/r,+∞)) · ρ(α,m) = c(ε(m)m1/r)e−λε(m)rm · ρ(α,m).

Now we claim that B ⊆ Aα,m+1. So we need to check that Φ(vi) ≥ α(m+1)1/r−1i for each i ∈
J1,m+ 1K, so check if for each i ∈ J1,m+ 1K

(2.19) ε(m)m1/r + αm1/r−1(i− 1) ≥ α(m+ 1)1/r−1i.

It holds for i = m+ 1 since ε(m) = α
((

1 + 1
m

)1/r − 1
)
, so

ε(m)m1/r + αm1/r = α(m+ 1)1/r.

If (2.19) holds for i, then it holds for i− 1 since αm1/r ≤ α(m+ 1)1/r. So (2.19) holds for all
i ∈ J1,m+ 1K. □

Lemma 2.13. For any rational α, ε > 0,

(2.20) r(α+ ε) ≥ r(α) ≥ r(α+ ε)− λεr.

Proof. Since Aα+ε,n ⊆ Aα,n for every n ∈ N, then we have
r(α+ ε, nk)

nk
≥ r(α, nk)

nk

so, by taking k → ∞ we get the LHS inequality in (2.20).
To prove the RHS inequality we show that

(2.21) c(δ(m)m1/r)e−λδ(m)rm · ρ(α,m− 1) ≤ ρ(α+ ε,m)

for δ(m) = ε− α
(
(1− 1

m)
1
r − 1

)
and for m large enough.

To prove (2.21) we proceed similarly as in the proof of (2.19). Let us consider an event
C such that in BRW in the first generation there exists a particle v1 that performs a jump
Xv1 ≥ δ(m)m1/r and then its descendants perform an independent BRW that belongs to
Aα,m−1. It formally means that in T exists a descending path v1 ≤ v2 ≤ · · · ≤ vm, such
that Φ(v1) ≥ δ(m)m1/r and Φ(vi) − Φ(v1) ≥ α(m − 1)1/r−1(i − 1) for i ∈ J2,mK. By the
independence of jumps the probability of BRW belonging to C is equal

p([δ(m)m1/r,+∞)) · ρ(α,m− 1) = c(δ(m)m1/r)e−λδ(m)rm · ρ(α,m− 1).

Now we claim that C ⊆ Aα+ε,m. So we need to check that Φ(vi) ≥ (α+ε)m1/r−1i for each i ∈
J1, . . . ,mK, so if for each i ∈ J1, . . . ,mK

(2.22) δ(m)m1/r + α(m− 1)1/r−1(i− 1) ≥ (α+ ε)m1/r−1i.

For i = 1 the condition holds if δ(m)m1/r ≥ (α+ ε)m1/r−1, so if

(2.23)
(
ε− α

(
(1− 1

m
)
1
r − 1

))
·m ≥ α+ ε.

For m large the LHS of the inequality behaves like mε − α/r, so (2.23) holds for m large
enough.

To check the condition (2.22) for i ≥ 2 it is enough to check it for i = m, since α(m −
1)1/r−1 ≤ (α+ ε)m1/r−1. For i = m (2.22) holds by the choice of δ

δ(m)m1/r + α(m− 1)1/r = (α+ ε)m1/r.

So (2.22) holds for all i ∈ J1,mK, which gives (2.21).
By (2.21) for m = nk it follows that for k large enough

−
log c(δ(nk)n

1/r
k )

nk
+ λδ(nk)

r +
r(α, nk − 1)

nk
≥ r(α+ ε, nk)

nk
,
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where δ = ε−α
(
(1− 1

nk
)
1
r − 1

)
. Since c is bounded and δ(m)

m→∞−−−−→ ε, then by Lemma 2.12
by taking k → ∞ we obtain the RHS inequality in (2.20).

□

Proposition 2.14. The sequence r(α, nk)/nk is convergent for any α > 0. What’s more
r(α) = limk r(α, nk)/nk is continuous and non-decreasing.

Proof. We choose an α > 0 and fix ϵ > 0. Then we find such α1, α2 ∈ Q that α1 ≤ α ≤ α2

and α2 − α1 < ϵ. Then
ρ(α1, nk) ≤ ρ(α, nk) ≤ ρ(α2, nk),

so

r(α1) ≥ lim sup
k→∞

r(α, nk)

nk
≥ lim inf

k→∞

r(α, nk)

nk
≥ r(α2).

By Lemma 2.13

(2.24) 0 ≤ r(α2)− r(α1) ≤ λ(α2 − α1)
r ≤ λϵr.

Since ϵ can be chosen arbitrarily, then we get that

lim sup
k→∞

r(α, nk)

nk
= lim inf

k→∞

r(α, nk)

nk
.

By (2.24) the function r is continuous and non-decreasing. □

2.5. Analysis of the rate function. We want to prove also that r(α) is strictly increasing.
To do that we prove one more technical lemma.

Lemma 2.15. For any α, δ > 0 and rational ε ∈ (0, 1) such that α ≥ δε1/r−1,

r(α) + εr(δ) ≥ (1 + ε)r(β),

where

β =
α+ δε1/r

(1 + ε)1/r
.

Proof. We will prove that for every α, δ > 0 and ε ∈ (0, 1)

(2.25) ρ(α,m) · ρ(δ, [εm]) ≤ ρ(β, [(1 + ε)m])

for large enough m ∈ N. It will give us that

r(α, nk)

nk
+ ε

r(δ, [εnk])

εnk
≥ (1 + ε) · r(β, [(1 + ε)nk])

(1 + ε)nk
.

So by Lemma 2.12, that
r(α) + εr(δ) ≥ (1 + ε)r(β)

which will prove the lemma.
To prove (2.25) we choose α, δ and ε and consider an event D that in BRW there exists a

descending path such that in first m generations it belongs to Aα,m and in generations between
m and [(1 + ε)m] it belongs to Aδ,[εm].

It formally means that in T exists a descending path {vi}[(1+ε)m]
i=1 , v1 ≤ · · · ≤ v[(1+ε)m],

|vi| = i, such that Φ(vi) ≥ αm1/r−1i for i ∈ J1,mK and Φ(vi) ≥ αm1/r + δ[εm]1/r−1(i−m) for
i ∈ Jm+ 1, [(1 + ε)m]K.

We claim that D ⊆ Aβ,[(1+ε)m]. We need to check that for every i ∈ J1, [(1 + ε)m]K

(2.26) Φ(vi) ≥ β[(1 + ε)m]1/r−1i.
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It holds for i = 1 since β ≤ α+δε1/r

(1+ε)1/r
and α ≥ δε1/r−1, so

β[(1 + ε)m]1/r−1 ≤ α+ δε1/r

1 + ε
m1/r−1 ≤ αm1/r−1 ≤ Φ(v1).

Since (2.26) holds for i = 1 and β[(1+ε)m]1/r−1 ≤ αm1/r−1, then it holds for every i ∈ J1,mK.
Then we know that by the definition of δ and the fact that α ≥ δε1/r−1

αm1/r + δ(εm)1/r ≥ (α+ δε1/r)m1/r ≥ β[(1 + ε)m]1/r

and

β((1 + ε)m)1/r−1 ≥ α+ δε1/r

1 + ε
m1/r−1 ≥ δ(εm)1/r−1 ≥ δ[εm]1/r−1

So for m large enough

Φ(v[(1+ε)m]) ≥ αm1/r + δ[εm]1/r ≥ β[(1 + ε)m]1/r

so (2.26) holds for i = [(1 + ε)m]. And since for m large enough

β[(1 + ε)m]1/r−1 ≥ δ[εm]1/r−1,

then (2.26) holds for every i ∈ Jm+ 1, [(1 + ε)m]K. It ends the proof.
□

Proposition 2.16. Function r(α) is strictly increasing.

Proof. Let us start by noticing that by Lemma 2.15 we have

(2.27) r(α)− r

(
α+ δε1/r

(1 + ε)1/r

)
≥ ε ·

(
r

(
α+ δε1/r

(1 + ε)1/r

)
− r(δ)

)
,

for all δ ≤ αε1−1/r. By the assumption on δ we have that β := α+δε1/r

(1+ε)1/r
≤ α.

Fix ϵ > 0 and take such small ε > 0 that

α− α

(1 + ε)1/r
< ϵ.

Now, let us choose such small δ smaller than αε1−1/r that

r

(
α

(1 + ε)1/r

)
− r(δ) > ϵ.

We are able to find such δ > 0, since r(0) = 0, r is non-decreasing and, by lemmas 2.5 and

2.9, for all η > 0, 0 < r(η) < ληr, so it is enough for δ to be smaller than
(
r
(

α
(1+ε)1/r

)
/λ
)1/r

and αε1−1/r.
For such chosen ε and δ, by (2.27) and by the fact that r is non-decreasing we have that

r(α)− r(β) ≥ ε ·
(
r

(
α

(1 + ε)1/r

)
− r(δ)

)
> εϵ > 0,

for β < α such that α−β < ϵ. The conclusion follows by the fact that ϵ is chosen arbitrarily. □

3. Elementary properties of the branching-selection system

In this section we give a formal definition of the model defined in the subsection 1.1 and we
examine its basic properties. The main result of this section is the proof of the existence of
vN = limn→∞maxXN

n /n. All the definitions and proofs in this subsection are adapted from
[6].
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3.1. Notations and definitions. It is convenient to represent finite populations of parti-
cles as processes on the space of finite point measures on R. That’s why we start with the
introduction of the notion of such measures.

Definition 3.1. A finite point measure on R is a measure µ, for which there exist such
M(µ) ∈ N and a sequence {xi}M(µ)

i=1 , x1 ≥ · · · ≥ xM(µ) that

µ =

M(µ)∑
i=1

δxi .

Then M(µ) is called the total mass of µ and {xi} we call the support of µ.
We denote by maxµ and minµ respectively the maximum and minimum of the support of

µ, and the diameter d(µ) := maxµ−minµ.
As C we denote the set of all finite point measure on R. For N ≥ 1, we denote the set of

finite point measures on R with total mass equal to N as CN .

It is easy to notice that the model that we consider, so the branching-selection system is
actually a Markov chain, since the positions of the system in nth step, conditioning on the step
number n− 1 are independent on the previous steps. This explains the following definition.

Definition 3.2. Let {XN
n }n≥0 be a Markov chain on CN that starts at a deterministic value

XN
0 ∈ CN and whose transition probabilities are given by the branching-selection mechanism

with N particles defined in the subsection 1.1.
We assume that this Markov chain is defined on a probability space denoted by (Ω,F ,P).

We will also need a notion of stochastic ordering.

Definition 3.3. For two real random variables X and Y we write X ⪯ Y and say that X is
stochastically smaller than Y , if

P[X ≥ x] ≤ P[Y ≥ x]

for all x ∈ R.

Similarly, we define the ordering in the set of finite point measures.

Definition 3.4. Given µ, ν ∈ C we say that µ ⪯ ν, if

µ([x,+∞)) ≤ ν([x,+∞)) for all x ∈ R.

We will consider such ordering only on finite point measures. It turns out there is an easier
formulation of such ordering in this case.

Remark 3.5. For µ =
∑M(µ)

i=1 δxi , ν =
∑M(ν)

i=1 δyi , where x1 ≥ · · · ≥ xM(µ), y1 ≥ · · · ≥ yM(ν),
µ ⪯ ν is equivalent to M(µ) ≤ M(ν) and xi ≤ yi for all i ∈ J1,M(µ)K.

3.2. Elementary Properties of the Model. First in this subsection we prove that assuming
that their existence the limits minXN

n /n and maxXN
n /n for n → ∞ are equal. Then we prove

the existence of the limit of maxXN
n /n.

At first let us notice that the expectation of maxXN
n is finite.

Remark 3.6. Let m be the maximum of 2Nn i.i.d. variables of distribution p. The expectation
of m is finite, since the maximum can be bounded by the sum, so

E[m] ≤ 2NnE|X| < ∞,

where X has distribution p. So EmaxXN
n is finite as it is non greater than Em.
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3.2.1. Estimates on the diameter.

Proposition 3.7. Let uN := ⌈ logNlog 2 ⌉+ 1. Let m(1)
N and m

(2)
N denote respectively the minimum

and the maximum of the 2NuN steps performed by the system between times n − uN and n.
Then for all N ≥ 1, any initial population XN

0 ∈ CN , and all n ≥ uN ,

d(XN
n ) ≤ uN · (m(2)

N −m
(1)
N ).

Proof. Fix N , XN
0 and n ≥ uN . Let y := maxXN

n−uN
and let u be the particle that in

the n − uN th step reaches the maximal position y. We want to study the evolution of the
branching-selection system between times n− uN and n.

Assume first, that for all k ∈ Jn−uN +1, nK, the condition minXN
k < y+(k−(n−uN ))m

(1)
N

holds. Let us examine all the descendants of u. Since all the steps performed between times
n− uN and n are at least m

(1)
N , the position of a descendent of u in kth generation is greater

than y + (k − (n− uN ))m
(1)
N , so greater that minXN

k . Which means that all the descendants
of u from generation n are in the system XN

n . But there is 2uN > N of them, which is a
contradiction.

So, there exists k ∈ Jn− uN + 1, nK, such that

(3.1) minXN
k ≥ y + (k − (n− uN ))m

(1)
N .

Again, by the fact that all the steps performed between times n− uN and n are at least m(1)
N ,

if the condition (3.1) holds in the step kth, it also holds in the steps k + 1, . . . , n. So it has to
hold in nth step, so we conclude that minXN

n ≥ y + uNm
(1)
N .

Now, by the definition of m(2)
N and y, we have that maxXN

n ≤ y + uNm
(2)
N , so

d(XN
n ) = max(XN

n )−min(XN
n ) ≤ uN · (m(2)

N −m
(1)
N ).

□

Corollary 3.8. For all N ≥ 1 and any initial population XN
0 ∈ CN

lim
n→∞

n−1d(XN
n ) = 0,

with probability 1 and in L1(P).

Proof. Using the notation of Proposition 3.7, let FN := m
(2)
N −m

(1)
N . The expectation of FN

is finite, which follows from Remark 3.6, as the expectation of FN is non greater than the
expectation of m(2)

N .
By Proposition 3.7 we get that

E[n−1d(XN
n )] ≤ n−1uNE[FN ],

for all n ≥ uN . So it yields the convergence of E[n−1d(XN
n )] to 0 in L1(P) for n → ∞.

Again, by Proposition 3.7 we have that for any x > 0∑
n≥uN

P(n−1d(XN
n ) ≥ x) ≤

∑
n≥uN

P(n−1uNFN ≥ x) ≤ uNE(FN )/x.

So applying the Borel-Cantelli lemma yields that

P(lim sup
n→∞

n−1d(XN
n ) ≥ x) = 0

for every x > 0. Since x can be chosen arbitrarily, we conclude the convergence of E[n−1d(XN
n )]

to 0 with probability 1. □
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3.2.2. Monotonicity properties. Now we prove a technical lemma. Its corollary states that for
two branching-selection systems ordered in first step we are able to find such a coupling that
keeps their order. This property will be useful in the proof that {vN}N is monotonic.

Lemma 3.9. For N1, N2 ∈ N such that 1 ≤ N1 ≤ N2, and µ1 ∈ CN1, µ2 ∈ CN2 such that
µ1 ⪯ µ2, there exists a pair of random variables (Z1, Z2) taking values in CN1 ×CN2 such that:

• the distribution of Zi for i ∈ {1, 2} is that of the population of particles obtained by
performing one branching-selection step (with Ni particles) starting from the population
µi,

• with probability one, Z1 ⪯ Z2.

Proof. For k ∈ {1, 2}, we write µk =
∑Nk

i=1 δxi(k), with x1(k) ≥ · · · ≥ xNk
(k). From the

assumption that µ1 ⪯ µ2, by Remark 3.5, we deduce that xi(1) ≤ xi(2) for all i ∈ J1, N1K.
Now consider an i.i.d. family {εi,j}i∈J1,N2K,j∈{1,2} with common distribution p. Those

are the jumps performed by the particles of our systems in the first step. So let Tk :=∑Nk
i=1

∑
j∈{1,2} δxi(k)+εi,j , and define Zk as being formed by the Nk rightmost particles in

Tk. Since xi(1) + εi,j ≤ xi(2) + εi,j , for all 1 ≤ i ≤ N1 and j ∈ {1, 2}, we deduce that T1 ⪯ T2,
whence Z1 ⪯ Z2. The conclusion follows. □

Remark 3.10. Let us notice that the statement of Lemma 3.9 holds for any number of branching-
selection systems. The proof of Lemma 3.9 is naturally modified to the proof of the existence
of such coupling for k systems, since it just requires considering greater family of epsilons, i.e.
{εi,j}i∈J1,NK,j∈J1,kK where N = maxl≤k Nl and constructing more variables {Tl}kl=1.

Corollary 3.11. For N1, N2 ∈ N such that 1 ≤ N1 ≤ N2, and µ1 ∈ CN1, µ2 ∈ C2 such that
µ1 ⪯ µ2, there exists a coupling (Z1

n, Z
2
n)n≥0 between two versions of the branching-selection

particle system, with N1 and N2 particles respectively, such that Z1
0 := µ1, Z2

0 := µ2, and
Z1
n ⪯ Z2

n for all n ≥ 0.

To prove the existence of the limit of maxXN
n /n we will use the Kingman’s subadditive

ergodic theorem. Below we present one of its versions. The proof can be found in [7] (Theo-
rem 6.4.1., p. 343).

Theorem 3.12 (Kingman’s subadditive ergodic theorem). Suppose a family of random vari-
ables Xm,n satisfy:

(i) X0,n+m ≤ X0,n +Xn,m.
(ii) {Xnk,k}n≥1 are i.i.d. for every k.
(iii) The distribution of {Xm,k}k≥1 doesn’t depend on m.
(iv) EX+

0,1 < ∞ and for each n, EX0,n ≥ γ0n, where γ0 > −∞.
Then X = limn→∞X0,n/n exists a.s. and in L1 and X = infm EX0,m/m a.s.

Proposition 3.13. There exists vN such that, with probability 1, and in L1(P),
(3.2) lim

n→∞
minXN

n /n = lim
n→∞

maxXN
n /n = vN

and vN = infn E[maxXN
n /n].

Proof. Firstly, let us note that, in view of Corollary 3.8, if either of the two limits in (3.2)
exists, then the other must exist too and have the same value. So it is enough to prove the
statement with (3.2) replaced by

(3.3) lim
n→∞

maxXN
n /n = vN .

Let us also note that it is enough to prove the result for such systems that XN
0 = Nδ0.

It follows from the observation that the limit in the thesis is translation invariant, meaning
that shifting all the particles by a translation on R doesn’t change the limit. Having a system
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{XN
n }n≥0 we take two systems: {Y N

n }n≥0 such that Y N
0 = NδminXN

0
and {ZN

n }n≥0 such that
ZN
0 = NδmaxXN

0
. Then by Remark 3.10 we get that

Y N
n ⪯ XN

n ⪯ ZN
n

for all n, and so by Remark 3.5

maxY N
n ≤ maxXN

n ≤ maxZN
n .

So having (3.3) for {Y N
n } and {ZN

n }, we conclude it for {XN
n }.

So we perform the proof of (3.3) for such system {XN
n } that XN

0 = Nδ0.
Consider a family {εl,i,j}l≥0,i∈{1,...,N},j∈{1,2} of i.i.d. random variables with common distri-

bution p. For l ≥ 0, we denote by {WN
l,k}k≥0 a N–BRW such that:

• WN
l,0 := Nδ0;

• For k ≥ 0, we write WN
l,k =

∑N
i=1 δxi , where x1 ≥ · · · ≥ xN , and we define Tl,k :=∑N

i=1 δxi+εl+k,i,1
+ δxi+εl+k,i,2

. Then WN
l,k+1 is obtained from Tl,k by keeping only the

N rightmost particles.
Observe that for every l, {WN

l,n}n≥0 has the same distribution as {XN
n }n≥0.

Below on Figure 1 we present 6 generations of simulated WN
1 , WN

2 and WN
3 . We shift WN

2

and WN
3 in time to outline the relation between the jumps of those processes.

Figure 1. Simulated 6 generations of WN
1 , WN

2 and WN
3 where p is Weibull(1)

Now, we are going to use the Kingman’s subadditive ergodic theorem. So below we check
the assumptions in the same order as stated in Theorem 3.12.

Firstly, let us notice that for all n,m ≥ 0

(3.4) maxWN
0,n+m ≤ maxWN

0,n +maxWN
n,m.

If we have two systems that perform the same branching steps, and at some point one is
greater than another, then it will be greater in every next step by the same argument as in
the proof of Lemma 3.9. At (3.4) we compare maximums of two systems that perform the
same branching steps (due to the construction of {WN

l,k}, the epsilons used in construction of
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WN
0,n+m and WN

0,n, WN
n,m are exactly the same), but at moment n one of them is shifted to

NδmaxWN
0,n

. Since WN
0,n ⪯ NδmaxWN

0,n
, (3.4) holds.

Secondly, let us notice that {WN
nd,d}n≥0 is an i.i.d. family. It follows from the fact that the

random measure WN
nd,d is obtained by performing d branching-selection steps that depend only

on a collection Ed := {εd(n+1),i,j : i ∈ J1, NK, j ∈ {1, 2}}, where {Ed : d ≥ 0} are i.i.d. So we
deduce that the sequence {maxWN

nd,d}n≥0 is i.i.d.
Thirdly, the distribution of {maxWN

l,k}k≥0 doesn’t depend on l, since the distribution of
{WN

l,k}k≥0 doesn’t.
Finally, let us note that maxWN

0,1 = maxi∈J2NK,j∈{1,2} ε0,i,j , so

E|maxWN
0,1| ≤ 2NE|ε| < +∞

and
EmaxWN

0,1 ≥ E[ε],
where ε has distribution p. Inductively, we prove that E[maxWN

0,n] ≥ n·E[ε], since maxWN
0,n+1 ≥

maxWN
0,n +maxj∈{1,2} εn,1,j .

Theorem 3.12 gives that limn→∞WN
0,n/n = vN = infn E[maxWN

0,n/n] in L1(P) and with
probability 1. Since {WN

0,n}n has the same distribution as {XN
n }n, the conclusion follows. □

Proposition 3.14. The sequence (vN )N≥1 is non-decreasing.

Proof. Take N1, N2 ∈ N, such that N1 ≤ N2. By Corollary 3.11 since N1δ0 ⪯ N2δ0 we get the
coupling of two branching-selection systems with N1 and N2 particles {XN1

n , Y N2
n }n≥0 such

that XN1
0 = N1δ0, Y N2

0 = N2δ0, and XN1
0 ⪯ Y N2

0 for all n ≥ 0. Then, by Proposition 3.13 we
get that

vN1 = lim
n→+∞

maxXN1
n /n ≤ lim

n→+∞
maxY N2

n /n = vN2 .

□

3.3. Coupling with a family of N branching random walks. We now give one more
formal definition of the branching-selection system. It is equivalent to the one given in the
definition 3.2, but uses the BRWs defined in section 2. It will be useful to combine the concept
of branching-selection system with the killed branching random walks.

Let {BRWi}i∈J1,NK denote N independent copies of a branching random walk BRW. Each
BRWi consists of a binary tree Ti and a map Φi. For i ∈ J1, NK and n ≥ 0 we define the
disjoint union

T N
n := T1(n) ⊔ · · · ⊔ TN (n).

For every n, we fix an a priori total order on T N
n depending only on the tree structure.

We now define by induction a sequence {GN
n }n≥0 such that, for each n ≥ 0, GN

n is a random
subset of T N

n containing exactly N elements:
• GN

0 := T N
0 ;

• Given n ≥ 0 and GN
n , let HN

n ⊆ T N
n+1 contains the children of GN

n . Then, let GN
n+1 ⊆

HN
n contains the N vertices that are associated with the largest values of the underlying

random walks Φis (breaking the ties by using the priori order on T N
n ).

Now let XN
n denote the distribution of the values of corresponding Φis on the vertices from

GN
n . The sequence {XN

n }n≥0 has the same distribution as {XN
n }n≥0 started from XN

0 :=
Nδ0. Thus, we can take for our reference probability space (Ω,F ,P) the one on which
BRW1, . . . , BRWN are defined, and let XN

n has the distribution XN
n . This way we ob-

tain a coupling between {XN
n }n≥0 (such that XN

0 = Nδ0) and the branching random walks
BRW1, . . . , BRWN .
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4. Upper bound on vN

Theorem 4.1. There exists such α∗ > 0 that

lim sup
N→∞

vN

(logN)1/r−1
≤ α∗.

What’s more, α∗ ≥ log 2/λ1/r.

In the proof of this theorem a following combinatorial lemma is useful. It gives the connection
between the theorem and the problem investigated in section 2 – the probability that the
particle in BRW is (m, v)–good.

The lemma and its proof are adapted from [6].

Lemma 4.2. Let v1, v2 ∈ R be such that v1 < v2. Let K > 0. Take n ∈ N, such that
n ≥ 1 and m ∈ J1, nK. Let now x0, . . . , xn be a sequence of real numbers such that x0 = 0 and
xi+1 − xi ≤ K for all i ∈ J0, n− 1K. Let

I := {i ∈ J1, n−mK : xi − xi ≥ v1(j − i) for all j ∈ Ji, i+mK}.

If xn ≥ v2n, then #I ≥ v2−v1
K−v1

n
m −K/(K − v1).

Proof. Let 0 =: x0, . . . , xn be as in the statement of the lemma. We define inductively a
sequence {τi}i.

• τ0 := 0.
• Given τi ≤ n we define

τi+1 := inf{j ∈ Jτi + 1, nK : xj < xτi + v1(j − τi) or j = τi +m},

where we assume that inf ∅ = n+ 1.
Let G := max{i : τi < n}, then τG ≥ n−m.

Now we "colour" the integers 0, . . . , n− 1. If xτi+1 ≥ xτi + v1(τi+1 − τi) and τi+1 ≤ n, then
τi, . . . , τi+1 − 1 are coloured red. Note that then τi belongs to I. The remaining integers in
0, . . . , n− 1 are coloured blue.

Now, let Vred be the set of the integers coloured red in J0, n−1K, and Vblue of the blue terms.
Since for every k we have xk+1−xk ≤ K, and for every blue τk we have xτk+1

− xτk < v1(τk+1 − τk)
then

xn = (xn − xτG) +
G−1∑
k=0

(xτk+1
− xτk)

=
n−1∑
k=τG

(xk+1 − xk) +
∑

{k<G: τk∈Vred}

(xτk+1
− xτk) +

∑
{k<G: τk∈Vblue}

(xτk+1
− xτk)

≤ K ·m+K
∑

{k<G: τk∈Vred}

(τk+1 − τk) + v1
∑

{k<G: τk∈Vblue}

(τk+1 − τk)

≤ K ·m+K ·#Vred + v1 ·#Vblue.

Since #Vred +#Vblue = n and v2n ≤ xn, we have that

#Vred ≥ v2 − v1
K − v1

n− Km

K − v1
.

Thus, since at least #Vred/m terms belong to I, we have

#I ≥ #Vred/m ≥ v2 − v1
K − v1

n

m
− K

K − v1
.

□
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Proof of Theorem 4.1. Let m = [logN ]. Fix ϵ > 0, then by Theorem 2.3 there exist such α∗

that
log(ρ(α∗,m)) ≤ −(1 + 2ϵ)m+ o(m),

so for sufficiently large N ,

(4.1) ρ(α∗,m) ≤ 1

N1+ϵ
.

Let now n = [F log (N)2] for some F > δ−1
(
1+ϵ
λ

)1/r, v1 = (α∗ + δ)m1/r−1 for some δ > 0,
v2 = α∗m1/r−1 and φ = ( 1λ)

1
r (logN)

2
r
(1+ζ) for some ζ > 0. Then for N large enough φ > v2n

and

E[
1

n
maxXN

n ] ≤

≤v2 + E[
1

n
maxXN

n 1{maxXN
n ∈(v2n,φ)}] + E[

1

n
maxXN

n 1{maxXN
n >φ}]

≤v2 +
1

n
φP(maxXN

n > v2n) +
1

n
E[maxXN

n 1{maxXN
n >φ}].

(4.2)

So in the sequel we will show that φ
nP(maxXN

n > v2n) and
E[ 1n maxXN

n 1{maxXN
n >φ}] converge to 0 as N → ∞.

Let us start by bounding P(maxXN
n > v2n). For this purpose we use Lemma 4.2. Let

K = (1+ϵ
λ log (N))1/r. For such K and v1, v2, n, m stated previously we have that

lim
N→∞

v2 − v1
K − v1

n

m
= lim

N→∞

(
δ[log (N)]1/r−1

(1+ϵ
λ log (N))1/r

F log (N)2

log (N)

)
= δF

(
1 + ϵ

λ

)−1/r

and limN→∞
K

K−v1
= 1. By the assumption on F , δF/(1+ϵ

λ )1/r > 1, so for N large enough we
have

v2 − v1
K − v1

n

m
−K/(K − v1) > 0.

Now consider such u ∈ GN
n that Φi(u) = maxXN

n . Then u belongs to some BRWi, so
u ∈ Ti and in Ti exists a descending path ∅ = u1 ≤ u2 ≤ · · · ≤ un = u such that ul ∈ GN

l
for every l ∈ J1, . . . , nK. Using Lemma 4.2 to the sequence {Φi(un)} and v1, v2, K as above,
we get that if Φ(un) = maxXN

n ≥ v2n, then either one of random steps Φi(ul+1) − Φi(ul) is
greater of equal to K or there exists such l ∈ J1, n−mK that Φi(uj)− Φi(uk) ≥ v1(j − k) for
all j ∈ Jk, k +mK, so one of u0, . . . , un−m is (m,α∗ + δ)–good in BWRi.

So if
Bn := #{u ∈ GN

0 ∪ · · · ∪GN
n : u is (m,α∗ + δ)–good},

then by the union bound

(4.3) P(maxXN
n ≥ v2n) ≤
≤ P(max{Φi(vk)− Φi(v) : |v| ≤ n, i ∈ J1, NK, k ∈ {1, 2}} ≥ K)

+ P(Bn ≥ 1).

By the fact that all of the variables {Φi(vk) − Φi(v) : |v| ≤ n, i ∈ J1, NK, k ∈ {1, 2}} are
i.i.d. with common distribution p we have that

P(max{Φi(vk)− Φi(v) : |v| ≤ n, i ∈ J1, NK, k ∈ {1, 2}} ≥ K) =

= 1− p((−∞,K])2Nn = 1− (1− c(K)e−λKr
)2Nn

≤ 2Nnc(K)e−λKr ≤ 2MNne−(1+ϵ) log (N)

= 2Mn
1

N ϵ
.

(4.4)
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By the definition of Bn we have

Bn =
∑

u∈T1∪···∪Tn

1{u is (m,α∗ + δ)–good} · 1{u ∈ GN
0 ∪ · · · ∪GN

n }.

Fix now u ∈ T1 ∪ · · · ∪ Tn such that |u| = l. Then by the definition of the branching-
selection system an event {u ∈ GN

0 ∪ · · · ∪ GN
n } depends only on system steps performed

at depth at most l. That is {u ∈ GN
0 ∪ · · · ∪ GN

n } belongs to the σ-algebra generated by
{Φi(uk+1) − Φi(uk) : i ∈ J1, NK, |uk+1| ≤ l}. The event {u is (m,α∗ + δ)–good} on the other
hand, depends only on the system steps performed at depth at least l, i.e. belongs to the
σ-algebra generated by {Φi(uk+1)−Φi(uk) : i ∈ J1, NK, |uk+1| ≥ l+1}. Thus, those two events
are independent. So by (4.1) we have

EBn =
∑

u∈T1∪···∪Tn

P(u is (m,α∗)–good) · E[1{u ∈ GN
0 ∪ · · · ∪ GN

n }]

= ρ(α∗,m) · E[
∑

u∈T1∪···∪Tn

1{u ∈ GN
0 ∪ · · · ∪GN

n }]

= ρ(α∗,m) ·N(n+ 1) ≤ (n+ 1) ·N−ϵ.

(4.5)

Then by Markov inequality (P[X > 1] ≤ E[X]), (4.3), (4.4), (4.5) we have that

(4.6) P(maxXN
n ≥ v2n) ≤ 2Mn ·N−ϵ + (n+ 1) ·N−ϵ.

Thus, since φ = ( 1λ)
1
r (logN)

2
r
(1+ζ), we have that φ ≪ N−ϵ, so

(4.7)
1

n
φP(maxXN

n ≥ v2n)
N→∞−−−−→ 0.

Now, we estimate E[maxXN
n 1{maxXN

n >φ}]. We divide this term into two parts by using a
formula E[X1{X≥a}] = aP(X > a) +

∫∞
a P(X > x)dx. So in our case

(4.8) E[maxXN
n 1{maxXN

n >φ}] = φP(maxXN
n > φ) +

∫ ∞

φ
P(maxXN

n > x)dx.

Then using the coupling with family of N branching random walks we have that

P(maxXN
n > x) ≤ P

(
(∃i ∈ J1, NK)(∃u ∈ Ti(n))

∑
v≤u,
v ̸=∅

Xv > x

)

≤ E
[ N∑

i=1

∑
u∈Ti(n)

1{
∑
v≤u,
v ̸=∅

Xv > x}
]
= N2nP(Sn > x),

where Sm :=
∑m

i=1 Yi and {Yi} are i.i.d. random variables of distribution p. Let also Y denote
random variable of distribution p and Mm = maxi∈J1,mK Yi. Then notice that for ε > 0 we
have

P(Sn ≥ n1/ry) ≤ nP(Y > (1− ε)n1/ry) + P(Sn > n1/ry,Mn ≤ (1− ε)n1/ry).

Using the computations performed previously in the proof of Theorem 2.9, precisely (2.5) for
D = n1/r, E = (1−ε)n1/ry, (2.7) and (2.8) for s = λ

(
(1− ε)n1/ry

)r−1
/(1+δ) for some δ > 0,

we obtain that

P(Sn > n1/ry,Mn ≤ (1− ε)n1/ry) ≤

≤ exp {−λ(1− ε)r−1nyr/(1 + δ) + λ(1− ε)r−1n2−1/ryr−1EY/(1 + δ) + no(s)}

= exp {−λCnyr + λCn2−1/ryr−1EY + no(s)},
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where C = (1− ε)r−1/(1 + δ). So we have

P(maxXN
n > φ) ≤ N2nP(Sn > φ)

≤N2n
(
nM exp {−λ(1− ε)rφr}+ exp {−λC

(
φr − nφr−1EY

)
+ no(s)}

)
=N2n

(
nM exp {−(1− ε)rn2(1+ζ)}+

+ exp {−Cn2(1+ζ) + Cλ1/rn2(1+ζ)(1−1/r)+1EY + o(n3−1/r−r+ 2
r
(1+ζ)(r−1))}

)
,

(4.9)

where M is the bound on c(x) as in the Remark 2.4. Since n = [F logN ]2 and 2(1 + ζ) >
2(1+ ζ)(1− 1/r)+ 1, 2(1+ ζ) > 3− 1/r− r+ 2

r (1+ ζ)(r− 1), then the term in the last line in
(4.9) goes to 0 as N → ∞. Furthermore, φ =

(
1
λ

)1/r
n

2
r
(1+ζ), so exp {n2(1+ζ)} ≫ φN2nn. So

φP(maxXN
n > φ)

N→∞−−−−→ 0.(4.10)

Now, we bound the second term of (4.8)∫ ∞

φ
P(maxXN

n > x)dx =n1/r

∫ ∞

φn−1/r

P(maxXN
n > n1/ry)dy

≤N2nn1/r

(
nM

∫ +∞

φn−1/r

exp {−λ(1− ε)rnyr}dy+

+

∫ +∞

φn−1/r

exp {−λCnyr + λCn2−1/ryr−1EY + no(s)}dy
)

Since r − 1 < 0, then for y ∈ [φn−1/r,+∞)

exp {λCn2−1/ryr−1EY } ≤ exp {λCn2−1/r(φn−1/r)r−1EY } = exp {λCnφr−1EY },

similarly

s = λ
(
(1− ε)n1/ry

)r−1
/(1 + δ) ≤ λ ((1− ε)φ)r−1 /(1 + δ).

So ∫ ∞

φ
P(maxXN

n > x)dx ≤

≤N2nn1/r

(
nM

∫ +∞

φn−1/r

exp {−λ(1− ε)rnyr}dy+

+ exp {λCnφr−1EY + o(nφr−1)}
∫ +∞

φn−1/r

exp {−λCnyr}dy
)
.

(4.11)

Now let us note that for any A > 0 we have

∫
φn−1/r

exp {λAnyr}dy =

∣∣∣∣∣∣
λAnyr = z

rλAnyr−1dy = dz

dy = 1
r

1
(Anλ)1/r

z1/r−1dz

∣∣∣∣∣∣
=

1

r

1

(Anλ)1/r

∫ ∞

Aλφr

z1/r−1e−zdz



25

and since for a ≥ 1 and b ≥ 1∫ ∞

a
tb−1e−tdt =

∫ ∞

0
(u+ a)b−1e−(u+a)du

= ab−1e−a

∫ ∞

0
(1 +

u

a
)b−1e−udu

≤ ab−1e−a

∫ ∞

0
(1 + u)b−1e−udu

= ab−1e−a+1

∫ ∞

1
ub−1e−udu

≤ ab−1e−a+1Γ(b),

we have ∫
φn−1/r

exp {λAnyr}dy ≤ 1

r

1

(Anλ)1/r
(Aλφr)1/r−1 exp {−Aλφr + 1}Γ(1/r)

=
1

rAλn1/r
φ1−r exp {−Aλφr + 1}Γ(1/r).

(4.12)

Combining (4.11) and (4.12) with substituted A = (1− ε)r and A = C we have∫ ∞

φ
P(maxXN

n > x)dx ≤

≤N2nn1/r

(
nM

1

r(1− ε)rλn1/r
φ1−r exp {−(1− ε)rλφr + 1}Γ(1/r)

+ exp {λCnφr−1EY + o(nφr−1)} 1

rCλn1/r
φ1−r exp {−Cλφr + 1}Γ(1/r)

)
=N2n

1

rλ
φ1−reΓ(1/r)

(
nM

1

(1− ε)r
exp {−(1− ε)rλφr}

+
1

C
exp {−Cλ(φr − nφr−1EY ) + o(nφr−1)}

)
,

so by the computations in (4.9) we get that∫ ∞

φ
P(maxXN

n > x)dx
N→∞−−−−→ 0.(4.13)

Combining 4.8, (4.10) and (4.13) we conclude that

(4.14)
1

n
E[maxXN

n 1{maxXN
n >φ}]

N→∞−−−−→ 0.

Now, by (4.2), (4.7), (4.14)

E[
1

n
maxXN

n ]− v2 ≤

≤ 1

n
φP(maxXN

n > v2n) +
1

n
E[maxXN

n 1{maxXN
n >φ}]

N→∞−−−−→ 0.

By Proposition 3.13 vN = infn E[ 1n maxXN
n ], so

lim sup
N→∞

vN

log (N)1/r−1
≤ lim sup

N→∞

E[ 1n maxXN
n ]

log (N)1/r−1
≤ lim sup

N→∞

v2

log (N)1/r−1
= α∗,

which completes the first part of the proof. The bound on the α∗ can be obtained by Propo-
sition 2.7 and (4.1). □
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5. Lower bound on vN

Theorem 5.1. There exists such α∗ > 0 that

lim inf
N→∞

vN
(logN)1/r−1

≥ α∗.

Proof of Theorem 5.1. Let m = [log (N)]. Fix ϵ > 0, then by Theorem 2.3 exists such α > 0
that

log(ρ(α,m)) ≥ −(1− 2ϵ)m+ o(m),

so for sufficiently large N ,

(5.1) ρ(α,m) ≥ 1

N1−ϵ
.

To prove the theorem we will use Proposition 4 from [6] in following version adapted for our
purpose .

Proposition 5.2. Let m be as previously stated. Let n ∈ N and ε > 0. Let

Bε,n := {min(XN
k ) < (α− ε)m1/r−1k for all k ∈ J1, nK}.

Then for N large enough

vN ≥ (α− ε)m1/r−1 − |(α− ε)m1/r−1|nP(Bε,n)− nE(|Θn|1Bε,n),

where Θn is the minimum of 2nN i.i.d. random variables with distribution p.

Proof. We reuse the coupling constructed to use the Kingman’s subbaditive ergodic theorem
in the proof of Proposition 3.13. Then {XN

n }n≥0 is defined as XN
n := WN

0,n.
We now inductively define sequences {Γi}i≥0, {Li}i≥0, {Ji}i≥1.

• Let Γ0 := 0, J0 := 0.
• Given i ≥ 0, Γi and Ji, let Li+1 := inf{k ∈ J1, nK : minWN

Γi,k
≥ (α − ε)m1/r−1k},

where inf ∅ := n. Then let Γi+1 := Γi + Li+1, and let Ji+1 := Ji +minWN
Γi,Li+1

.

By a similar argument as in the proof of (3.4) in the proof of Proposition 3.13 we have that

(5.2) minWN
0,Γi

≥
i∑

k=0

minWN
Γk,Lk+1

= Ji.

It follows from the fact that we compare minimums of two systems that perform the same
steps, but at moments

∑k
j=0 Lj+1 for k ∈ J0, iK one of them is shifted to NδminWN

Γk,Lk+1

.

Let us observe that since {WN
l,k}l≥0 is an i.i.d. family, the variables {Li}i are i.i.d. with

common distribution L := inf{k ∈ J1, nK : minXN
k ≥ (α − ε)m1/r−1k} (inf ∅ = n). So

variables {Γi+1 − Γi}i are i.i.d. with common distribution L. Similarly {Ji+1 − Ji} are i.i.d.
with distribution minXN

L .
By the law of large numbers and the fact that vN = limnminXN

n /n (Proposition 3.13) we
have that

lim
i→∞

minXN
Γi

i
= lim

i→∞

minXN
Γi

Γi
· Γi

i
= vN · EL.

On the other hand, by (5.2) we have minXN
Γi

≥ Ji =
∑i

k=1(Jk − Jk−1). So since {Ji+1 − Ji}i
are i.i.d. with distribution minXN

L , by the law of large numbers we have that

lim inf
i→∞

i−1minXΓi ≥ E[minXN
L ].

We conclude that vN ≥ E[minXN
L ]/EL.
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Now denote by Θn the minimum of all the jumps performed by the system between time 0
and n. By the definition of Bε,n we have that

minXN
L ≥ (α− ε)m1/r−1L1Bc

ε,n
+ LΘn1Bε,n .

Since 1 ≤ L ≤ n we have that

E[minXN
L ] ≥ (α− ε)m1/r−1(EL− E(L1Bε,n)) + E(LΘn1Bε,n)

≥ (α− ε)m1/r−1(EL− nP (Bε,n))− nE(Θn1Bε,n).

It completes the proof since

vN ≥ (α− ε)m1/r−1
(
1− n

EL
P (Bε,n)

)
− n

EL
E(Θn1Bε,n)

≥ (α− ε)m1/r−1 − |α− ε|m1/r−1nP (Bε,n)− nE(Θn1Bε,n).

□

To prove Theorem 5.1 we want to choose such n and ε that

|(α− ε)m1/r−1|nP(Bε,n) + nE(|Θn|1Bε,n)
N→∞−−−−→ 0.

To do that we use Lemma 2.6.
Let R be such that R < α and p([R,+∞)] ≥ 2/3. Consider a Galton–Watson tree with

binomial offspring distribution with parameters 2 and p([R,+∞)]. The average number of
offspring is thus equal to 2p([R,+∞)] ≥ R) ≥ 4/3 > 1 with our assumptions. In the sequel,
we use the notations r and ϕ to denote the numbers given by Lemma 2.6 for this offspring
distribution.

Proposition 5.3. Using the previous notation, let sN := ⌈ logNlog ϕ ⌉+1 and n := m+sN . Let also
Cε be an event that in BRW there exist a least ϕsN descending paths of the form ∅ =: u0, . . . , un
such that Φ(ui) ≥ (α− ε)m1/r−1i for all i ∈ J1, nK. Then

P(Cε) ≥ ρ(α,m) · r,
for

(5.3) ε ≥ sN

m1/r−1(m+ sN )
(αm1/r−1 −R).

In the sequel we use the notation sN , n and ε as in the statement of this proposition.

Proof. The idea behind the proof is as follows. Assume that a BRW contains a descending
path of length m starting at root that performs steps as in the event Aα,m and its last particle
um has at least ϕsN offspring at generation n = m + sN . Then such BRW belongs to Cε for
some ε.

Now, let us note that by Lemma 2.6 applied to the Galton–Watson tree with binomial
offspring distribution mentioned previously, there are at least ϕsN offspring of um at generation
n with the probability at least r. It means exactly that the probability of the existence of at
least ϕsN descending paths of the form um, . . . , un such that Φ(uk+1) − Φ(uk) ≥ R for all
k ∈ Jm,n − 1K is ≥ r. So by the independence of jumps the probability of the existence of
at least ϕsN paths of the form ∅ = u0, . . . , un such that Φ(ui) ≥ αm1/r−1i for i ∈ J1,mK and
Φ(ui+1)−Φ(ui) ≥ R for i ∈ Jm,n−1K is ≥ ρ(α,m) ·r. So to prove the proposition it is enough
to check that such paths meet the assumptions of the event Cε for ε as is the proposition.

So formally we need to check that if Φ(ui) ≥ αm1/r+R·j, then Φ(ui) ≥ (α−ε)m1/r−1(m+j)
for every j ∈ J1, sN K. For ε as in the proposition we have

ε ≥ j

m1/r−1(m+ j)
(αm1/r−1 −R),
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for all j ∈ J1, sN K, so
αm1/r +R · j ≥ (α− ε)m1/r−1(m+ j).

So the conclusion follows. □

Now, let Dε be the event that for all j ∈ J1, NK BRWj belongs to Cc
ε , so it doesn’t contain

more than ϕsN distinct descending paths ∅ =: u0, . . . , un such that Φ(ui) ≥ (α − ε)m1/r−1i
for all i ∈ J1, nK. Then, by Proposition 5.3 and the independence of BRW1, . . . , BRWN we
have that

P(Dε) ≤ [1− ρ(α,m)r]N .

By the inequality 1− x ≤ exp {−x} and (5.1) we have that

P(Dε) ≤ exp {−N ·N−(1−ϵ)} = exp {−N ϵ}.
We now claim that Bε,n ⊆ Dε. We show that by contradiction. First, let us note that Dε

doesn’t depend on the selection procedure, but Bε,n does. Assume that Bε,n∩Dc
ε occurs. Then

there exists such j ∈ J1, NK that in BRWj there are more than ϕsN distinct descending paths
u0 . . . , un such that Φ(ui) ≥ (α− ε)m1/r−1i for all i ∈ J1, nK. Since Bε,n occurs, for every such
path Φ(ui) > minXN

i for all i ∈ J1, nK. So for every i, ui ∈ GN
i , i.e. it survives through the

selection procedure. As a consequence, in GN
sN

there are more than ϕsN > N particles, which
is a contradiction.

So we get that

(5.4) P(Bε,n) ≤ P(Dε) ≤ exp {−N−ϵ}.
To use Proposition 5.2 we bound Θn from above by the sum of the absolute values of 2nN
corresponding i.i.d. variables and use Schwarz’s inequality. We deduce that

(5.5) E(Θn1Bε,n) ≤ 2nN · Eζ · P(Bε,n)
1/2,

where ζ is a variable with distribution p, Eζ < ∞. Since n = m+ sN ≤ [logN ]
(
1 + 1

log ϕ

)
, by

Proposition 5.2, (5.4) and (5.5) we have

(5.6)

vN ≥(α− ε)[logN ]1/r−1

−
∣∣∣(α− ε)[logN ]1/r

∣∣∣ (1 + 1

log ϕ

)
exp {−N−λ}

− 2

((
1 +

1

log ϕ

)
[logN ]

)2

N · Eζ · exp {−N−λ/2}

for
ε ≥ sN

m1/r−1(m+ sN )
(αm1/r−1 −R).

Since
sN

m1/r−1(m+ sN )
(αm1/r−1 −R)

N→∞−−−−→
1

log ϕα

1 + 1
log ϕ

=
α

1 + log ϕ
,

taking N → ∞ in (5.6) we conclude that

lim inf
N→∞

vN
(logN)1/r−1

≥ α− ε

for ε ≥ α
1+log ϕ , so

lim inf
N→∞

vN
(logN)1/r−1

≥ log ϕ

1 + log ϕ
α.

Taking α∗ :=
log ϕ

1+log ϕα completes the proof.
□



29

References

[1] J. Bérard and P. Maillard. The limiting process of N -particle branching random walk with polynomial
tails. 2014.

[2] J. Berestycki, É. Brunet, and S. Penington. Global existence for a free boundary problem of Fisher–KPP
type. Nonlinearity, 32(10):3912, 2019.

[3] É. Brunet. Some aspects of the Fisher-KPP equation and the branching Brownian motion. PhD thesis,
UPMC, 2016.

[4] E. Brunet and B. Derrida. Shift in the velocity of a front due to a cutoff. Physical Review E, 56(3):2597,
1997.

[5] É. Brunet, B. Derrida, A. H. Mueller, and S. Munier. Effect of selection on ancestry: an exactly soluble
case and its phenomenological generalization. Physical Review E, 76(4):041104, 2007.

[6] J. Bérard and J.-B. Gouéré. Brunet-Derrida behavior of branching-selection particle systems on the line.
Communications in Mathematical Physics, 298, 11 2008.

[7] R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
[8] R. Durrett and D. Remenik. Brunet–Derrida particle systems, free boundary problems and Wiener–Hopf

equations. 2011.
[9] R. A. Fisher. The wave of advance of advantageous genes. Annals of eugenics, 7(4):355–369, 1937.

[10] N. Gantert. The maximum of a branching random walk with semiexponential increments. The Annals of
Probability, 28(3):1219–1229, 2000.

[11] N. Gantert, Y. Hu, and Z. Shi. Asymptotics for the survival probability in a killed branching random walk.
In Annales de l’IHP Probabilités et statistiques, volume 47, pages 111–129, 2011.

[12] A. N. Kolmogorov, I. Petrovskii, and N. Piskunov. Étude de l’équation de la diffusion avec croissance de la
quantité de matière et son application à un problème biologique. Bull. Univ. Moscou Série internationale,
Section A, Mathématiques et mécanique, 1:1–25, 1937.

[13] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Com-
munications on pure and applied mathematics, 28(3):323–331, 1975.

[14] S. Penington, M. I. Roberts, and Z. Talyigás. Genealogy and spatial distribution of the N -particle branching
random walk with polynomial tails. Electronic Journal of Probability, 27:1–65, 2022.


	Introduction
	1. Statement of the results
	1.1. The model with selection
	1.2. Main result

	2. Killed branching random walk
	2.1. The model without selection
	2.2. Definitions and statement of the main result
	2.3. Bounds on Lg
	2.4. Definition of the rate function
	2.5. Analysis of the rate function

	3. Elementary properties of the branching-selection system
	3.1. Notations and definitions
	3.2. Elementary Properties of the Model
	3.3. Coupling with a family of Lg branching random walks

	4. Upper bound on Lg
	5. Lower bound on Lg
	References

