Rozdzial VII

Wiecej o calce funkcji dwoch zmiennych.

1. Calkowanie przez podstawienie funkcji jednej zmiennej.
Twierdzenie o catkowaniu przez podstawienie funkcji jednej zmiennej méwi, ze dla a < b
przy zalozeniu ciagtosci funkcji f(x), g(t), g'(t) zachodzi réwnosé

b B
(1) / f(z) da = /A Fa()g'(¢) dt,
gdzie
(2) r=g(t), a=g(4), b=g(B).

Zalézmy, ze funkcja g jest $cisle monotoniczna, istnieje wobec tego funkcja odwrotna do
niej g~' i (2) mozna zapisa¢ w postaci

t:g_l(x)v A:g_l(a)7 B:g_l(b)'

Rozwazymy dwa przypadki:
(a) funkcja g(t) jest Scisle rosnaca, wéwczas

A< B, oraz  ¢'(t)>0

i réwnos$é (1) moze by¢ zapisana w postaci

(3) /P f(z) de = /Q Fa()]g' (@) dt,

gdzie P = [a,b], Q@ = [A, BJ;
(b) funkcja g(t) jest Scisle malejaca, wéwczas

A>B oraz ¢'(t)<0

i réwnosé (1) mozna zapisaé jako

b A
/ f(z)de = — /B Flo(0)g'(t) de
181
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czyli

(3) /P f(z) de = /Q Fa()]g' ()] dt,

gdzie Q = [B, A].
Zauwazmy, ze w obu przypadkach mozemy funkcje g traktowaé jako odwzorowanie wza-
jemnie jednoznaczne przedzialu ) na przedzial P. Mamy wiec

P=g(Q), Q=g '(P)

i réwnodci (3’), (3”) mozna zapisa¢ w jednolitej postaci
() [ t@ds= [ (1o
P 9 1(P)

gdzie (f o g)(t) = f(g(t)). W dalszym ciagu zobaczymy, ze réwnosé¢ (4) przenosi sie na
przypadek funkcji dwéch zmiennych.

2. Zamiana zmiennych w calce podwdjnej.
Zamiast podstawienia z = g(t) bedziemy teraz rozwazali odwzorowanie

O: x=¢(u,v), y = (u,v)

z plaszczyzny R, w plaszczyzne RZ .

Bedziemy méwili, ze

(i) odwzorowanie ® jest klasy C* (k = 1,2,...) w zbiorze otwartym Q (zapisujemy:
klasy C*(€2)), jezeli funkcje ¢, ¥ maja w Q ciagle pochodne do rzedu k wlacznie;

(ii) odwzorowanie ® jest klasy C* w obszarze domknietym IB (zapisujemy: klasy C*(IB),
jezeli istnieje taki zbi6r otwarty Q zawierajacy 1B, ze ® jest klasy C*(Q).

Jezeli ® jest klasy C1(Q), to mozemy utworzy¢ macierz

[wu, wv}
Yu, Yo
Macierz te nazywamy macierzaq Jacobiego odwzorowania @, a jej wyznacznik

> s =[70 %

- jakobianem odwzorowania .

Niech IB bedzie obszarem domknietym w plaszczyznie IR2. Méwimy, ze odwzorowanie
® jest dyfeomorfizmem w obszarze 1B, jezeli spelnia warunki:

(i) @ jest klasy C*(IB),

(i) J(u,v) # 0 dla (u,v) € 1B,

(iii) odwzorowanie ® jest réznowartoSciowe w obszarze IB.
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7 warunku (iii) wynika, ze istnieje odwzorowanie odwrotne ®~1, przy czym oznaczajac
D = ¢(IB)

mamy
B =3 (D)
(méwimy, ze ID jest obrazem obszaru IB przy odwzorowaniu ®).

Przyklad 1. WprowadZmy na plaszczyznie IR? wspéirzedne biegunowe
(6) x =rcosb, y =rsinf
(por. rozdz. II punkt 4). Mozemy uwazaé, ze wzory (6) okreslajg odwzorowanie ®(r,0) z
plaszczyzny ]R?,e w plaszczyzne IRi’y, przy tym przyjmujac jako obszar 1B nieograniczony
przedzial

B: r >0, 0<0<2mr

mamy

®(IB) = R?.

Odwzorowanie @ jest klasy C'(IB), jego macierz Jacobiego ma postaé

cos 6, sin 6
—rsinf, rcosf |’

za$ jakobian, zgodnie ze wzorem (5), jest réwny
J(r,0) =r.
Odwzorowanie ® nie jest dyfeomorfizmem w przedziale IB z dwéch powodow:
19 J(0,6) = 0, nie jest wiec spelniony warunek (ii);
20 &(r,0) = ®(r,2mw) dla dowolnego 7 > 0 oraz ®(0,6) = (0,0) dla dowolnego

0 < 6 < 27, zatem nie jest spelniony warunek (iii).
Punkt 2° oznacza geometrycznie, ze odwzorowanie ® ”zlepia” dwa nieograniczone boki

Ly ={(r,0):r>0,0=0}

oraz
Ly={(r,0):r>0,60=2n}

prostokata IB przeksztalcajac je na nieujemna, pétos xz-6w, zas bok
Ly ={(r,0):r=0,0<6<2n}

degeneruje sie do jednego punktu (0,0) (por. rys. 43)
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[rys. 43]
Rozwazmy teraz nieograniczony przedzial
B, : r> e, e <0 <2, (e > 0).

Obrazem
D, = ¢(1B,)
jest plaszczyzna ]wa, z ktérej wycieto kolo K. o srodku w poczatku ukiadu i

promieniu € oraz wycinek katowy W, zawarty miedzy dodatnia, pétosia, z-6w a poéiprosta,
le ={(z,y) : y = mez, x>0},

gdzie me =tg e (por. rys. 44, obszary IB. i ID. zakreskowane).

QZ;N ;"/‘ _(_r'" < / A b
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S ,?’ s / yaray /

' g
& -

[rys. 44]

Pozostawiamy Czytelnikowi sprawdzenie, ze ® jest dyfeomorfizmem w przedziale 1B, przy
dowolnie ustalonym ¢ > 0.



185
Przyklad 2. Niech B bedzie przedzialem domknietym
B: 0<u<1, 0<v<1

i niech ® bedzie przeksztalceniem plaszczyzny ]Ri’v w plaszczyzne ]Ri’y okreslonym wzo-
rami
¢: x=u, y=-v.

Latwo sprawdzié, ze ® spelnia warunki (i), (iii), ponadto

zatem @ jest dyfeomorfizmem w plaszczyznie ]wa i przy tym zbiér ID = ®(IB) jest
przedzialem domknietym

Przyjmijmy oznaczenia
0 =(0,0), A=(1,0), B=(1,1), C=(0,1)
oraz
®(B)=(1,-1)=B', ®C)=(0,-1)=C"

i zalézmy, ze tamana L = OABC ograniczajaca przedzial 1B jest zorientowana dodatnio
wzgledem tego przedziatlu, wéwczas tamana ®(L) = OAB'C’ ograniczajaca przedzial ID
jest zorientowana ujemnie wzgledem ID (rys. 45). Widzimy wiec, ze dyfeomorfizm moze
zmieni¢ orientacje brzegu.

i

AV A\\g
C-W—-—*B
v B A
T 2 Gl i
A h:D J
£ +—<—43
[rys. 45]

Udowodnimy teraz
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Twierdzenie 1 (o calkowaniu przez podstawienie). Zakladamy, ze
1° IB jest obszarem regqularnym w ptaszczyinie IR?W (por. rozdz. V punkt 4);
2 odwzorowanie

(7) ®: z=9(v), y=1u,v)

jest dyfeomorfizmem w obszarze IB;
L obraz D zbioru IB przy odwzorowaniu ® jest obszarem reqularnym w plaszczyénie
]R,2

T,y
4° funkcja f(z,y) jest ciaglta w obszarze D.
Wowczas

(8) / /]D fodsdy= [ /]B F (6,0, (1, 0) | (1, 0)]| du o

Uwaga 1. Na mocy zalozenia 3° mamy
(9) D = ¢(B), B =¢~(D),

zatem uwzgledniajac (7) mozna wzér (8) zapisa¢ w postaci

(8”) //]Dfd:vdy:/[I)_I(D)(foq>)u|dudv,

gdzie
(f o (I))(u7 U) = f((,O(U, 'U)a ¢(u, ’U))

DOWOD. Dowdd przeprowadzimy przy dodatkowych zalozeniach:

(a) kazdy z obszaréw IB, ID jest o-normalny (por. rozdz. VI punkt 2);
(b) odwzorowanie @ jest klasy C?(IB);

(c) istnieje przedzial domkniety

P a<z<b, c<y<d
taki, ze obszar ID zawiera si¢ w jego wnetrzu
Py : a<zr<b c<z<d,

za$ funkcja f jest klasy C1(IP) (por. rozdz. VI punkt 2).

Zaczniemy od udowodnienia lematu.
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Lemat. Niech

Fa) = [ " f(ty) de,

wéwczas funkcja F jest klasy C1(IPg).

DOWOD LEMATU. Stosujac twierdzenie o rézniczkowaniu catki wzgledem parametru
dostajemy

(10) Fz(m,y)zf(x,y), Fy(may):/z fy(t’y)dt

dla (z,y) € IPy. Z zalozenia (c) wynika ciaglosé¢ funkcji F' i pochodnej F,, w przedziale Py,
pozostaje udowodni¢ ciaglo§é¢ pochodnej F,,. Dla ustalonego (zo,yo) € IP¢ oraz (z,y) € IP
mamy po uwzglednieniu (10)

(1)
Fya)=Fyeom) = [ [ fea=[ " femal+[ [ ne i [ 0w ).

Z ciaglosci pochodnej f, w przedziale domknietym IP wynika istnienie stalej M > 0 takiej,

7e
|fy(z,y)| <M dla (z,y) e P

(por. rozdz. III twierdzenie 6) i wobec tego

(12)

[ stpa- [ Ofy(t,y)dt‘Sle—wo\-

Ponadto f, jest jednostajnie ciagta w przedziale IP, zatem do dowolnie ustalonego € > 0
mozna dobra¢ § > 0 tak, by dla

(13) |z —xo| <6, |y —yo| <9

zachodzila nieréwnosé

3

(14) |yt y) — fy(t90)| < 20 —a)

Nie zmniejszajac ogdlnoéci mozemy zalozyé, ze

€

5 < =
< oM’

wowcezas z (11), (12), (14) wynika, ze dla (z,y) spelniajacych (13) mamy

|Fy(~'1:7y) - Fy(x07y0)| <g,

a to oznacza ciaglo§¢ funkcji F,, w punkcie (2o, yo). O
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Wracajac do dowodu twierdzenia zalozymy, ze regularna krzywa K ograniczajaca obszar
IB jest zorientowana dodatnio wzgledem tego obszaru. Jezeli opis parametryczny K ma
postac

(15) K : u=u(t), v=uv(t) (a <t <b),

to opis parametryczny krzywej C' ograniczajacej obszar ID otrzymujemy podstawiajac (15)
do réwnan (7), co daje

(16) C:  z=o)v®), y=v@@)v) (a<t<b)

(jak widaé z Przykladu 2, krzywa C moze nie by¢ zorientowana dodatnio wzgledem obszaru
D). Uwzgledniajac (10) mamy

(17) J[ temasay= [[ ) 1y

przy czym z lematu wynika, ze funkcja F jest klasy C'(ID). Mozemy wobec tego zastosowaé
do prawej strony (17) twierdzenie Greena (rozdz. VI, twierdzenia 6, 7, wzér (46)), co daje

(18) /]Df(:v,y) dxdy:a/CF(x,y) dy,

gdzie

a =1, gdy krzywa C' jest zorientowana dodatnio wzgledem obszaru ID
oraz

a = —1, gdy krzywa C jest zorientowana ujemnie wzgledem obszaru ID.

Zajmiemy sie teraz przeksztalceniem calki krzywoliniowej po prawe]j stronie (18). Jezeli
opis parametryczny (15) jest klasy C*, to korzystajac z opisu parametrycznego (16) krzywej
C dostajemy zgodnie z twierdzeniem 1 rozdz. VI

(19 [ rwar= [ [P0, w0 g

u=u(t),v=v(t)

Stosujac do drugiego z réwnan (16) regule rézniczkowania funkcji ztozonej otrzymujemy

§(t) = [uit + Yt

u=u(t),v=v(t)

i wobec tego catka po prawej stronie (19) moze by¢ zapisana w postaci

b
/a [(F o ®)pui + (F o ®)p,]

u:u(t),v:v(t),

gdzie
(F o ®)(u,v) = F(p(u,v),9(u,v)).
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Zauwazmy jednak, ze ostatnig caltke mozemy uwazac¢ za catke krzywoliniows,

/ (F o @)1y, du + (F o ®)tp, dv
K

zapisang przy uzyciu opisu parametrycznego (15), zatem z réwnosci (19) wynika, ze
(20) [F@vyay= [ Pluv)dusQuv)ds,
c K

gdzie
(21) P(u,v) = (F o @)1y, Q(u,v) = (F o ®)1,.

W przypadku ogélnym, gdy opis parametryczny (15) jest kawatkami klasy C!, mozemy
przeprowadzi¢ podobny rachunek, rozbijajac catke po przedziale [a,b] na sume calek po
przedziatach [cj_1,¢;] (j = 1,...,p) i opierajac si¢ na twierdzeniu 1’ rozdz. VI

Poniewaz funkcje P,Q sa klasy C!'(IB), mozemy ponownie zastosowaé twierdzenie
Greena, tym razem do prawej strony (20). Stosujac wzér (46) (z zastapieniem x przez u,
y przez v) i uwzgledniajac (18), (20) dostajemy

(22) //]Df(a:,y)dxdy:a//]B (g—g—%—f) dudv.

Aby otrzymad teze twierdzenia nalezy przeksztalci¢ wyrazenie pod calka po prawej stronie
(22). Oznaczajac je przez W (u,v) i stosujac regulte rézniczkowania funkcji ztozonej otrzy-
mujemy

W(u,v) = (Fo®@)ythy + (F o @)hyy — (F o ®)ythy — (F 0o P)thy,.

Po uwzglednieniu réwnosci pochodnych mieszanych (por. rozdz. II twierdzenie 5) dalsze
rézniczkowanie daje

W (u,v) = (Foou + Fyu) o — (Fotpy + Fythy)thu (@ = ¢(u,v), y = ¢(u,v)),

skad po redukcji dostajemy

Wu,v = Fw u¥v — FoPu
(u,0) = | sz)’y:ww«o Yy — Putby)

czyli, po uwzglednieniu (5), (10),
(23) W (u,v) = (f o ®)(u, v)J (u,v).

Réwnosci (22), (23) daja

(24) //]Df(a:,y) da:dy:a//IB(fOCI))(u,v)J(u,v) dudv.
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Ostatnia réwnosé zostala udowodniona dla dowolnej funkcji f speliajacej zalozenie (c).
Przyjmujac w szczegélnosdci f(x,y) = 1 dostajemy (por. rozdz. V punkt 4)

(25) 0< |1D|://IBaJ(u,v)dudv.

Poniewaz odwzorowanie ® jest dyfeomorfizmem, z warunkéw (i), (ii) wynika, ze jakobian
J(u,v) jest funkcja ciagla i ré7ng od zera w obszarze IB, zatem ma staly znak w tym
obszarze (por. zadanie 10). Wobec tego wyrazenie a.J(u, v) réwniez ma staly znak w tym
obszarze, a to wobec (25) oznacza, ze

J(u,v) >0 gdy a=1 oraz J(u,v) <0 gdy a=-1.

W obu przypadkach mamy
(26) ad(u,v) = |J(u,v)]|.

Réwnosci (24), (26) daja teze twierdzenia. O

Uwaga 2. Z przeprowadzonego dowodu wynika, ze

gdy J(u,v) > 0 w obszarze IB, to dyfeomorfizm ® zachowuje orientacje brzegu wzgledem
obszaru;

gdy J(u,v) < 0 w obszarze IB, to dyfeomorfizm & zmienia orientacje brzegu na
przeciwna, (por. Przyklad 2).

Uwaga 3. Poréwnanie réwnosci (4) i (8’) wykazuje, ze jakobian odwzorowania odgrywa
podobna, role w calce podwdjnej jak pochodna podstawienia w calce funkcji jednej zmien-
nej. W zwiazku z tym dla jakobianu odwzorowania okreslonego wzorami (7) bywa uzywane
oznaczenie

Przykiad 3. Niech K bedzie kolem o §rodku w poczatku uktadu plaszczyzny IRf:,y i
promieniu R. Obliczymy pole wycinka kota K zawartego miedzy dodatnia pélosia, z-éw a
prosta, I, ktéra tworzy z ta pélosia kat a € (0,27) (rys. 46).

A rE
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<

[rys. 46]
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Oznaczajac wycinek przez W mamy (por. rozdz. V punkt 4)

(27) W] = / /W da dy.

Wycinek W mozna w prosty sposob opisa¢ we wspolrzednych biegunowych nieré6wnosciami
(28) 0<r<R, 0<6<a,

wobec tego calke (27) wygodnie bedzie liczy¢ przy uzyciu wspétrzednych biegunowych czyli
w oparciu o twierdzenie 1, przyjmujac u = r, v = 0 i okreslajac odwzorowanie ® wzorami

(29) ®: z=rcosb, y =rsind.
Zauwazmy jednak, ze odwzorowanie ® nie jest dyfeomorfizmem w obszarze domknietym
B okreslonym nieréwnosciami (28) , gdyz J(r,0) = r i wobec tego J(0,0) = 0 (por.

Przyklad 1). Aby zastosowaé twierdzenie o calkowaniu przez podstawienie przedstawimy
wycinek W jako sume obszaréw domknietych

W=V.UA,

gdzie o
Ve =W\ K, A, =WNK,,

za$ K., K. oznaczajs odpowiednio kolo otwarte i kolo domkniete o $rodku w poczatku
ukladu i promieniu € < R. Zgodnie z twierdzeniem 10 rozdz. V mamy

(30) //W d:vdy://v d:vdy-l—//Ae dz dy,

€

// de dy = |A.| < me?.
A

Wobec tego druga catka po prawej stronie (30) dazy do zera gdy ¢ — 01 z (27), (30)
otrzymujemy

(31) W) = lim // d dy.
e—0 V.

Niech IB. bedzie przedzialem w plaszczyznie R2 , okre§lonym nieréwnosciami

przy czym

B, : e<r<R, 0<60<a.

Poniewaz
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i odwzorowanie @ jest dyfeomorfizmem w obszarze IB., mozemy zastosowaé twierdzenie 1,
co daje

(32) //V da:dy://IBerdrdH.

Zamieniajac calke po prawej stronie (32) na calke iterowana mamy

(33) // rdrdez// rd&dr:la(m—g),
B. e JO 2

zas z (31), (32), (33) dostajemy

1

Przypusémy teraz, ze chcemy obliczy¢ catke

(35) J[ @ dzay

przy uzyciu wspélrzednych biegunowych, zakladajac przy tym, ze

1° f(z,y) jest funkcja, ciagla, w obszarze regularnym ID C ]wa (por. rozdz. V punkt
4);
20 D = ®(IB), gdzie ® oznacza odwzorowanie okreslone wzorami (29) (odpowiadajace
wprowadzeniu wspéirzednych biegunowych na plaszczyznie IRiy), za$ IB jest obszarem
regularnym w plaszczyznie ]Rf,g zawartym w przedziale

0<r<R, 0<0<2m

Odwzorowanie ® nie jest na ogét dyfeomorfizmem w obszarze IB (por. Przyklad 1), nie

jest wiec spelione zalozenie 2° twierdzenia 1. Okazemy, Ze mimo to mozna przeksztalcié

catke (35) wprowadzajac wspéhrzedne biegunowe i korzystajac ze wzoru (8).
WprowadZzmy oznaczenia:

B.=BnP,, X.=B\B. (¢>0),

gdzie IP, jest przedziatem

oraz

D, =®(B.), A.=D\D,

- Iys. 47, obszary X oraz A, zakreskowane (przypominamy, dla dowolnego zbioru 2 przez
Q) oznaczamy jego domkniecie, por. rozdz. III punkt 5).
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[rys. 47]

Poniewaz odwzorowanie ® jest dyfeomorfizmem w kazdym obszarze IB., na mocy
twierdzenia 1 dostajemy

(36) /]Defda:dy://]Bs(foé)rdrdQ.

Ponadto mamy
D=D.UA,, B=B.UX,

i stad, zgodnie z twierdzeniem 10 rozdz. V,

(37) // fdxdx—// fdxdy—i—/ fdzdy

oraz

(38) /]B(foq))rdrdﬂz//]Be(fotb)rdrdﬁﬂ—//z (f o ®)rdrdf.

[

Zauwazmy, ze

A) A, c K. U (W.N D), gdzie
K. jest kotem o srodku w poczatku uktadu i promieniu e

zas
W, jest obszarem plaszczyzny ]Ri’y zawartym miedzy dodatnia pélosia x-6w a prosta
I, ktéra z ta pélosia tworzy kat e (rys. 47),

wobec tego (por. Przyklad 3 i wzér (34))

1
(39) A, < me? + §8R2;

B) ¥. C Qc U Se, gdzie Q. oraz S, sa prostokatami (rys. 47), wobec tego

(40) e < (27 + R)e.
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Ponadto z zalozenia 1° wynika istnienie stalej M > 0 takiej, ze
(41) [f(@y)l <M dla (z,y) €D

(por. rozdz. III punkt 5). Opierajac sie na twierdzeniach 3’, 4’ rozdz. V otrzymujemy z
nieréwnosci (39), (40), (41) oszacowania

1
‘/ fdxdy‘ gM// drdy < M(ne* + —eR?)
A, A. 2

oraz

‘//E (fOQ)TdrdQ‘SMR//E drdf < MR(2r + R)e.

7 oszacowan tych wynika, ze

lim// fda;dyzlim// (fo®)rdrdd=0
e—0 A, e—0 .

zatem, przechodzac do granicy przy € — 0 w réwnosciach (37),(38) dostajemy

15%//1]3 fda:dy://]Dfdxdy, 113%//]]3 (fo@)rdrd@z//IB(fo@)rdrdO.

Wobec tego mozna réwniez przej$é do granicy w réwnosci (36), co daje ostatecznie

//]Dfdxdy://]B(fo(I))rdrdQ.

Opierajac si¢ na przeprowadzonym rachunku mozmy sformutowaé

Twierdzenie 2 (o caltkowaniu przez podstawienie we wspéirzednych bieguno-
wych).
Zaktadamy, Ze
19 funkcja f(x,y) jest ciagla w obszarze regularnym ID C ]Ri’y (por. rozdz. V punkt 4);
2 oznaczajac przez ® odwzorowanie

x =rcosb, y =rsinf
(odpowiadajace wprowadzeniu wspdtrzednych biegunowych w plaszezyinie ]Ri’y ) mamy
D = (IB),
gdzie IB C ]Rfﬁ jest obszarem regularnym zawartym w przedziale

r 20, 0 <6< 2m;
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Woweczas

(42) //Df(a:,y)dxdy:/Bf(rcosé,rsine)rdrde.

Przyklad 4. Zastosujemy wzor (42) do obliczenia calki Poissona

o0 2
P:/ e % dr.
0

Jest to calka niewlasciwa, zdefiniowana jako granica

R
P = lim PR, PRZ/ e ? dx
0

r—00

(w poczatkowym wykltadzie analizy matematycznej dowodzi sie, ze granica ta istnieje).
Niech Qr bedzie kwadratem w plaszczyznie ]Ri,y okreslonym nieréwnosciami

i niech K, oznacza koto domkniete o §rodku w poczatku uktadu ptaszczyzny ]Ri,y i promie-
niu a. Wéwczas Kp jest kotem wpisanym w kwadrat Qg zas Kp, 5 - kolem opisanym na
tym kwadracie (proponujemy Czytelnikowi zrobienie rysunku) i wobec tego

(43) KRCQRCKR\/@

Poniewaz .
flz,y)=e* 7Y >0,

z inkluzji (43) wynika nieréwnosé dla calek

(44) /K fdxdyg/Q fdmdyg//K fdzdy
R R RV?2

(por. Uwaga w rozdz. V punkt 4). Srodkowa, catke w nieréwnogci (44), po zamianie jej na
calke iterowana, mozemy zapisa¢ jako iloczyn

(/jB e da:) (/_Z eV’ dy> .

—a’ jest parzysta, z nieréwnosci (44) dostajemy ostatecznie

Poniewaz funkcja e

(45) //KRfdxdy< 2Pg)? // fda:dy.
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Do obliczenia calek podwéjnych w nieréwnosci (45) zastosujemy wzér (42). Mamy dla
dowolnego a > 0

22 m @ 2 1 21 7=a 2
// e ¥ Y dmdy:/ d0/ re " dr:27r[——e_T] :W(l—e_“),
Ka 0 0 2 r=0
zatem nieréwnos¢ (45) mozemy zapisaé¢ w postaci
™ (1 - e_R2) < (2Pr)* <7 (1 - 6_2R2) .

Po przejéciu do granicy przy R — oo i zastosowaniu twierdzenia o trzech funkcjach wynika
stad, ze

(2P)? =7
czyli
1
P =/t
2
Przyjmijmy, ze
(i) f(z,y) =1,
(ii) spelnione sa zalozenia twierdzenia 1 z zastapieniem IB przez B, oraz ID przez
D, = ®(1B,),

(iii) oznaczajac przez K, (ug,vo) kolo domkniete o srodku (ug, vg) i promieniu ¢ mamy
(uo,v0) € B, C K4 (uo,vo) (0 < a < aop).

Przy uczynionych zalozeniach wzér (8) daje

D,| = // |J| du dv,
B,

a stad, po zastosowaniu twierdzenia o monotonicznosci calki (twierdzenie 3’ rozdz. V
punkt 4) wynika oszacowanie

ma|Ba| < [IDg| < M, [B,|,

gdzie
mg = inf | J|, M, =sup |J]|.
K, K,

Oszacowanie to mozna zapisa¢ w rownowaznej postaci jako nierownosé

D,
(46) iy < ||1Ba |' <M,

7 zalozenia 20 twierdzenia 1 wynika, ze J(,u,v) jest funkcja ciagla, zatem

lim mg = lim M, = |J(uo, vo)]
a—0 a—0
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i przejscie do granicy w (46) daje

. |Dq]
« i 3

= |J (ug, vo)|.

Uwaga 4. Przejscie do granicy (47) mozna odczytaé¢ nastepujaco: dla malych obszaréw
B oraz ID = &(IB) wspétczynnik deformacji pola

D]
B

jest w przyblizeniu réwny wartosci bezwzglednej jakobianu odwzorowania ®.
Uwaga 2 oraz Uwaga 4 wraz z réwnoscia, (47) charakteryzuja wlasnosci geometryczne
jakobianu.

3. Zastosowanie calki podwdjnej do obliczania pola powierzchni.
Zaczniemy od udowodnienia lematu.

Lemat. Zalozmy, ze

19 % jest ptaszczyzna w przestrzeni IR3 przecinajaca 0§ z-6w;

20 1P jest przedziatem w plaszczyénie z = 0;

£ Q oznacza rzut prostopadly do plaszczyzny z = 0 przedziatu IP na plaszczyzne 3.
Wéowczas

(48) [IP| = |Q|[ cos ,

gdzie v oznacza kat miedzy wektorem prostopadlym do ptaszczyzny 3 a dodatnig potosig
z-0w.

DOWOD. Dla uproszczenia rachunkéw zalozymy, ze
(i) plaszczyzna X przechodzi przez poczatek ukladu, zatem jest okreslona réwnaniem

3 Ax+ By+Cz=0,
gdzie
(49) A+ B*+C?*=1, C#0;
(ii) przedzial IP jest okreslony nieréwnosciami
IP: 0<z<a, 0<y<b (a,b>0).

Latwo zauwazy¢, ze zalozenia (i), (ii) sa zawsze spelnione po odpowiednim przesunieciu
plaszczyzny ¥ i przedzialu IP, przy czym przesuniecia te nie zmieniaja relacji (48).
Oznaczajac przez T operacje rzutowania na plaszczyzne Y mamy dla dowolnego
(o, B) ERZ,

T(2, ) = (o f, ~ 5 (A + B)),
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zatem

Aa Bb

T(0,0) = (0,0), T(a,0)=(a,0, _F)’ T(0,b) = (0,0, —6),
T(a,b) = (a,b, —%(Aa + Bb))
i wobec tego (rys. 48)
% N
—

Uk t e N

al

e

[rys. 48]

— A
Ta)z:Tt: [a,0,——=a]| =7
C
oraz
B
T Ob = T3 = [0,b, —Sb =

7 dwéch ostatnich réwnosci widaé, ze @Q jest réwnoleglobokiem w plaszczyznie ¥ rozpietym
na wektorach ¥, 1, wobec tego jego pole jest rowne diugosci iloczynu wektorowego v X 0.

Mamy

i ik
U X W= a 0 —%a
0 b —gb
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czyli

=
<.y
B!

ab,

S
X
g
I

'—.\

o
I

0 1 -

Qw Qe

co po rozwinieciu wyznacznika wedlug pierwszego wiersza daje
A B
1].

e

U X W

Wobec tego

L A? + B2 4 C?
Q| = |V x W| = ab\/ o2 ,
skad po uwzglednieniu (49) wynika (48). O
Przejdziemy teraz do obliczenia pola powierzchni S o réwnaniu

(50) = f(mﬂy)’ ('Tﬂy) € P,

gdzie IPjest przedzialem domknietym w plaszczyznie IR? za$ funkcja f jest klasy C1(IP).
Ustalajac podziat

k
n: P=JP,
j=1

przedzialu IP i punkty posrednie (&;,7;) € IP; (j = 1,2,...,k) (por. rozdz. V punkt 2)
oznaczmy przez 3 ; plaszczyzne styczng do powierzchni S w punkcie p; = (&5, 05, f(&5,15))-
Wektor normalny do powierzchni S w punkcie p; ma postaé (por. rozdz. IV punkt 6)

(51) ﬁj = [f:cafya_l](gjanj)'

Oznaczajac przez (Q; rzut prostopadly do plaszczyzny z = 0 przedziatu IP; na plaszczyzne
Y, za$ przez y; kat miedzy wektorem 77; a dodatnia pélosia, z-6w mamy zgodnie z lematem

Py
52 Q; =
52 9= Teasny

czyli, po uwzglednienu (51),

(53) Qi = /1 + f2 + f; (& m;) PPl

Roéwnoleglobok () nazwiemy elementem stycznym w punkcie p;. Latwo zauwazy¢, ze suma

k
U
j=1
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wszystkich elementéw stycznych odpowiadajacych podziatowi Il aproksymuje powierzchnie
S zad sume poél tych elementéw
k
> 1R
=1

mozemy uwazacé za przyblizona miare pola powierzchni S, przy czym przyblizenie jest tym
lepsze im mniejsza jest $rednica podzialu. Zgodnie z (53) sume te mozemy zapisaé w

postaci
k k
M oIQi = /14 f2+ f2 (& my) Py
1=1 1=1

z ktérej widaé, ze stanowi ona sume przyblizona calki podwéjnej (por. rozdz. V punkt 2)

(54) //]Pg(x,y) dx dy, 9(z,y) =1+ [+ ]

Poniewaz zatozyliémy, ze f jest klasy C'(IP), funkcja g(z,y) jest ciagta w przedziale IP
i calka (b4) istnieje. Zgodnie z przedstawiong intuicja geometryczna, mozemy przyjaé
réwnosc

(55) |5\=//]P,/1+f5+f3 dz dy

jako definicje pola powierzchni S okreslonej réwnaniem (50).
Podobne rozumowanie mozna przeprowadzi¢ w przypadku ogélniejszym, gdy powierzch-
nia S okreslona jest réwnaniem

(56) = f(:v,y), (a:,y) €D,

gdzie ID jest obszarem regularnym (rozdz. V punkt 4) za$ f jest klasy C1(ID). Jako IP
przyjmujemy dowolnie ustalony przedzial domkniety zawierajacy obszar ID i z podziatu II
wybieramy tylko te przedzialy IP;, ktére przecinaja si¢ z obszarem ID. Jezeli przyjmiemy,
ze p; € IDNIP;, to suma odpowiednich elementéw stycznych aproksymuje powierzchnie S

zas sume
> A1+ £2+ 12 &omy) [P
J

mozemy uwazaé za przyblizona miare pola powierzchni S. Suma ta jest przyblizona suma

calki podwdjnej
//Dg(a:,mdxdy, g(m,y) = \J1+ 2+ 12,

przy czym funkcja g(z,y) jest ciaglta w obszarze ID, zatem calka istnieje. Wobec tego jako
definicje pola powierzchni S okreslonej réwnaniem (56) mozemy przyjaé¢ uogélnienie wzoru
(55) w postaci

(57) S| ://ID«/l-l-ff;—l-fjda:dy.
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Oznaczajac przez v(z,y) kat miedzy normalna do powierzchni S w punkcie (z,y, f(z,y))
a dodatnia pélosia, z-6w mamy zgodnie z (51)

1

| cosy(z, y)| =
I+ S22

wobec tego réwnosé (57) mozna zapisa¢ w postaci

da:dy
(58) 5] = / /
[cosy(z,y)|

Wyrazenie rézniczkowe

((z,y) € D,

dx dy
| cosy(z,y)]

nazywamy elementem pola. Jest to rézniczkowy odpowiednik wzoru (52) okreslajacego
pole elementu stycznego.

ds =

Przyklad 5. Niech S bedzie czescia, plaszczyzny
P Az +by+Cz=D (C#0, A+ B*+C*=1)

zawarta w walcu o tworzacych réwnoleglych do osi z-6w i podstawie ID (zakladamy, ze ID
jest obszarem regularnym w plaszczyznie IR?). Poniewaz

| cosy(z,y)| = [C] = const,
z (58) dostajemy

D|
| cosy|

S| =

Powierzchnia S jest rzutem prostopadlym do ptaszczyzny z = 0 obszaru ID na plaszczyzne
Y, wobec tego otrzymana réwnosé stanowi uogélnienie wzoru (58) udowodnionego w przy-
padku, gdy ID jest przedzialem.

Przyklad 6. Zastosujemy calke podwdjna do znalezienia pola powierzchni S powstalej
przez obrét dokola osi z-6w wykresu funkcji

y=g(z)>0 (a <z <b)

zaktadajac, ze g jest klasy C! w przedziale [a, b]. Dla ustalonego = € [a, b] punkt (z,y, 2) €
S lezy na okregu o promieniu g(z) i §rodku (0,0, z) w plaszczyznie réwnoleglej do plasz-
czyzny yz, speinia zatem réwnanie

y? + 22 = g*().

Rozwigzujac je wzgledem z dostajemy dwa réwnania

s = D P
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okreslajace dwie przystajace czesci Sy, S_ powierzchni S. Wobec tego
(59) S| = 2[S4],
gdzie powierzchnia S opisana jest rownaniem

Sy z=+vg%@=x)-y?  (z,y) €D,
za$ ID jest obszarem domknietym okre§lonym nieréwnosciami

D: a<xz<hb, —g(z) <y < g(x).

Rézniczkowanie daje

stad
9 (1 + (g’)2)

g?-y
Zauwazmy, ze w otrzymanym wyrazeniu mianownik jest réwny zeru dla y = +g(x) czyli
na czesci brzegu obszaru ID, wobec tego w rozwazanym przykladzie funkcja podcatkowa
we wzorze (57) nie jest ciagla w obszarze domknietym ID. Mozemy jednak zastosowaé

ten wzor do obliczenia pola powierzchni S traktujac calke po prawej stronie jako caltke
niewlasciwa. Dla ustalonego n € (0, 1) wprowadZmy obszar

1+z§+z§z

D, : a<z<b, —ng(z) <y < ng(x)

1 przyjmijmy, ze

— 3 : — 2 2
(60) Syl= lm JG),  edde  J() = / /]D n,/1+z,,+zy daz dy.

Zamieniajac catke podwGjna na catke iterowang (por. Twierdzenie 8 rozdz. V) dostajemy

b
J(n) = / V1T (@) Ay () d,

gdzie
ng(z)
An(a:):/ dy (a <z <b).

-ng(z) \/ g%(z) — y27

Przy ustalonym z podstawienie
y =g(2)t
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daje
K dt U
A, (x) = ————— = |arc sint )
TI( ) \/;77 V 1 - t2 [ ] -n

Zatem A,(z) = A, jest stala niezalezng od z, stad

b
1) =4y [ o/ TH G ds

i wobec tego zgodnie z (59), (60)

b
(61) S| = 27r/ g1+ (92 de.

Otrzymany wzdr, okreslajacy pole powierzchni obrotowej, jest wyprowadzany w poczatko-
wym kursie analizy w sposdb bardziej elementarny, bez uzycia calki podwdjne;.

Przyklad 7. Zastosujemy wzér (61) do obliczenia pola powierzchni bocznej stozka
Scietego. Powierzchnie taks otrzymujemy obracajac dokola osi z-6w odcinek prostej

y=mz+c (a <z <b),
przy czym otrzymany stozek Sciety ma promienie podstaw
r=g(a), R =g(b),

gdzie

g(z)=mx+c

l=|AB|=(b—a)V1+m?

1 tworzacy,

(rys. 49).
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Stosujac wzér (61) dostajemy

b
|S| = 27r\/1+m2/ (mz + ¢) dx

skad, po obliczeniu calki,

bela [0 ) + <0~ a)].

5= |2

Prosty rachunek daje ostateczny wynik
|S| = nl(r + R)
- jest to wzér znany Czytelnikowi z kursu szkolnego.

4. Pole powierzchni opisanej r6wnaniami parametrycznymi.
Zaczniemy od uwagi nie zwigzanej z omawianym zagadnieniem. Niech y = f(z) bedzie
funkcja jednej zmiennej klasy C! w przedziale (a, b) i niech

' (zo) #0 (a < xg < D).

Z ciaglosci pochodnej f'(z) wynika, ze w pewnym otoczeniu w punktu z( zachodzi jedna
7 nierownosci

f(z)>0 lub flz) <0 (z € w).

Oznacza to, ze funkcja f jest $ciSle monotoniczna w przedziale w i wobec tego istnieje
funkcja odwrotna do niej z = g(y) okreslona w pewnym otoczeniu punktu yo = f(zg). W
poczatkowym kursie analizy matematycznej dowodzi sie, ze funkcja g jest klasy C*.

Uwaga ta daje sie uogoélni¢ na przypadek, gdy zamiast funkcji jednej zmiennej rozwa-
zamy uklad funkcji wielu zmiennych. Podamy bez dowodu

Twierdzenie 3 (o odwzorowaniu odwrotnym). Rozwazmy uktad rédwnan

(62) r=p(uw,v), y=q(u,v)
1 niech
Pu  DPu
J(u,v) = .
( ) Qu Qo

Zatozmy, ze
19 funkcje p,q sa klasy C* w pewnym obszarze ptaszczyzny R
20 J(’U,(), ’Uo) 75 0

L przyjmigmy, ze

2 .
U,V 7

o = p(an IUO)? Yo = Q(Uo, Uo)-

Wéwczas w pewnym otoczeniu punktu (zo,yo) uktad (62) ma dokltadnie jedno rozwigzanie

(63) u= P(z,y), v=Q(z,y),
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przy czym funkcje P,Q sa klasy C.

Uwaga. Roéwnania (63) okreslaja odwzorowanie otoczenia punktu (zg,yo) € ]Rﬁ,y w

plaszczyzne IR?M, ktére nazywamy odwzorowaniem odwrotnym do odzorowania (62) - stad

nazwa twierdzenia.

Przyklad 8. Zal6zmy, ze (62) jest ukladem réwnari liniowych

(64) x = au + bv, y = cu + dv,
wowczas
a b
J = c d ‘

jest wyznacznikiem ukladu (64) i warunek J # 0 zapewnia jednoznaczng rozwiazalnosé
tego ukladu.

Niech €2 bedzie zbiorem otwartym w plaszczyZnie IR?2. Modyfikujac definicje podana w
punkcie 2 przyjmiemy, ze odwzorowanie ® jest dyfeomorfizmem w zbiorze €2, jezeli speinia
warunki (i), (ii), (iii) z zastapieniem IB przez Q.

Z twierdzenia 3 wynika, ze odwzorowanie (62) przeksztalca wzajemnie jednoznacznie
pewne otoczenie w punktu (ug, vg) na otoczenie punktu (g, yo). Zmniejszajac ewentualnie
otoczenie w mozemy zalozyé, ze J(u,v) # 0 dla (u,v) € w. Wobec tego twierdzeniu 3
mozna nadaé inne, réwnowazne sfomulowanie :

Twierdzenie 3°’. Przy zatozZeniach twierdzenia 3 odwzorowanie okreslone réownaniami
(62) jest dyfeomorfizmem w pewnym otoczeniu punktu (ug,vo)-

Przejdziemy teraz do obliczenia pola powierzchni S opisanej rownaniami parametrycz-
nymi klasy C' (por. rozdz. IV punkt 7)

(65) x = z(u,v), y = y(u,v), z = z(u,v), (u,v) € Q,

gdzie €2 jest obszarem w plaszczyznie ]R?M i niech

Zatézmy, ze J(ug,vo) # 0 dla pewnego (ug,vo) € Q i przyjmijmy oznaczenia

Zo = 37(“0; Uo), Yo = y(uo, ’Uo), 20 = Z(UO, Uo)-

Zgodnie 7 twierdzeniem 3 pierwsze dwa réwnania (65) maja, w pewnym otoczeniu punktu
(w0, yo) rozwiazanie klasy C!

u=u(z,y), v =uv(z,y).
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Podstawiajac to rozwiazanie do trzeciego réwnania (65) otrzymujemy opis czesci Sy
powierzchni S zawartej w pewnym otoczeniu punktu (g, yo, z0) W postaci

(66) z= f(z,y),

gdzie f jest funkcja klasy C!. Zgodnie z twierdzeniem 3’ odwzorowanie ® okreslone
przez pierwsze dwa réwnania (65) jest dyfeomorfizmem w pewnym obszarze domknigtym
B C R2 o zawierajacym we wnetrzu punkt (up,vp). Zmniejszajac ewentualnie powierz-
chnie Sy moiemy zalozy¢, ze jest ona okreslona réwnaniem (66), gdzie (z,y) € ID = &(IB).
Pole powierzchni Sy mozna obliczyé stosujac wzér (58). Jak wykazaliSmy w rozdz. IV
punkt 7, wystepujace w tym wzorze wyrazenie |cosy(z,y)| mozemy wyznaczyé z opisu
parametrycznego (65). Oznaczajac przez F' odwzorowanie obszaru Q C ]wa w przestrzen

3 . . , .
R; , , okreslone wzorami (65) wprowadzmy macierz

Ty Ty
Fl(u,0) = | Yo Yo | (u,0)
Zu Ry

(zwana, pochodng odwzorowania F') i oznaczmy przez A; wyznacznik powstaly z macierzy
F’ przez skreslenie j-tego wiersza. Wektor

n = [A17 _A27 A3]

jest wektorem normalnym do powierzchni Sy w punkcie F(u, v), wobec tego wprowadzajac
wyrazenie (zwane modutem macierzy F')

(67) F(u,0)] = /A2 + A3+ A (v, )
mamy
_ |As(u,v)| : _
(68) |cosy(z,y)| = TF'(u,v) gdzie (z,y, f(z,y)) = F(u,v),

przy czym Asz(u,v) # 0 dla (u,v) € IB. Zakladajac, ze obszary IB, ID sa regularne, mozemy
do calki we wzorze (58) zastosowaé twierdzenie o catkowaniu przez podstawienie (twierdze-
nie 1). Zauwazmy, ze wyznacznik Az jest jakobianem odwzorowania ®, wobec tego po
uzwglednieniu (68) dostajemy

|So| = // ||F (u,v) |A3(u,v)\dudv

As(u,v)|

czyli po skréceniu

(69) S| = //]B P (u, )] du do.
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Oczywiscie w przeprowadzonym rozumowaniu mozna zamieni¢ role zmiennych x, y, z. Wy-
starczy wobec tego zalozyé, ze w kazdym punkcie (u,v) € Q przynajmniej jeden z wyz-
nacznikéw A; (j = 1,2,3) jest rézny od zera czyli ze macierz F’ ma maksymalny rzad
(réwny 2) w calym obszarze €. Z przeprowadzonych rozwazai wynika, ze wzdr (69)
mozemy stosowa¢ do obliczenia pola dostatecznie malej czesci Sy powierzchni S. Wzér
ten stanowi inny zapis wzoru (58) ( zastapieniem S przez Sy), ktéry, jak wykazaliSmy w
punkcie 3, odpowiada naszej intuicji geometrycznej pola powierzchni. Wobec tego przyj-
miemy w dalszym ciagu nastepujaca, regule obliczania pola powierzchni S okreslonej row-
naniami parametrycznymi:

Regula. Zakladamy, ze
1° powierzchnia S ma opis parametryczny klasy C*

S:z=z(u,v), y=ylwv), z=2zuv), (4v)elB,

gdzie IB jest obszarem regularnym w plaszczyzZnie ]R%M (por. rozdz. V punkt 4);

29 macierz
Ly Ty
F'(u,v) = | yu Yo | (u,0)
Zu 2y

ma maksymalny rzad (réwny 2) dla (u,v) € B.
Wowczas przyjmujemy, ze

(70) S| = //IB P (u, v)| dudo

czyli, zgodnie z (67),

(71) S| = //IB VA2 4+ A3 + A2 du do.

Uwaga. Jezeli powierzchnia S jest okreslona réwnaniem (56), to ma opis parame-
tryczny
T =u, Y=, z = f(u,v)

i wzér (71) przyjmuje woéwczas postaé (57) (proste sprawdzenie pozostawiamy Czytel-
nikowi.)

Przyklad 9. Korzystajac z podanej reguty obliczymy pole powierzchni kuli (czyli sfery)
S o promieniu a. Jak pokazaliémy w rozdz. IV (Przyktad 18), powierzchnie te mozna opisaé
réwnaniami parametrycznymi

Z = acos¢pcosb, Yy = acos¢sinb, zZ = asin ¢,
72
(72) (0<f<2m, -Z<¢<3),
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2
T,y
utworzonym przez rzut prostopadly 7 wektora 7 na plaszczyzne ]Ri,y z dodatnia, polosiy,

z-6w (por. rys. 25). Mamy (por. rozdz. IV Przyktad 19)

gdzie ¢ jest katem, jaki tworzy wektor ¥ = [z,y, 2| z plaszczyzna, IR za$ 0 jest katem

[—a singcosf, —a cosgbsinﬁ-l
F'(¢,0) = | —asingsinf, acos¢cosh | .
[ a cos @, 0 J

zatem
(73) |F'(¢,0)| = a* cos ¢.

Zauwazmy, ze dla ¢ = £7 (czyli w punktach (0,0, £a) bedacych biegunami sfery) macierz
F’ nie spelia warunku 2°, wobec tego zastosujemy wzér (70) do obliczenia pola czesci
s ™

Sa,p sfery zawartej miedzy réwnoleznikami ¢ = a oraz ¢ = 8 (-5 < a < 8 < 7).

Uwzgledniajac (73) i zamieniajac catke podwdjna na calke iterowana dostajemy

27 B
Sa,g|:/0 d9/ a? cos ¢ do

czyli, po obliczeniu calki,
Sa p| = 2ma®(sin B — sin ).

Przechodzac do granicy przy a — —%, 8 — 5 dostajemy stad znany wzér na pole
powierzchni kuli
S| = 4ma?.

Przyklad 10. Niech S bedzie powierzchnia powstala przez obrét dokola osi z-0w
wykresu funkcji
y=g(z) >0 (a <z < D).

Obliczymy ponownie pole powierzchni S (por. Przyklad 6) korzystajac tym razem ze wzoru
(70). Dla ustalonego x punkt (x,y, z) € S przebiega podczas obrotu okrag o promieniu g ()
i srodku (0,0, z) w plaszczyznie réwnoleglej do plaszczyzny yz, zatem opis parametryczny
powierzchni S ma postac

F: r=ux, y = g(x) cos®, z = g(z)sinf,
a<zr<hb, 0 <6< 2m.

Zakladajac, ze g jest klasy C' w przedziale [a, b] mamy

1 0
F'=|¢ cosf —gsind |,
g'sinf gcosf

wobec tego
AL =4y, Ay = gcosh, Az = —gsinf
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i stad zgodnie ze wzorem (67)
[F'| = gv1+(g)2

Po zamianie calki podwéjnej na catke iterowang wzér (70) daje

b
S| = 2n / o1t (g de

czyli wzér (61).
Zadania.

1. Narysowaé¢ obszar ID C IR2 , nastepnie stosujac odpowiednia zamiane zmiennych

T,y
obliczy¢ calke
J[ twdsay,
D

jezeli

b) D: 0<z+2y<1, e<z—y<e? flz,y) =

2. Narysowac obszar ID C ]Ri,y i obliczy¢ calke

// Va2 +y?dz dy,
D

jezeli

a.) ID jest pierscieniem ograniczonym okregami o §rodku w poczatku uktadu i promie-
niach a,b (0 < a < b);

b.) ID jest sumg obszaréw IDq, IDy okreslonych nieréwnosciami

D;: 0<z?+y’><a, >0, y>0, Dy: 0<z?+y?><b, z<0.
3. Niech ID C ]Ri,y bedzie obszarem zawartym w pélplaszczyznie y > 0 i ograniczonym
osia z-O0w oraz spirala okreslona we wspéirzednych biegunowych réwnaniem

a.) r=20, b.) r=eél.

Narysowa¢é obszar ID i obliczy¢ catke

//]D(acz +y?) dz dy.
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4. Uzywajac calki podwdjnej i wpdirzednych biegunowych obliczy¢ objetosé

(i) walca kotowego i stozka kotowego o wysokosci A i promieniu podstawy a,

(ii) kuli o promieniu a.
5. Niech K bedzie kulg o srodku w poczatku uktadu wspolrzednych i promieniu 1. Obliczy¢
objetos¢ brylty W, jesli W jest

a.) czescia, K lezaca, w obszarze domknietym z > 0, y > 0, z > 0;

b.) czescia K lezaca, w obszarze domknietym z > 0, y > 0;

c.) przekrojem K, pélprzestrzeni z > 0 i stozka z2 + y? < 22;

d.) czescia K ograniczong plaszczyznami z =ciz=d (0<c<d<1).

6. Obliczy¢ objetos¢ brylty W, jesli W jest
a.) bryla powstala, przez usuniecie stozka

3(z% + y?) < 2

z pétkuli
z >0, 2?2 +y? 4+ 22 <9;

b.) brylg ograniczong sferami
2+’ +22=1 i > +y?+22=4

oraz stozkiem
2

2?2 +y? = 22
c.) bryla ograniczona z gdry przez sfere

2+ y?+ 22 =22

a z dolu przez stozek

7. Niech IDp bedzie obszarem okreslonym nieréwnosciami

1 2 2
o3 Szt +y <L

a.) 1<2?+94% < R? b.)

Zbadaé, dla jakich wartosci « istnieje granica
I 2442 % dady.
dm [, @) oy

8. Obliczy¢ pole powierzchni S o réwnaniu

(74) z=1a" 4y (z,y) € D,
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jezeli ID jet obszarem domknigtym okreslonym nieréwnosciami
a.) z2+y?<4, y>0; b) 1<2?+4%<0.
Jaka, powierzchnie opisuje réwnanie (74)7
9. Oznaczajac przez ® odwzorowanie
®: xz=rcosf, y=rsinf

plaszczyzny IR? g w plaszczyzng RS | przyjmiemy, ze 1B, (a > 0) jest przedzialem okreslo-
nym nieréwnosciami

(i) Bg: O0<rp—a<r<ro+a, 0<60<2n,
(i) Bg: O<rp—a<r<ro+a, 0<b0—a<0<6Oy+a<22rm

zas§ ID, = ®(IB,). Narysowaé obszar ID, i obliczy¢ iloraz

| D
B,

wynik poréwnaé ze wzorem (47) i Uwaga, 4.

10. Niech Q bedzie obszarem w plaszczyznie IR? i niech ID = Q. Udowodnié, ze funkcja
g(z,y) ciagla i rézna od zera w obszarze domknietym ID ma w tym obszarze staly znak.
Wskazéwka. Zaprzeczajac teze zauwazy¢, ze istnieja punkty (z;,y;) € Q (j = 1,2) takie,
ze

9(z1,y1) >0,  g(z2,92) <O0.

Nastepnie skorzystaé¢ z definicji obszaru (rozdz. V punkt 4) i z warunku Darboux dla
funkcji jednej zmienne;.



