
Permutacyjna metoda oceny istotności regresji

(bez założenia normalności)

f <-numeric(10000)

for (i in 1:10000){

  g <- lm(sample(gala$Species)~elevation+adjacent,data=gala.eaa)

  f[i] <- summary(g)$fstatistic[1]

}

length(f>37.94)/10000

quantile(f,probs = c(0.95,0.99,0.999))

histdens(f)

> length(f>37.94)/10000
[1] 1
> quantile(f,probs = c(0.95,0.99,0.999))
      95%       99%     99.9% 
 4.691446  8.742880 14.156021 

Wyniki regresji

> g2 <- lm(species~elevation+adjacent,data=gala.eaa)
> anova(g2)
Analysis of Variance Table

Response: species
          Df Sum Sq Mean Sq F value    Pr(>F)    
elevation  1 207828  207828  56.112 4.662e-08 ***
adjacent   1  73251   73251  19.777 0.0001344 ***
Residuals 27 100003    3704                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> 207828+73251
[1] 281079

> 281079/2
[1] 140539.5

> 1-pf(140539/3704,2,27)
[1] 1.434361e-08
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Niech 
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Uwagi
W wielu przypadkach, wiemy, że punktowa hipoteza zerowa jest fałszywa, nawet 
nie patrząc na dane. Ponadto wiemy, że im więcej danych, tym większa moc 
testów.
Nawet niewielkie różnice od zera zostaną wykryte przy dużej próbce. 
Zgodnie z tym poglądem, test hipotezy prostu staje się testem wielkości próby. 
Z tego powodu lepszym argumentem jest przedział ufności.

dla 

pojedynczych parametrów

> g2 <- lm(species~elevation+adjacent,data=gala.eaa)
> summary(g2)

Call:
lm(formula = species ~ elevation + adjacent, data = gala.eaa)

Residuals:
    Min      1Q  Median      3Q     Max 
-103.41  -34.33  -11.43   22.57  203.65 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.43287   15.02469   0.095 0.924727    
elevation    0.27657    0.03176   8.707 2.53e-09 ***
adjacent    -0.06889    0.01549  -4.447 0.000134 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 60.86 on 27 degrees of freedom
Multiple R-squared:  0.7376,    Adjusted R-squared:  0.7181 
F-statistic: 37.94 on 2 and 27 DF,  p-value: 1.434e-08

> qt(0.975,27)

[1] 2.051831
> c(0.27657-2.051831*0.03176,0.27657+2.051831*0.03176)#elevation
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[1] 0.2114038 0.3417362
> c( -0.06889-2.051831*0.01549, -0.06889+2.051831*0.01549)#adjacent
[1] -0.10067286 -0.03710714

> plot(ellipse(g2,c(2,3)),type="l",xlim=c(0.15,0.4),ylim=c(-0.12,-0.02))

> points(g2$coef[2],g2$coef[3],pch=18)

> abline(v=c(0.27657-2.051831*0.03176,0.27657+2.051831*0.03176),lty=2)
> abline(h=c( -0.06889-2.051831*0.01549, -0.06889+2.051831*0.01549),lty=2)

Dlaczego przecinają elipsę ufności?
> cor(gala.eaa$elevation,gala.eaa$adjacent)
[1] 0.5364578
im wyższa wartość elevation tym wyższa wartość adjacent a więc współczynniki są
ujemnie skorelowane
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Przedziały ufności dla prognoz

> x0 <- c(1,200,100)
> y0 <- sum(x0*g2$coef)
> y0
[1] 49.85798

dla wartości oczekiwanej:

> x <- cbind(1,gala.eaa[,3:4])
> x <- as.matrix(x)
> xtxi <- solve(t(x) %*% x)
> bm <- sqrt(x0 %*% xtxi %*% x0) *2.051831 * 60.86
> bm
         [,1]
[1,] 24.61241
> c(y0-bm,y0+bm)
[1] 25.24557 74.47039

dla indywidualnej wartości

> bm <- sqrt(1+x0 %*% xtxi %*% x0) *2.051831 * 60.86
> bm
         [,1]
[1,] 127.2768
> c(y0-bm,y0+bm)
[1] -77.41886 177.13483

INACZEJ

> predict(g2,data.frame(elevation=200,adjacent=100),se=T)
$fit
       1 
49.85798 

$se.fit
[1] 11.99514

$df
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[1] 27

$residual.scale
[1] 60.85898

> sqrt(x0 %*% xtxi %*% x0) * 60.85898
         [,1]
[1,] 11.99514

Interpretacja parametrów 

> head(savings)
             sr pop15 pop75     dpi ddpi
Australia 11.43 29.35  2.87 2329.68 2.87
Austria   12.07 23.32  4.41 1507.99 3.93
Belgium   13.17 23.80  4.43 2108.47 3.82
Bolivia    5.75 41.89  1.67  189.13 0.22
Brazil    12.88 42.19  0.83  728.47 4.56
Canada     8.79 31.72  2.85 2982.88 2.43
…

sr        - savings rate - personal saving divided by disposable income

pop15 - percent population under age of 15

pop75 - percent population over age of 75

dpi     - per-capita disposable income in dollars

ddpi  - percent growth rate of dpi

> g <- lm(sr~pop15 + pop75 + dpi + ddpi, data=savings)
> summary(g)

Call:
lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.2422 -2.6857 -0.2488  2.4280  9.7509 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 28.5660865  7.3545161   3.884 0.000334 ***
pop15       -0.4611931  0.1446422  -3.189 0.002603 ** 
pop75       -1.6914977  1.0835989  -1.561 0.125530    
dpi         -0.0003369  0.0009311  -0.362 0.719173    
ddpi         0.4096949  0.1961971   2.088 0.042471 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared:  0.3385,    Adjusted R-squared:  0.2797 
F-statistic: 5.756 on 4 and 45 DF,  p-value: 0.0007904

Co można powiedzieć o istotności pop75?
> cor(savings$pop15,savings$pop75)
[1] -0.9084787

> g2 <- lm(sr ˜ pop75 + dpi + ddpi, data=savings)
> summary(g2)
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Call:
lm(formula = sr ~ pop75 + dpi + ddpi, data = savings)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.0577 -3.2144  0.1687  2.4260 10.0763 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 5.4874944  1.4276619   3.844  0.00037 ***
pop75       0.9528574  0.7637455   1.248  0.21849    
dpi         0.0001972  0.0010030   0.197  0.84499    
ddpi        0.4737951  0.2137272   2.217  0.03162 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.164 on 46 degrees of freedom
Multiple R-squared:  0.189,     Adjusted R-squared:  0.1361 
F-statistic: 3.573 on 3 and 46 DF,  p-value: 0.02093

Te zmienne są nieistotne. 
> cor(savings$pop75,savings$dpi)
[1] 0.7869995

Usuńmy dpi
> g3 <- lm(sr ˜ pop75 + ddpi, data=savings)
> summary(g3)

Call:
lm(formula = sr ~ pop75 + ddpi, data = savings)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.0223 -3.2949  0.0889  2.4570 10.1069 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   5.4695     1.4101   3.879 0.000325 ***
pop75         1.0726     0.4563   2.351 0.022992 *  
ddpi          0.4636     0.2052   2.259 0.028562 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.122 on 47 degrees of freedom
Multiple R-squared:  0.1883,    Adjusted R-squared:  0.1538 
F-statistic: 5.452 on 2 and 47 DF,  p-value: 0.007423

> cor(savings$pop75,savings$ddpi)
[1] 0.02532138

> g4 <- lm(sr ˜ pop75, data=savings)

> summary(g4)

Call:
lm(formula = sr ~ pop75, data = savings)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.2657 -3.2295  0.0543  2.3336 11.8498 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   7.1517     1.2475   5.733  6.4e-07 ***
pop75         1.0987     0.4753   2.312   0.0251 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 4.294 on 48 degrees of freedom
Multiple R-squared:  0.1002,    Adjusted R-squared:  0.08144 
F-statistic: 5.344 on 1 and 48 DF,  p-value: 0.02513

współczynnik przy pop75 niewiele się zmienił, bo pop75 i ddpi są prawie ortogonalne

Predykcje przy różnych modelach:

> x0 <- data.frame(pop15=32,pop75=3,dpi=700,ddpi=3)
> predict(g,x0)
       1 
9.726666 
> predict(g2,x0)
       1 
9.905503 
> predict(g3,x0)
       1 
10.07808 
> predict(g4,x0)
       1 
10.44777 

Predykcje są bardziej stabilne niż estymatory przy pop75:

-1.70   0.95 1.07   1.10

grid <- seq(0,10,0.1)
p <- predict(g4,data.frame(pop75=grid),se=T)
cv <- qt(0.975,48)
matplot(grid,cbind(p$fit,p$fit-cv*p$se,p$fit+cv*p$se),lty=c(1,2,2),
          type="l",xlab="pop75",ylab="Saving")
rug(savings$pop75)

Przedział(y ufności nierealistyczne poza zakresem rzeczywistych danych
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