Permutacyjna metoda oceny istothosci regresji

(bez zatozenia normalnosci)

f <-numeric(10000)
for (i in 1:10000){
g <- Im(sample(gala$Species)~elevation+adjacent,data=gala.eaa)
f[i] <- summary(g)$fstatistic[1]
}
length(f>37.94)/10000
quantile(f,probs = ¢(0.95,0.99,0.999))
histdens(f)

E ]ength(f>37.94)/10000

1] 1

> quantile(f,probs = c(0.95,0.99,0.999))
95% 99% 99.9%

4.691446 8.742880 14.156021

wyniki regresji

> g2 <- Im(species~elevation+adjacent,data=gala.eaa)
> anova(g2)

Analysis of variance Table

Response: species
Df Sum Sg Mean Sq F value Pr(>F)
elevation 1 207828 207828 56.112 4.662e-08 ***

adjacent 1 73251 73251 19.777 0.0001344 %%
Residuals 27 100003 3704

> 207828+73251
[1] 281079

> 281079/2
[1] 140539.5

> 1-pf(140539/3704,2,27)
[1] 1.434361e-08

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 °

1
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uwagdi

w wielu przypadkach, wiemy, Ze punktowa hipoteza zerowa jest fatszywa, nawet
nie patrzac na dane. Ponadto wiemy, ze im wiecej danych, tym wigeksza moc
testow.

Nawet niewielkie réznice od zera zostanag wykryte przy duzej probce.

Zgodnie z tym pogladem, test hipotezy prostu staje sie testem wielkosci proéby.
Z tego powodu lepszym argumentem jest przedziat ufnosci.

Confidence Intervals for §

We start with the simultaneous regions. Some results from multivariate analysis show that dla
A o
(B-BX"XB-B) .
a2 P
and :
(n—p)s* 5
ol ~ Ln "

and these two quantities are independent. Hence

B-B)'X"X(B-B) _ #/p
p&* Xi—p/ (n—p)

= Fj”.-'? e

So to form a 100(1 — «t) % confidence region for P. take B such that

(B—B)"X"X(B - B) < p6°Fon »

pojedynczych parametroéw

B8/ (XTX);!

> g2 <- Im(species~elevation+adjacent,data=gala.eaa)
> summary(g2)

call:
Tm(formula = species ~ elevation + adjacent, data = gala.eaa)
Residuals:

Min 1Q Median 3Q Max

-103.41 -34.33 -11.43 22.57 203.65

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.43287 15.02469 0.095 0.924727
elevation 0.27657 0.03176 8.707 2.53e-09 **=*
adjacent -0.06889 0.01549 -4.447 0.000134 #***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * 1
Residual standard error: 60.86 on 27 degrees of freedom

Multiple R-squared: 0.7376, Adjusted R-squared: 0.7181
F-statistic: 37.94 on 2 and 27 DF, p-value: 1.434e-08

> qt(0.975,27)

[1] 2.051831
> ¢(0.27657-2.051831%0.03176,0.27657+2.051831%0.03176)#elevation
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[1] 0.2114038 0.3417362
> c( -0.06889-2.051831*0.01549, -0.06889+2.051831*0.01549)#adjacent
[1] -0.10067286 -0.03710714

> plot(ellipse(g2,c(2,3)),type="1",xTim=c(0.15,0.4),ylim=c(-0.12,-0.02))
points(g2%$coef[2],g2%coef[3],pch=18)

abline(v=c(0.27657-2.051831%0.03176,0.27657+2.051831*0.03176), 1ty
abline(Ch=c( -0.06889-2.051831%0.01549, -0.06889+2.051831%0.01549)

\%

:2)
, 1t
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Dlaczego przecinaja elipse ufnosci?

> cor(gala.eaa$elevation,gala.eaa$adjacent)

[1] 0.5364578

im wyzsza warto$¢ elevation tym wyzsza warto$¢ adjacent a wiec wspéiczynniki sa
ujemnie skorelowane
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Przedziaty ufnosci dla prognoz
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> x0 <- ¢(1,200,100)
> y0 <- sum(x0*g2$coef)

>y
[1] 49.85798

dla wartosci oczekiwanej:

X <- cbind(1l,gala.eaal,3:4])

X <- as.matrix(x)

xtxi <- solve(t(x) %*% x)

bm <- sqrt(x0 %*% xtxi %*% x0) *2.051831 * 60.86

bm
[,1]
,] 24.61241
c(y0-bm, yO+bm)
1 25.24557 74.47039

VVVVYV

[1
>
[1
dla indywidualnej wartoS$ci
> Bm <- sqrt(1+x0 %*% xtxi %*% x0) *2.051831 * 60.86
> bm

[,1]
[1,] 127.2768

> c(y0-bm,yO+bm)
[1] -77.41886 177.13483

INACZEJ

Efpredict(gz,data.frame(e1evation=200,adjacent=100),se=T)
1t
1

49.85798

$se.fit
[1] 11.99514

$df
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[1] 27

$residual.scale
[1] 60.85898

> sqrt(x0 %*% xtxi %*% x0) * 60.85898
[,1]

[1,] 11.99514

Interpretacja parametroéw

> head(savings)

sr popl5 pop75 dpi ddpi
Australia 11.43 29.35 2.87 2329.68 2.87
Austria 12.07 23.32 4.41 1507.99 3.93
Belgium 13.17 23.80 4.43 2108.47 3.82
Bolivia 5.75 41.89 1.67 189.13 0.22
Brazil 12.88 42.19 0.83 728.47 4.56
Canada 8.79 31.72 2.85 2982.88 2.43
sr - savings rate - personal saving divided by disposable income

popl5 - percent population under age of 15
pop75 - percent population over age of 75

dpi - per-capita disposable income in dollars
ddpi - percent growth rate of dpi

> g <- Im(sr~popl5 + pop75 + dpi + ddpi, data=savings)
> summary(g)

call:
Tm(formula = sr ~ popl5 + pop75 + dpi + ddpi, data = savings)
Residuals:

Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
popl5 -0.4611931 0.1446422 -3.189 0.002603 **
pop75 -1.6914977 1.0835989 -1.561 0.125530
pi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471 *
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “ ’ 1

Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

Co mozna powiedzie¢ o istotnosci pop757?
> cor(savings$popl5,savings$pop75)
[1] -0.9084787

> g2 <- Im(sr = pop75 + dpi + ddpi, data=savings)
> summary(g2)
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Call:
Tm(formula = sr ~ pop75 + dpi + ddpi, data = savings)

Residuals:
Min 1Q Median 3Q Max
-8.0577 -3.2144 0.1687 2.4260 10.0763

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.4874944 1.4276619 3.844 0.00037 ***

pop75 0.9528574 0.7637455 1.248 0.21849

dpi 0.0001972 0.0010030 0.197 0.84499

ddpi 0.4737951 0.2137272 2.217 0.03162 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

Residual standard error: 4.164 on 46 degrees of freedom
Multiple R-squared: 0.189, Adjusted R-squared: 0.1361
F-statistic: 3.573 on 3 and 46 DF, p-value: 0.02093

Te zmienne sa nieistotne.
> cor(savings$pop75,savings$dpi)
[1] 0.7869995

Usunmy dpi ;
> g3 <- Im(sr pop75 + ddpi, data=savings)
> summary(g3)

call:
Tm(formula = sr ~ pop75 + ddpi, data = savings)
Residuals:

Min 1Q Median 3Q Max

-8.0223 -3.2949 0.0889 2.4570 10.1069

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 5.4695 1.4101 3.879 0.000325 **=*

pop75 1.0726 0.4563 2.351 0.022992 *

ddpi 0.4636 0.2052  2.259 0.028562 *

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*” 0.05 “.” 0.1 * * 1

Residual standard error: 4.122 on 47 degrees of freedom
Multiple R-squared: 0.1883, Adjusted R-squared: 0.1538
F-statistic: 5.452 on 2 and 47 DF, p-value: 0.007423

> cor(savings$pop75,savings$ddpi)

[1] 0.02532138

> g4 <- Im(sr ~ pop75, data=savings)

> summary(g4)

call:
Tm(formula = sr ~ pop75, data = savings)
Residuals:

Min 1Q Median 3Q Max

-9.2657 -3.2295 0.0543 2.3336 11.8498

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 7.1517 1.2475 5.733 6.4e-07 #**=*
pop75 1.0987 0.4753 2.312 0.0251 *
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ ’ 1
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Residual standard error: 4.294 on 48 degrees of freedom
Multiple R-squared: 0.1002, Adjusted R-squared: 0.08144
F-statistic: 5.344 on 1 and 48 DF, p-value: 0.02513

wspotczynnik przy pop75 niewiele sie zmienil, bo pop75 i ddpi sq prawie ortogonalne

Predykcje przy roznych modelach:

x0 <- data.frame(popl5=32,pop75=3,dpi=700,ddpi=3)
predict(g,x0)
1

vV Vv

.726666
predict(g2,x0)
1

vV ©

.905503
predict(g3,x0)
1

vV ©

10.07808
> predict(g4,x0)
1

10.44777

Predykcje sq bardziej stabilne niz estymatory przy pop75:
-1.70 0.95 1.07 1.10

grid <- seq(0,10,0.1)

p <- predict(g4,data.frame(pop75=grid),se=T)

cv <- qt(0.975,48)

matplot(grid,cbind(p$fit,p$fit-cv*plse,p$fit+cv*plse),lty=c(1,2,2),
type="1",xTab="pop75",ylab="saving")

rug(savings$pop75)

Saving

pop75

Przedziat(y ufnosci nierealistyczne poza zakresem rzeczywistych danych
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