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Wyktad 2

m 2.1.2 Rozklad Taylora funkcji wielu zmiennych

Podobnie, jak w przypadku funkcji jednej zmiennej, rozktad Taylora zalezy od pochodnych coraz wyzszych
rzgdow. W dalszym wyktadzie potrzebne nam begdzie jedynie przyblizenie Taylora do rzgdu 2.

Definicja.Gradientem funkcji wielu zmiennych x,, x,, ..., X, nazywamy wektor:
Oy, £ (%)
Oy, £ (x
ve ) = | 2= T
Ox, £ (%)

gdzie J, f(x) jest pochodnq czqstkowq funkcji f wzgledem zmiennej x; w punkcie x.
Definicja. Hesjanem funkcji wielu zmiennych xi, x;, ..., X, nazywamy macierz:
VZE (%) = (0% x, £ (%)),

gdzie 62,@_,,@ f(x) jest pochodnq czqstkowq funkcji f wzgledem zmiennych x; oraz x jw punkcie x,
(obliczanych w tym porzadku).

Twierdzenie Hesjan funkcji klasy C? jest symetryczny

Twierdzenie (rozklad Taylora). Funkcja klasy C* zdokladnosciq do wyrazow drugiego rzedu ma w otoczeniu
punktu X rozktad:

1

F(x)~f(X)+VFf (x)T (x-x) + > (x-x)TV?Ff (%) (x-X)

Znak ~nalezy rozumie¢ w ten sposob, ze dla h dostatecznie matego zachodzi jeden z dwoch wzoréw:

f(x)+Vf (x+0h)"h,

f (X) +Vf(X)Th+%hTV2f(X+eh) h

f (x+ h)

f (x+ h)

dla pewnego 6 &(0,1)

= Przyklad 2.2 (Rozklad Taylora)

Rozwinmy w szereg Taylora w otoczeniu punktu X = (1, 2, 3) funkcje
(%, ¥y, 2) :X3+12X_y2+2_y2+522+XZ4

Latwo obliczy¢:
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Ox £ (%, y, 2) 3x2+12y%+ 28 132
f(x) =183, Vf (x)=|0y £ (%, vy, z) | = dy+24xy ,vf(x)_[56],
0z £ (x, ¥, 2) 22z (5+2x2z%) 138
6 x 24 y 4 z3 6 48 108
VPFf(x)=|24y 4+24x 0 , vzf(x)_[48 28 0 J
4 z3 0 2 (5+6xz%) 108 0 118

Po podstawieniu, otrzymamy rozwinigcie w szereg Taylora w otoczeniu punktu ¥ = (1, 2, 3):

(%, y, 2) =
x-1 6 48 108 x -1
183+ (132, 56, 138) | y-2 |+ (x-1, y-2, z-3) { 48 28 0 y-2
z-3 108 0O 118 z-3

co po wykonaniu dziatan da wielomian drugiego stopnia trzech zmiennych x, y, z :
535-294x+3x>-48y+48 xy+14y?-3242z+108xz+ 59 22
Ograniczajac si¢ jedynie do wyrazdéw pierwszego stopnia mamy :
-475+132x+56y+138 z

Doktadna warto§¢ funkcji f(x) w punkcie ¥ = (1.01, 2.01, 3.01) wynosi 186.2832791301. Z
przyblizenia liniowego otrzymamy warto$¢ 186.26; przyblizenie wielomianem stopnia 2 ma warto$¢
186.283200000000. Jak wida¢, w bliskim otoczeniu punktu X doktadnos¢ jest dobra i przyblizenie wielomi-
anem stopnia 2 jest istotnie doktadniejsze.

Co innego w dalszej odleglosci od punktu x. Np w punkcie (0,0,0) wartos¢ rzeczywista wynosi 0,

warto$¢ z przyblizenia liniowego -475 a z przyblizenia kwadratowego 535. m

m 2.2 Warunek konieczny istnienia minimum

Niech funkcja f(x) jest rozniczkowalna w pewnym obszarze. Przypu$émy, ze w punkcie x* tego obszaru
jest minimum lokalne, to znaczy, ze w pewnym otoczeniu U (x*) punktu x*zachodzi nierownos¢ f(x*) < f(x).

Wtedy funkcja

g(u) =f(x1", .., u ...x7)

ma minimum w punkcie u =x;*. Warunkiem koniecznym istnienia minimum jest

0=2Y /o =x7) =08, f(x)

UdowodniliSmy wigc

Twierdzenie. Warunkiem koniecznym istnienia minimum w punkcie x* jest zachodzenie rownosci

VE (x*) =0

Definicja. Punkty spetniajqce warunek (2.2.3) nazywamy punktami stacjonarnymi funkcji.
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m 2.3 Warunek dostateczny istnienia minimum
Niech f(x) ma pierwsze i drugie pochodne czastkowe ciagle.

Twierdzenie. Warunkiem dostatecznym istnienia minimum w punkcie x* jest zachodzenie nierownosci
df (VP £ (x*)) d >0

dla kazdego d.

Definicja. Macierz A spetniajqcq dla kazdego d warunek
d"ad >0

nazywamy macierzq dodatnio okreslong
Dowdd twierdzenia.

Istnieje otoczenie U punktu 0 takie, ze dla / z tego otoczenia zachodza warunki:

f (x*+h) = £ (x) +Vf(x*)Th+%hTV2f(x*+9h) h,

0<6<l, h+0
df (v2f (x*)) d >0

dla dowolnego d.
Z warunku koniecznego istnienia minimum wiemy, ze w tym otoczeniu

VE (x*) =0
Z ciagtosci drugich pochodnych czastkowych mamy, ze dla dowolnego d
dTv?f (x*+6h) d>0
Stad
f (x*+h) - f (x*) = % h'Vv?f (x*+6h) h>0

To konczy dowod m

Wiadomo, ze macierz 4 jest dodatnio okreslona wtedy i tylko wtedy, gdy wszystkie jej minory gtdwne

sa dodatnie.
ayy app ... arg)
. . . . . . a1y dx ... Ak
Definicja. Minorem glownym A macierzy A =(ay) nazywamy wyznacznik macierzy
axr a2 ... dgk )

Uwaga. Aby zbadaé, w ktorych punktach funkcja f(x) ma maksimum, wystarczy zbada¢ funkcje — f(x). Punkty
stacjonarne takiej funkcji pokrywaja si¢ z punktami stacjonarnymi funkcji f(x). Hesjan funkcji — f(x) powstaje
z hesjanu funkcji f(x) przez pomnozenie jej wszystkich elementéw przez -1. Punkty stacjonarne, w ktorych nie

ma ani minimum, ani maksimum nazywamy punktami przegiecia.
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= Przyklad 2.3 (Klasyfikacja punktéw stacjonarnych)

Zbadajmy punkty stacjonarne funkcji f(x, y) = (x — 2P +(x-2 yz)z.

Oto wyniki, uzyskane za pomoca programu Mathematica.
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*x*x*** First-order optimality conditions *x*x*x*

—4+4x—4y2==0)
0

Necessary conditions — (
-8xy+16y° ==

Possible solutions (stationary points) —

x->1. y-0.
X 2. ya—l.}

X—>2. y->1.
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_______ Point - {x>2., y—>1.}
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