
Wykład 2

ü 2.1.2 Rozkład Taylora funkcji wielu zmiennych

Podobnie,  jak w przypadku funkcji jednej  zmiennej, rozkład Taylora zaleŜy od pochodnych coraz wyŜszych

rzędów. W dalszym wykładzie potrzebne nam będzie jedynie przybliŜenie Taylora do rzędu 2.

Definicja.Gradientem funkcji wielu zmiennych x1, x2, ..., xn nazywamy wektor:

∇f HxL =

i

k

jjjjjjjjjjjjj

∂x1 f HxL

∂x2 f HxL

...

∂xn f HxL

y

{

zzzzzzzzzzzzz

,

gdzie ∑xi f HxL jest pochodną cząstkową funkcji f  względem zmiennej xi w punkcie x.

Definicja. Hesjanem funkcji wielu zmiennych x1, x2, ..., xn nazywamy macierz:

∇2f HxL = H ∂2xi,xj f HxL L,

gdzie ∑2
xi,x j f HxL jest pochodną cząstkową funkcji f  względem zmiennych xi oraz x jw punkcie x, 

(obliczanych w tym porządku).

Twierdzenie.Hesjan funkcji klasy C2 jest symetryczny

Twierdzenie (rozkład Taylora). Funkcja klasy C2 zdokładnością do wyrazów drugiego rzędu ma w otoczeniu

punktu xêê rozkład:

f HxL ≈ f Hx̄L + ∇f Hx̄LT Hx − x̄L +
1
����
2
 Hx − x̄LT ∇2f Hx̄L Hx − x̄L

Znak º naleŜy rozumieć  w ten sposób, Ŝe dla h dostatecznie małego zachodzi jeden z dwóch wzorów:

f Hx̄ + hL = f Hx̄L + ∇f Hx̄ + θ hLT h,
f Hx̄ + hL = f Hx̄L + ∇f Hx̄LT h +

1
����
2
 hT ∇2f Hx̄ + θ hL h

dla pewnego q œ(0,1)

ü Przykład 2.2 (Rozkład Taylora)

Rozwińmy w szereg Taylora w otoczeniu punktu xêê = H1, 2, 3L  funkcję

f Hx, y, zL = x3 + 12 x y2 + 2 y2 + 5 z2 + x z4

Łatwo obliczyć:
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f Hx̄L = 183, ∇f HxL =

i

k

jjjjjjj
∂x f Hx, y, zL
∂y f Hx, y, zL
∂z f Hx, y, zL

y

{

zzzzzzz =

i

k

jjjjjjj
3 x2 + 12 y2 + z4

4 y + 24 x y

2 z H5 + 2 x z2L

y

{

zzzzzzz, ∇f Hx̄L =

i

k

jjjjjj
132

56

138

y

{

zzzzzz,

∇2f HxL =

i

k

jjjjjjj
6 x 24 y 4 z3

24 y 4 + 24 x 0

4 z3 0 2 H5 + 6 x z2L

y

{

zzzzzzz, ∇2f Hx̄L =

i

k

jjjjjj
6 48 108

48 28 0

108 0 118

y

{

zzzzzz

Po podstawieniu, otrzymamy rozwinięcie w szereg Taylora w otoczeniu punktu xêê = H1, 2, 3L: 

f Hx, y, zL ≈

183 + H132, 56, 138L 
i

k

jjjjjj
x − 1

y − 2

z − 3

y

{

zzzzzz + Hx − 1, y − 2, z − 3L 
i

k

jjjjjj
6 48 108

48 28 0

108 0 118

y

{

zzzzzz 
i

k

jjjjjj
x − 1

y − 2

z − 3

y

{

zzzzzz

co po wykonaniu działań da wielomian drugiego stopnia trzech zmiennych x, y, z :

535 − 294 x + 3 x2 − 48 y + 48 x y + 14 y2 − 324 z + 108 x z + 59 z2

Ograniczając się jedynie do wyrazów pierwszego stopnia mamy :

−475 + 132 x + 56 y + 138 z

Dokładna  wartość  funkcji  f HxLw  punkcie  xêê = H1.01, 2.01, 3.01L  wynosi  186.2832791301.  Z

przybliŜenia  liniowego  otrzymamy  wartość  186.26;  przybliŜenie  wielomianem  stopnia  2  ma  wartość

186.283200000000.  Jak widać, w bliskim otoczeniu punktu xêê  dokładność jest dobra  i przybliŜenie wielomi-

anem stopnia 2 jest istotnie dokładniejsze.

Co innego w dalszej  odległości  od  punktu xêê.  Np  w punkcie (0,0,0)  wartość rzeczywista wynosi 0,

wartość z przybliŜenia liniowego -475 a z przybliŜenia kwadratowego 535. †

ü 2.2 Warunek konieczny istnienia minimum

Niech funkcja f HxL jest róŜniczkowalna w pewnym obszarze. Przypuśćmy, Ŝe w punkcie x* tego obszaru

jest minimum lokalne, to znaczy, Ŝe w pewnym otoczeniu U Hx*L punktu x*zachodzi nierówność f Hx*L < f HxL.
Wtedy funkcja 

g HuL = f Hx1∗, ..., u, ... xr
∗L

ma  minimum  w  punkcie  u = xi
*.  Warunkiem  koniecznym  istnienia  minimum  jest

0 =
dgHuL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

du
ë Hu = xi

*L = ∑xi f Hx
*L

Udowodniliśmy więc 

Twierdzenie. Warunkiem koniecznym istnienia minimum w punkcie x* jest zachodzenie równości

∇f Hx∗L = 0

Definicja. Punkty spełniające warunek (2.2.3) nazywamy punktami stacjonarnymi funkcji.
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ü 2.3 Warunek dostateczny istnienia minimum

Niech f HxL  ma pierwsze i drugie pochodne cząstkowe ciągłe.

Twierdzenie. Warunkiem dostatecznym  istnienia minimum w punkcie x* jest zachodzenie nierówności

dT H∇2f Hx∗LL d > 0

dla kaŜdego d .

Definicja. Macierz A spełniającą dla kaŜdego d  warunek 

dT A d > 0

 nazywamy macierzą dodatnio określoną

Dowód twierdzenia. 

Istnieje otoczenie U punktu 0 takie, Ŝe dla h z tego otoczenia zachodzą warunki:

f Hx∗ + hL = f Hx∗L + ∇f Hx∗LT h +
1
����
2
 hT ∇2f Hx∗ + θ hL h,

0 < θ < 1, h ≠ 0

dT H∇2f Hx∗LL d > 0

dla dowolnego d .

Z warunku koniecznego istnienia minimum wiemy, Ŝe w tym otoczeniu

∇f Hx∗L = 0

Z ciągłości drugich pochodnych cząstkowych mamy, Ŝe dla dowolnego d

dT ∇2f Hx∗ + θ hL d > 0

Stąd 

f Hx∗ + hL − f Hx∗L =
1
����
2
 hT ∇2f Hx∗ + θ hL h > 0

To kończy dowód à

Wiadomo, Ŝe macierz A jest dodatnio określona wtedy i tylko wtedy, gdy wszystkie jej minory główne

są dodatnie. 

Definicja. Minorem głownym Ak macierzy A = HaijL nazywamy wyznacznik macierzy 

i

k

jjjjjjjjjjjjj

a11 a12

a21 a22

... a1 k

... a2 k

... ...

ak1 ak2

... ...

... akk

y

{

zzzzzzzzzzzzz

Uwaga. Aby zbadać, w których punktach funkcja f HxL ma maksimum, wystarczy zbadać funkcję - f HxL. Punkty

stacjonarne takiej funkcji pokrywają się z punktami stacjonarnymi funkcji f HxL. Hesjan funkcji  - f HxL powstaje

z hesjanu funkcji  f HxL przez pomnoŜenie jej wszystkich elementów przez -1. Punkty stacjonarne, w których nie

ma ani minimum, ani maksimum nazywamy punktami przegięcia.

ALGORYTMY OPTYMALIZACJI wyklad 2.nb 3



ü Przykład 2.3 (Klasyfikacja punktów stacjonarnych)

Zbadajmy punkty stacjonarne funkcji f Hx, yL = Hx - 2L2 + Hx - 2 y2L2.
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Oto wyniki, uzyskane za pomocą programu Mathematica.

Gradient vector →
i
k
jj −4 + 4 x − 4 y2

−8 x y + 16 y3
y
{
zz

Hessian matrix → J 4 −8 y

−8 y −8 x + 48 y2
N

∗∗∗∗∗∗ First−order optimality conditions ∗∗∗∗∗∗

Necessary conditions→
i
k
jj −4 + 4 x − 4 y2 == 0

−8 x y + 16 y3 == 0

y
{
zz

Possible solutions Hstationary pointsL →
i

k

jjjjjj
x → 1. y → 0.

x → 2. y → −1.

x → 2. y → 1.

y

{

zzzzzz

∗∗∗∗∗∗ Second−order optimality conditions ∗∗∗∗∗∗

−−−−−−− Point → 8x → 1., y → 0.<

Hessian → J 4 0.

0. −8.
N Principal minors → J 4

−32.
N

Status → InflectionPoint Function value → 2.

−−−−−−− Point → 8x → 2., y → −1.<

Hessian → J 4 8.

8. 32.
N Principal minors → J 4

64.
N

Status → MinimumPoint Function value → 0.
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−−−−−−− Point → 8x → 2., y → 1.<

Hessian → J 4 −8.

−8. 32.
N Principal minors → J 4

64.
N

Status → MinimumPoint Function value → 0.
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