
Wykład 3

3. Optymalizacja z ograniczeniami

Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

 min f(x)

giHxL § 0, i = 1, 2, ..., m                                    (ograniczenia LE)                      

(3.1)

h jHxL = 0, j = 1, 2, ..., p, p < n                       (ograniczenia EQ).

ZałoŜenie.  f ,gi,h j:U Ø Rn są funkcjami klasy C1, zbiór U  jest otwarty.

Zbiór D Õ U  wektorów, spełniających ograniczenia typu LE i EQ nazywać będziemy zbiorem dopuszc-

zalnym.  Oznaczmy przez:  DLE  zbiór  wektorów, spełniających wszystkie ograniczenia  LE,   DEQ  zbiór  wek-

torów, spełniających wszystkie ograniczenia EQ. Oczywiście, D = DLE › DEQ.

Szukamy warunków koniecznych jakie musi spełniać punkt minimum globalnego x* w zbiorze dopuszc-

zalnym D. 

Redukcja 3.1. Wystarczy ograniczyć się do przypadku, gdy wszystkie ograniczenia są typu LE. KaŜde ogranicze-

nie  typu  EQ  zastąpimy  dwoma  ograniczeniami:  ograniczenie  h jHxL = 0  zastąpimy  przez

gm+2 j-1HxL § 0, gm+2 jHxL § 0 gdzie  gm+2 j-1HxL = h jHxL  i  gm+2 jHxL = -h jHxL  dla  j = 1, 2, ..., p.  Mamy  więc

M = m + 2 p ograniczeń typu LE

Definicja 3.1. Ograniczenie uHxL jest aktywne  w punkcie x* gdy zachodzi równość uHx*L = 0.

Oznaczmy przez  AKT = 8i : giHx
*L = 0< zbiór ograniczeń aktywnych. Wszystkie ograniczenia EQ są z definicji

aktywne więc indeksy o numerach i = m + 1, ..., m + 2 p naleŜą do zbioru AKT. Jednak zbiór AKT moŜe być

pusty. 

Redukcja 3.2. Wystarczy ograniczyć się do przypadku, gdy wszystkie ograniczenia są aktywne. Niech

DAKT = 8x œ U : giHxL § 0, i œ AKT<, D0 = 8x œ U : giHxL < 0, i – AKT<

Zbiór D0 jest otwarty (wynika to z ciągłości gi). Tak więc zagadnienie

min f(x)

giHxL § 0, i = 1, 2, ..., M , x e U                                                                  

jest równowaŜne zagadnieniu  

min f(x)

giHxL § 0, i eAKT, x e U0 = U › D0                                                         

Warunki moŜna tak przenumerować aby pierwszych M0 było aktywnych
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Niech Ci = 8x : xT õ giHx
*L § Hx*LT õ giHx

*L<  będzie  półprzestrzenią  wyznaczoną przez  styczną do  gi  w

punkcie  x* eCi.  Jak  łatwo  sprawdzić,  Ci  jest  zbiorem  wypukłym, zaś  C =›iœAKT Ci  jako  część  wspólna

wypukłych półpłaszczyzn zbiorem wypukłym, zawierającym x*.

Niech  C0 = 8h : hT õ giHx
*L § 0, i œ AKT<.  Wtedy  "m¥0 mC0 Õ C0,   C = x* + C0  czyli  C  jest  stoŜkiem  o

wierzchołku x* i kierunkach w zbiorze C0.

Definicja 3.2. Punkt  x*  jest regularny  gdy dla kaŜdego  h œ C0  istnieje otoczenie U Hx*L  oraz gładka,  klasy

C2 krzywa jHtL taka, Ŝe:

1. jH0L = x*, 2. j ' H0L = m h dla pewnego m>0, 3. $t0"0<t<t0 jHtL Õ U Hx*L › D

Lemat 3.1. JeŜeli punkt  x* jest regularny, h œ C0 to hT  õ f Hx*L ¥ 0

Dowód (niewprost)

$h1
h1 œ C0takie, Ŝe h1

T  õ f Hx*L < 0. Funkcja h1
T  õ f HxL jako funkcja zmiennej x jest ciągła, więc istnieje otocze-

nie  U Hx*L  takie,  Ŝe  w tym otoczeniu  h1
T  õ f HxL < 0.  Z  regularności  punktu  x*wynika, Ŝe  istnieje  otoczenie

U1Hx
*L Õ U Hx*L i gładka, klasy C2 krzywa jHtL taka, Ŝe:

jH0L = x*,  j ' H0L = m h1 dla pewnego m>0,  $t0"0§t<t0 jHtL Õ U1Hx
*L › D.

Rozwijając j w pobliŜu 0 w szereg Taylora mamy dla 0 § t < t1 < t0

jHtL = x* + m t h1 + m t gHtL i gHtLØ0 gdy t Ø 0 +. 

PoniewaŜ jHtL Õ U1Hx
*L › D więc dla 0 § t < t1 h1

T  õ f HjHtL L < 0

Funkcja yT  õ f HjHtLL jako funkcja zmiennej y jest ciągła, wię istnieje otoczenie UtHh1L takie, Ŝe w tym otoczeniu

yT  õ f HjHtLL <0. 

Kładąc  U0Hh1L =›0§t<t1
UtHh1L  mamy  dla  kaŜdego  y eU0Hh1L  i  dla  kaŜdego  0 § t < t1,

0 > yT  õ f HjHtLL = yT  õ f Hx* + m t Hh1 + gHtLLL . 

Łatwo  zauwaŜyć,  Ŝe  dla  dostatecznie  małych q>0  dla  kaŜdego  y e U0Hh1L  i  dla  kaŜdego  0 § t < t1zachodzi

nierówność yT  õ f Hx* + qm t Hh1 + gHtLLL < 0

Wektor  h1 + gHtL  dla  dostetecznie  małych t  naleŜy  do  U0Hh1L  więc  zachodzi  dla  dostatecznie  małych t > 0,

Hh1 + gHtLLT  õ f Hx* + qm t Hh1 + gHtLLL < 0 a więc dla h = m t Hh1 + gHtLL  mamy x* + h œ D,  hT  õ f Hx* + q hL < 0 .

Wzór ten zachodzi dla dostatecznie małych t > 0.

Wtedy,  z  rozwinięcia  Taylora  funkcji  f  mamy  f Hx* + hL = f Hx*L + hT  õ f Hx* + q hL < f Hx*L  co  stanowi

sprzeczność z załoŜeniem, Ŝe w x* jest minimum globalne à 

Twierdzenie 3.1. (Warunek konieczny istnienia minimum , warunki Kuhna-Tuckera, warunki Karusha-

Kuhna-Tuckera) 

Niech w regularnym punkcie x* œ D funkcja celu osiąga w tym punkcie minimum w dopusz-czalnym obszarze D

Wtedy:

‚
i∈Akt

ui ∇gi Hx∗L + ‚
j=1

p

vj ∇hj Hx∗L =

−∇f Hx∗L H3.2L

dla pewnych ui ¥ 0 oraz v j.

Definicja 3.3. Punkty regularne, spełniające warunki (3.2) twierdzenia 3.1 nazywać będziemy punktami Kuhna-Tuck-

era (punktami KT)

Dowód 

W dowodzie wykorzystamy lemat Farkasa.
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Lemat Farkasa (1902).  Niech   A będzie macierzą o k wierszach i n kolumnach , b i h n-wymiarowymi wek-

torami, w wektorem k-wymiarowym. RównowaŜne są następujące warunki:

dla kaŜdego h zachodzi implikacja A h ≥ 0 ⇒ bT h ≥ 0 ,

∃ u ≥ 0 AT u = b.

Dla wektora q warunek q ¥ 0 oznacza, Ŝe wszystkie jego współrzędne są nieujemne.

Podstawiając w lemacie Farkasa 

b = ∇f Hx∗L,
A = −H ∇g1 Hx∗L, ∇g2 Hx∗L, ..., ∇gM0  Hx∗LLT,

uzyskamy z Lematu 3.1, Ŝe dla kaŜdego h  zachodzi implikacja  A h ≥ 0 ⇒ bT h ≥ 0 .

Z Lematu Farkasa mamy, Ŝe dla wektora u o nieujemnych składnikach

‚
i∈Akt

ui ∇gi Hx∗L = −∇f Hx∗L

Dla  j-tego  ograniczenia  typu  równości  h jHxL = 0  ,

um+2 j-1 õ h jHx
*L + um+2 jH-õ h jHx

*LL = Hum+2 j-1 - um+2 jL õ h jHx
*L = v j õ h jHx

*L, 

‚
i∈Akt

ui ∇gi Hx∗L + ‚
j=1

p

vj ∇hj Hx∗L = −∇f Hx∗L

dla pewnych ui ¥ 0 oraz v j.

Warunek regularności jest istotny.

ü Przykład 3.1

Obliczmy minimum globalne funkcji f HxL = x1 z warunkami x2 § x1
3, x2 ¥ 0. Rozwiązując to zadanie geometryc-

znie widzimy, Ŝe minimum globalne jest w x* = H0, 0LT
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Zbiór C0 = 8h = Hh1, h2L : hT  õ g1Hx
*L § 0, hT  õ g2Hx

*L § 0< = 8h = Hh1, 0L, h1 e R<.  Nie istnieje krzywa j leŜąca

w zbiorze dopuszczalnym dla h = H-1, 0L,  gdyŜ wtedy j1HtL = -m t + tg1HtL ¥ 0 dla dostatecznie małych t > 0.

Wtedy -m + g1HtL ¥ 0 i przechodzą z t  do 0 otrzymamy -m¥0 co jest sprzeczne z załoŜeniem, Ŝe m>0.à

Sprawdzenie, czy punkt x* jest  regularny jest trudne. Prawdziwe jest 

Twierdzenie 3.2. Punkt x* œ D jest regularny jeŜeli wektory: 

∇gi Hx∗L, i ∈ Akt,

∇hj Hx∗L, j = 1, 2, ..., p

są liniowo niezaleŜne.

Z tego wynika, Ŝe łączna liczba ograniczeń aktywnych i ograniczeń typu EQ w punkcie regularnym nie moŜe

przekraczać n.

Zbadanie, czy układ wektorów jest liniowo niezaleŜny jest waŜne przy ustaleniu czy analizowany punkt

jest regularny. 

Twierdzenie 3.3. ( warunek dostateczny na to, by punkt był regularny). Dany jest układ  fukcji n zmiennych

x1, x2, ..., xn  , będących ograniczeniami typu EQ ( funkcji h1, h2, ..., hp) i ograniczeniami aktywnymi typu LE

(funkcji gi1 , gi2 , ..., gik ). Punkt x* jest regularny jeśli macierz 

H õ gi1 Hx
*L õ gi2 Hx

*L ... õ gik Hx
*L õ h1Hx

*Lõ h2 Hx
*L ...  õ hp Hx

*LL jest rzędu k+p.

ü Przykład 3.2 (Minimum w punkcie nieregularnym)

Znajdźmy rozwiązanie zadania optymalizacyjnego:

f Hx, yL = x = MIN!,

x2 ≤ 0.

Gradienty, związane z tym zadaniem mają postać:

∇f HxL = 1,

∇g HxL = 2 x.

Ograniczenie gHxL jest aktywne, gdyŜ jedyny punkt , spełniający to ograniczenie to punkt 0. Tak więc jest

to równieŜ rozwiązanie naszego zagadnienia. 

Jednocześnie jest to punkt nieregularny, gdyŜ “g(0)=0 a to nie jest wektor liniowo niezaleŜny.

Warunki  Kuhna  Tuckera  wymagają  dodatkowych  załoŜeń,  gdyŜ  w  naszym przykładzie,  gdy  g jest

ograniczeniem aktywnym, musiałyby zachodzić:

u H2 xL = −1,

x2 = 0,

u ≥ 0.

co stanowi sprzeczność.  à
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ü Przykład 3.3 (Warunki Kuhna-Tuckera)

Znajdźmy punkty KT dla zagadnienia:

f Hx, yL = x2 + y2 = MIN!,

x + y ≥ 5,

x + 2 y = 3.

Sprowadzając do postaci standardowej 

f Hx, yL = x2 + y2 = MIN!,

g Hx, yL = 5 − x − y ≤ 0,

h Hx, yL = x + 2 y − 3 = 0.

∇f Hx, yL = H2 x, 2 yLT,
∇g Hx, yL = H−1, −1LT,
∇h Hx, yL = H1, 2LT

Łatwo sprawdzic, Ŝe wszystkie punkty, naleŜące do zbioru dopuszczalnego są regularne. Niech Hx*, y*L

będzie  rozwiązaniem naszego zadania.  RozwaŜmy dwa przypadki:

I. gHxL jest aktywne w Hx*, y*L. 

Wtedy muszą zachodzić warunki Kuhna Tuckera:

u H−1, −1L + v H1, 2L = −H2 x, 2 yL
5 − x − y = 0,

x + 2 y − 3 = 0,

u ≥ 0.

Układ ten ma rozwiązanie:

x∗ = 7, y∗ = −2, u = 32, v = 18,

f Hx∗, y∗L = 53.

II. gHxL nie jest aktywne w Hx*, y*L. 

Warunki Kuhna Tuckera w tym przypadku przybiorą postać:

v H1, 2L = −H2 x, 2 yL,
5 − x − y < 0,

x + 2 y − 3 = 0.

Układ  ten  nie  ma rozwiązania,  gdyŜ  pierwiastki  układu,  składającego  się  z  pierwszego  i  trzeciego

równania x = 3ÅÅÅÅ
5

 i y = 6ÅÅÅÅ
5

 nie spełniaj nierówności.

Tak więc rozwiązanie x* = 7 i y* = -2, jako jedyne, jest odpowiedzią w naszym zadaniu.  à

Warunki Kuhna Tuckera moŜna uprościć, wprowadzając dodatkowe zmienne si , i = 1, 2, ..., m , które

przekształcą  wszystkie ograniczenia  LE na ograniczenia  EQ. Wtedy teŜ wszystkie ograniczenia są aktywne.

Nasze zadanie będzie równowaŜne :

 min f(x)

g*
iHx, sL = giHxL + si

2 = 0, i = 1, 2, ..., m                

h jHxL = 0, j = 1, 2, ..., p, p < n                     

ZauwaŜmy, Ŝe 
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∇f Hx, sL = H∇f HxL, 0L,
∇g∗

i Hx, sL = H∇gi HxL,
2 siL, H3.2L

∇hj Hx, sL = H∇hj HxL, 0L

W powyŜszych równaniach 0, ei  są wektorami m-wymiarowymi: pierwszy składa się z samych 0, drugi

ma na i-tym miejscu 1 a na pozostałych miejscach 0. 

Zapisując w nowej sytuacji warunki Kuhna Tuckera, otrzymamy:

‚
i=1

m

ui ∇g∗
i Hx∗, s∗L + ‚

j=1

p

vj ∇hj Hx∗, s∗L = −∇f Hx∗, s∗L

co po uwzględnieniu (3.2) daje układ (zmodyfikowane warunki Kuhna-Tuckera (warunki K-T))

‚
i=1

m

ui ∇gi Hx∗L + ‚
j=1

p

vj ∇hj Hx∗L =

−∇f Hx∗L, H3.3L
ui s

∗
i = 0, ui ≥ 0,

gi Hx∗L + Hs∗Li2 = 0, i = 1, 2, ..., m,

hj Hx∗L = 0 j = 1, 2, ..., p

Gdy si = 0 to ograniczenie gi  jest aktywne, gdy si ∫ 0 to ui = 0 i ograniczenie gi  nie bierze udziału w

wyznaczeniu x*.  Z poprzednich  rozwaŜań wynika, Ŝe liczba ograniczeń aktywnych, więc takich, dla  których

si = 0 wraz z liczbą ograniczeń EQ nie moŜe przekraczać n.

ü Przykład 3.4 (Rozwiązanie przykładu 3.3 zmodyfikowaną metodą K-T)

Zapiszmy od razu warunki (3.3):

u H−1, 1L + v H1, 2L = −H2 x, 2 yL,
u s = 0, u ≥ 0,

−x − y + 5 + s2 = 0,

x + 2 y − 3 = 0,

Wyznaczmy x i y z ostatnich dwóch równań: 

x = 7 + 2 s2, y = −2 − s2

Podstawiając do pierwszego równania otrzymamy, Ŝe 3u = 32 + 10 s2 > 0, co od razu daje rozwiązanie

s = 0, x = 7, y = -2.   à
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