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Wyktad 3

3. Optymalizacja z ograniczeniami

Sformutujemy teraz warunki konieczne dla istnienia rozwiazan zagadnienia optymalizacyjnego:

@ minf(x)
gix)=<0,i=1,2, ...,m (ograniczenia LE)
(3.1)
hix)=0, j=1,2, .., p, p<n (ograniczenia EQ).

Zalozenie. f,g;,h;:U — R" sa funkcjami klasy C', zbioér U jest otwarty.

Zbioér D c U wektoroéw, spelniajacych ograniczenia typu LE i EQ nazywa¢ bedziemy zbiorem dopuszc-
zalnym. Oznaczmy przez: Dyg zbiér wektorow, spetniajacych wszystkie ograniczenia LE, Dgq zbior wek-
torow, spetniajacych wszystkie ograniczenia EQ. Oczywiscie, D = Dyg () Dgg.

Szukamy warunkow koniecznych jakie musi spetnia¢ punkt minimum globalnego x* w zbiorze dopuszc-

zalnym D.

Redukcja 3.1. Wystarczy ograniczy¢ si¢ do przypadku, gdy wszystkie ograniczenia sg typu LE. Kazde ogranicze-
nie typu EQ zastapimy dwoma ograniczeniami: ograniczenie /;(x)=0 zastapimy przez

G2 j-1(0) = 0, gpy2 ;(x) <0 gdzie gy j-1(xX) = hj(x) 1 guezj(X) = —h;(x) dla j=1,2, ..., p. Mamy wiec

M = m + 2 p ograniczen typu LE

Definicja 3.1. Ograniczenie u(x) jest aktywne w punkcie x* gdy zachodzi rownos¢ u(x*) = 0.
Oznaczmy przez AKT = {i : g;(x*) = 0} zbidr ograniczen aktywnych. Wszystkie ograniczenia EQ sa z definicji
aktywne wigc indeksy o numerach i = m + 1, ..., m + 2 p naleza do zbioru AKT. Jednak zbior AKT moze by¢

pusty.

Redukcja 3.2. Wystarczy ograniczy¢ si¢ do przypadku, gdy wszystkie ograniczenia sa aktywne. Niech
Dagkr={xeU: g(x)<0,i e AKT}, Dy ={xe U: gi(x) <0, i ¢ AKT}
Zbior Dy jest otwarty (wynika to z ciaglosci g;). Tak wige zagadnienie

@ min f(x)
g <0,i=1,2, ..M, xeU

jest rownowazne zagadnieniu

@ min f(x)
g0 =<0, ieAKT,x e Uy = U (1 Dy

Warunki mozna tak przenumerowac aby pierwszych M, byto aktywnych
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Niech C; = {x: xT v gi(x*) < x)HT'v gi(x")} bedzie potprzestrzenia wyznaczong przez styczng do g; w
punkcie x* € C;. Jak tatwo sprawdzi¢, C; jest zbiorem wypuktym, za§ C = ();caxt C; jako czgs¢ wspdlna
wypuktych potptaszczyzn zbiorem wypuktym, zawierajacym x*.

Niech Cy={h: T vgi(x*) < 0, i € AKT}. Wtedy V=0 £ Co C Gy, C=x"+Cy czyli C jest stozkiem o
wierzchotku x* 1 kierunkach w zbiorze Cj.

Definicja 3.2. Punkt x* jest regularny gdy dla kazdego h € Cy istnieje otoczenie U(x*) oraz gladka, klasy
C? krzywa @(t) taka, Ze:
1. @(0) = x*, 2. ¢'(0) = pt h dla pewnego (>0, 3. 3y, Vo<, (1) c Ux*) (D

Lemat 3.1. Jezeli punkt x* jest regularny, h e Cyto hT v f(x*) = 0

Dowéd (niewprost)
3y, € Cotakie, ze hy I'y f(x*) <0. Funkcja th V f(x) jako funkcja zmiennej x jest ciagla, wigc istnieje otocze-
nie U(x*) takie, ze w tym otoczeniu /; Iy f(x) <0. Z regularno$ci punktu x*wynika, ze istnieje otoczenie
Ui (x*) c U(x*) i gladka, klasy C? krzywa ¢(¢) taka, ze:
¢(0) = x*, ¢'(0) = phy dla pewnego >0, 3, Yoz, @(t) € Uy (x*) ( D.
Rozwijajac ¢ w poblizu 0 w szereg Tayloramamydla0 <¢ < ¢ <f¢

o)y =x"+uth +uty@®iy®)-»0gdyt—-0+.
Poniewaz ¢(t) c U;(x*) (Y D wiecdla0 < ¢ <t h T vV fle®) <0
Funkcja y7 v f(¢(1)) jako funkcja zmiennej y jest ciagta, wie istnieje otoczenie U, (/) takie, ze w tym otoczeniu
yI'V fle(t)) <0.
Kiadac Up(h1) = (No<i<y, Us(h1) mamy dla kazdego yeUp(h;) i dla kazdego 0=t<1,
0> 3" fle®) =y" v (& +put(hy + y(0).
Latwo zauwazy¢, ze dla dostatecznie matych 6>0 dla kazdego ye Uy(h;) i dla kazdego 0 < ¢ < ¢;zachodzi
nierowno$é y' v £(x* + Qut (hy + (1)) <0
Wektor %y + y(¢) dla dostetecznie matych ¢ nalezy do Uy(h;) wigc zachodzi dla dostatecznie matych ¢ > 0,
(hy + y(t))TVf(x* +0ut(h + y®)) <0awiecdlah=put(h + y()) mamy x* +h €D, kv f(x* +6h) <0.
Wzér ten zachodzi dla dostatecznie matych ¢ > 0.
Wtedy, z rozwiniecia Taylora funkcji f mamy f(x*+h) = f(x*)+hT v f(x* +0h) < f(x*) co stanowi
sprzeczno$¢ z zalozeniem, ze w x* jest minimum globalne ®

Twierdzenie 3.1. (Warunek konieczny istnienia minimum , warunki Kuhna-Tuckera, warunki Karusha-
Kuhna-Tuckera)

Niech w regularnym punkcie x* € D funkcja celu osiqga w tym punkcie minimum w dopusz-czalnym obszarze D
Wtedy:

p
Z u; Vg; (x*) +Zvj Vh; (x) =
j=1

ieAkt

_VF (x¥) (3.2)

dla pewnych u; > 0 oraz v,.

Definicja 3.3. Punkty regularne, spelniajqce warunki (3.2) twierdzenia 3.1 nazywa¢ bedziemy punktami Kuhna-Tuck-
era (punktami KT)

Dowéd

W dowodzie wykorzystamy lemat Farkasa.
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Lemat Farkasa (1902). Niech A bedzie macierzq o k wierszach i n kolumnach , b i h n-wymiarowymi wek-

torami, w wektorem k-wymiarowym. Rownowazne sq nastepujqce warunki:

dla kazdego h zachodzi implikacjaAh=0 =>bTh=0,
Juz0ATu=bhb.

Dla wektora ¢ warunek g = 0 oznacza, ze wszystkie jego wspotrzedne sa nieujemne.

Podstawiajac w lemacie Farkasa

b=Vf (x),
A=-(Vg (X)), Vg2 (X*), «euy Vau (x*))7,

uzyskamy z Lematu 3.1, ze dla kazdego # zachodzi implikacja Ah >0 =bTh > 0.
Z Lematu Farkasa mamy, ze dla wektora « o nieujemnych sktadnikach
D uivgs (x) = -VE (x)
ieAkt
Dla j-tego ograniczenia typu roOwnosci hj(x)=0 ,
U2 j=1 V(X)) + o (=Y Bj(X7) = U2 jo1 = U2 )V hj(X7) = v; V hj(x"),
p
Z u; Vg (x*) + Z vy Vhj (x*) = -V (x%)
ieRkt j=1

dla pewnych u; > 0 oraz v;.
Warunek regularnosci jest istotny.

= Przyklad 3.1
Obliczmy minimum globalne funkcji f(x) = x| z warunkami x, < x;°, x, = 0. Rozwiazujac to zadanie geometryc-

znie widzimy, Ze minimum globalne jest w x* = (0, 0)7
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Zbior Cy = {h = (hy, hy): KT v g1(x*) <0, hT v go(x*) < 0} = {h = (1, 0), h; €R}. Nie istnieje krzywa ¢ lezaca
w zbiorze dopuszczalnym dla 4 = (-1, 0), gdyz wtedy ¢;(f) = —u ¢ + ty,(¢) = 0 dla dostatecznie matych 7 > 0.
Wtedy —u +y1(¢) = 01 przechodza z ¢t do 0 otrzymamy -u=0 co jest sprzeczne z zatozeniem, ze ;>0.1

Sprawdzenie, czy punkt x* jest regularny jest trudne. Prawdziwe jest

Twierdzenie 3.2. Punkt x* € D jest regularny jezeli wektory:

Vg; (x*), 1e€Akt,
th(X*>l j:1/2/ .7 P

sq liniowo niezalezne.

Z tego wynika, ze taczna liczba ograniczen aktywnych i ograniczen typu EQ w punkcie regularnym nie moze

przekraczacé n.

Zbadanie, czy uktad wektorow jest liniowo niezalezny jest wazne przy ustaleniu czy analizowany punkt

jest regularny.

Twierdzenie 3.3. ( warunek dostateczny na to, by punkt byl regularny). Dany jest uklad fukcji n zmiennych
X1, X2, ..., X , bedqcych ograniczeniami typu EQ ( funkcji hy, ha, ..., hp) i ograniczeniami aktywnymi typu LE
(funkcji g\, giy» .- 8i,)- Punkt x* jest regularny jesli macierz

(Vg (") Vgy(x") ..V g(x") VI(x)Vhy(X) ... Vh,(x")) jestrzedu k+p.

= Przyklad 3.2 (Minimum w punkcie nieregularnym)

Znajdzmy rozwiazanie zadania optymalizacyjnego:

f (x, y) =x= MIN!,

x*<0.

Gradienty, zwiazane z tym zadaniem maja postaé:

<
Q
x
I
N
X

Ograniczenie g(x) jest aktywne, gdyz jedyny punkt , spetniajacy to ograniczenie to punkt 0. Tak wigc jest
to rOwniez rozwiazanie naszego zagadnienia.
Jednoczesnie jest to punkt nieregularny, gdyz Vg(0)=0 a to nie jest wektor liniowo niezalezny.

Warunki Kuhna Tuckera wymagaja dodatkowych zatozen, gdyz w naszym przyktadzie, gdy g jest
ograniczeniem aktywnym, musiatyby zachodzi¢:

N

( X):_ll
220,
>0.

S X =

co stanowi sprzeczno$¢. W
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= Przyklad 3.3 (Warunki Kuhna-Tuckera)

Znajdzmy punkty KT dla zagadnienia:

f(x, y) =x“+y°= MIN!,
x+y=>=05,
X+2y=3.

Sprowadzajac do postaci standardowej

V) :x2+y2: MIN !,

£ (x,

g (%, y)=5-x-y=0,

h(x, y) =x+2y-3=0.
VE(x,y)=(2%,2y)7,
Vg (x, y) = (-1, _l)TI

Vh (x, y) = (1, 2)"

Latwo sprawdzic, ze wszystkie punkty, nalezace do zbioru dopuszczalnego sa regularne. Niech (x*, y*)
bgdzie rozwiazaniem naszego zadania. Rozwazmy dwa przypadki:
L. g(x) jest aktywne w (x*, y*).

Wtedy musza zachodzi¢ warunki Kuhna Tuckera:

u (-1, -1y +v (1, 2) =-(2x%, 2y)
5-x-y=0,

x+2y-3=0,

uz0.

Uktad ten ma rozwiazanie:

x*=7, y*=-2, u=32, v=18,
f (x*, y") =53.

II. g(x) nie jest aktywne w (x*, y*).
Warunki Kuhna Tuckera w tym przypadku przybiora postac:

vi(l, 2)=-(2x, 2y),
5-x-y<0,
x+2y-3=0.

Uktad ten nie ma rozwiazania, gdyz pierwiastki uktadu, sktadajacego si¢ z pierwszego i trzeciego

, . 36 - e, , .
rownaniax = z 1y = 7 nie spe%nla] nierownosci.

Tak wigc rozwiazanie x* = 7 1 y* = -2, jako jedyne, jest odpowiedzia w naszym zadaniu. ®

Warunki Kuhna Tuckera mozna uprosci¢, wprowadzajac dodatkowe zmienne s;, i =1, 2, ..., m , ktdre
przeksztatca wszystkie ograniczenia LE na ograniczenia EQ. Wtedy tez wszystkie ograniczenia sa aktywne.

Nasze zadanie bedzie rownowazne :

@ minf(x)
g% i(x, 8) = gi(x) +52=0,i=1,2, ...m
hi(x)=0, j=1,2, .., p, p<n

Zauwazmy, 7€
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3 (XI S) = (Vf (X)I O)I

vg*i (Xr S) = (Vgi (X>I
2 si)l (32>
Vhj (x, s) = (Vh; (x), 0)

W powyzszych rownaniach 0, e; sa wektorami m-wymiarowymi: pierwszy sktada si¢ z samych 0, drugi

ma na i-tym miejscu 1 a na pozostatych miejscach 0.

Zapisujac w nowej sytuacji warunki Kuhna Tuckera, otrzymamy:

m P
Zui vVg*; (x*, s%) +ZVJ' Vh; (x*, s*) =-Vf (x*, s¥)
i-1 3=1

co po uwzglednieniu (3.2) daje uktad (zmodyfikowane warunki Kuhna-Tuckera (warunki K-T))

m

P
Zui Vg (x') +Zvthj (x*) =
i-1 -1
_VE (x), (3.3)
u; s*; =0, u; =0,
* 2

gi(X*)+(S)i:Oli:1121 ey my
hi (x)=05=1,2, ..., p

Gdy s; = 0 to ograniczenie g; jest aktywne, gdy s; # 0 to u; = 0 1 ograniczenie g; nie bierze udzialu w
wyznaczeniu x*. Z poprzednich rozwazan wynika, ze liczba ograniczen aktywnych, wigc takich, dla ktorych

s; = 0 wraz z liczba ograniczen EQ nie moze przekraczaé n.

= Przyklad 3.4 (Rozwiazanie przykladu 3.3 zmodyfikowana metoda K-T)

Zapiszmy od razu warunki (3.3):

u(-1, 1)+v (1, 2)=-(2x, 2vy),
us=0, u=0,

-x-y+5+s°=0,

Xx+2y-3=0,

Wyznaczmy x i y z ostatnich dwoch réwnan:
x=7+2s°, y=-2-5°

Podstawiajac do pierwszego rownania otrzymamy, ze 3u = 32 + 10 s> > 0, co od razu daje rozwiazanie

s=0,x=7,y=-2. 1



