CALDERÓN-ZYGMUND OPERATORS ASSOCIATED TO ULTRASPERHICAL EXPANSIONS

DARIUSZ BURACZEWSKI, TERESA MARTINEZ, AND JOSÉ L. TORREA

Abstract. We define the higher order Riesz transforms and the Littlewood-Paley g-function associated to the differential operator $L_\lambda f(\theta) = -f''(\theta) - 2\lambda \cot \theta f'(\theta) + \lambda^2 f(\theta)$. We prove that these operators are Calderón-Zygmund operators in the homogeneous type space $((0, \pi), (\sin t)^{2\lambda} dt)$. Consequently, L^p weighted, $H^1 - L^1$ and $L^\infty - \text{BMO}$ inequalities are obtained.

1. Introduction

B. Muckenhoupt and E. Stein, in [5], defined and studied the versions of some objects to classical Fourier Analysis (conjugate functions, maximal functions, g-functions and multipliers) for the system of the ultraspherical polynomials. Their approach follows the lines of the classical Fourier Analysis in the torus. In particular, the relationship between Fourier series, analytic functions and harmonic functions plays an essential role. For instance, their definition of the conjugate function was via a boundary value limit of certain “conjugate harmonic function” which satisfies the appropriate Cauchy-Riemann equations. The technique involved the definition of the “harmonic extension” including a careful analysis of its kernel. Then they built a conjugate harmonic function and proved the existence of a boundary value function, the conjugate function. They got L^p boundedness for p in the range $1 < p < \infty$ and some substitutive inequality in the case $p = 1$. This method was followed later by different authors when defining classical operators for orthogonal expansions. In [5] they did not study the kernel of the conjugate function.

Five years later, there appeared Stein’s celebrated monograph [7], where “maximal functions”, “g-functions”, “Riesz transforms”, and “multipliers” were also defined. He used systematically a point of view based on an analysis of a Laplacian on compact Lie groups. He studied the “heat” and “Poisson” semigroups associated to the Laplacian and, from them, he derived the rest of the operators by using some spectral formulas.

Date: March 13, 2005.

2000 Mathematics Subject Classification. 42C05,42C15.

Key words and phrases. Ultraspherical polynomials, Calderón-Zygmund operators.

The authors were partially supported by RTN Harmonic Analysis and Related Problems contract HPRN-CT-2001-00273-HARP. First author was supported in part by KBN grant 1P03A01826. Second and third authors were partially supported by BFM grant 2002-04013-C02-02.
A natural question arising from [13] is studying some other classical operators in the context of the system of the ultraspherical polynomials. In particular, our aim was to study higher order Riesz transforms. In order to define those operators, it seems that the natural procedure to follow is the one suggested in the monograph [17], and we do so in this paper. The method used to prove the boundedness of higher order Riesz transforms could be applied to a more general class of operators. For instance, we present in this paper its application to study the boundedness of the Littlewood-Paley \(g \)-function, although more operators fit in this technique (e.g. multipliers of Laplace transform type). More concretely, we find that all these operators are naturally Calderón-Zygmund operators, fit in this technique (e.g. multipliers of Laplace transform type). Therefore, we get as a byproduct of the general theory \(L^p, H^1, BMO \) boundedness and weighted inequalities for them (see Theorem 1.4).

By using a different method, the (first order) Riesz transform was studied in [11]. It was defined following [17] and, among other results, the \(L^p \)-boundedness for \(p \in (1, \infty) \) and the weak type \((1,1)\) were obtained.

We consider the ultraspherical polynomials \(P_n^\lambda(x), \lambda > 0 \), defined as the coefficients in the expansion of the generating function \((1 - 2x\omega + \omega^2)^{-\lambda} = \sum_{n=0}^{\infty} \omega^n P_n^\lambda(x)\) (see [8] for further details). It is known that the set \(\{P_n^\lambda(\cos \theta): n \in \mathbb{N}\} \) is orthogonal and complete in \(L^2[0,\pi] \) with respect to the measure \(dm_\lambda(\theta) = (\sin \theta)^{2\lambda}d\theta \). The functions \(P_n^\lambda(\cos \theta) \) are eigenfunctions of the operator

\[
L_\lambda f(\theta) = -f''(\theta) - 2\lambda \cot \theta f'(\theta) + \lambda^2 f(\theta),
\]

with eigenvalues \(\mu_n = (n + \lambda)^2 \). Every function \(f \) in \(L^2(dm_\lambda) \) has the ultraspherical expansion \(f(\theta) = \sum_{n=0}^{\infty} a_n P_n^\lambda(\cos \theta) \|P_n^\lambda\|_{L^2(dm_\lambda)}^{-1} \). Following [17], we define its Poisson integral as

\[
P f(e^{-t}, \theta) = e^{t\sqrt{L_\lambda}} f(\theta) = \sum_{n=0}^{\infty} a_n e^{-t(n+\lambda)} P_n^\lambda(\cos \theta) \|P_n^\lambda\|_{L^2(dm_\lambda)}^{-1}.
\]

The calculus formula \(s^{-a} = \frac{1}{\Gamma(a)} \int_0^\infty e^{-ts}t^{a-1} dt \) can be used to define

\[
L_\lambda^{-1/2} f(\theta) = \frac{1}{\Gamma(l)} \int_0^\infty e^{-t\sqrt{L_\lambda}} f(\theta) t^{l-1} dt, \quad l \geq 1, \quad f \in L^2(dm_\lambda).
\]

On the other hand, it is easy to check that \(L_\lambda \) is formally self-adjoint on the space \(L^2(dm_\lambda) \) and that it factorizes as \(L_\lambda f(\theta) = (-\partial_\theta^2 + \lambda^2) f(\theta) \), where \(\partial_\theta^l = \partial_\theta + 2\lambda \cot \theta \) is formally adjoint to \(\partial_\theta \), i.e., \(\langle \partial_\theta^l f, g \rangle_{L^2(dm_\lambda)} = -\langle f, \partial_\theta g \rangle_{L^2(dm_\lambda)} \). Following [17], the Riesz transform \((l = 1)\) and the higher order Riesz transforms \((l > 1)\) are defined as

\[
R_\lambda^l f(\theta) = \partial_\theta^l (L_\lambda)^{-1/2} f(\theta), \quad l \geq 1.
\]
Also, the Littlewood-Paley g-function is defined as

$$Gf(\theta) = \left(\int_0^1 r \log \frac{1}{r} \left(|\partial_r Pf(r, \theta)|^2 + |\partial_\theta Pf(r, \theta)|^2 \right) dr \right)^{1/2}. $$

For these operators, we have the following result.

Theorem 1.4. The operators $R^l_\lambda f$, for any natural $l \geq 1$, and Gf are bounded in $L^p(w dm_\lambda)$, $1 < p < \infty$ for any weight w in the Muckenhoupt class A_p with respect to the measure dm_λ and of weak type $(1,1)$ with respect to the measure $w dm_\lambda$ for $w \in A_1$. Also, they map L^∞ into $\text{BMO}(dm_\lambda)$ and $H^1(dm_\lambda)$ into $L^1(dm_\lambda)$ boundedly.

In fact, this theorem is a consequence of the general theory for Calderón-Zygmund operators in spaces of homogeneous type and the following theorems.

Theorem 1.5. For any natural $l \geq 1$, the operators R^l_λ are Calderón-Zygmund operators in the homogeneous type space $([0, \pi), dm_\lambda)$.

For the g-function, we study separately the operators

$$G^1 f(\theta) = \left(\int_0^1 r \log \frac{1}{r} |\partial_r Pf(\theta)|^2 dr \right)^{1/2} \tag{1.6}$$

$$G^2 f(\theta) = \left(\int_0^1 r \log \frac{1}{r} |\partial_\theta Pf(\theta)|^2 dr \right)^{1/2}. \tag{1.7}$$

Theorem 1.8. There exist vector valued Calderón-Zygmund operators in the homogeneous type space $([0, \pi), dm_\lambda)$ mapping scalar-valued functions into functions with values in $L^2((0,1), dr)$, T^G_i, $i = 1, 2$, such that

$$G^i f(\theta) = \|T^G_i f(\theta)\|_{L^2((0,1), dr)}.$$

The structure of the paper is as follows. In section 2, we state the technical Theorem 2.4, as an intermediate step in the proofs of Theorems 1.5 and 1.8. In section 3 we verify the hypothesis of Theorem 2.4 for the higher order Riesz transforms, and in section 4 we do the corresponding checking for the g-function.

Let us mention just a word about notation. Throughout the paper, the letter C will denote a constant whose value may vary from line to line, and let us call polynomial function to any finite linear combination of ultraspherical polynomials, that is, any f of the form

$$f = \sum_{n=0}^N a_n \frac{P^\lambda_n}{\|P^\lambda_n\|_{L^2(dm_\lambda)}}, \quad a_n = \int_0^\pi f(\theta) \frac{P^\lambda_n(\cos \theta)}{\|P^\lambda_n\|_{L^2(dm_\lambda)}} dm_\lambda(\theta). \tag{1.9}$$

2. Preliminaries and Technical Tools

Following $[3]$ and $[4]$, a space of homogeneous type (X, ρ, μ) is a set X together with a quasimetric ρ and a positive measure μ on X such that for every $\theta \in X$ and $r > 0$, $\mu(B(\theta, r)) < \infty$, and such that there exists $0 < C < \infty$ such that
for every \(\theta \in X \) and \(r > 0 \) \(\mu(B(\theta, 2r)) \leq C \mu(B(\theta, r)) \). In our case, \(X = [0, \pi] \) with the metric given by the absolute value, and the measure is \(dm_\lambda \), which is doubling, what can be easily checked.

We say that a kernel \(K : X \times X \setminus \{x = y\} \rightarrow \mathbb{C} \) is a standard kernel if there exist \(\varepsilon > 0 \) and \(C < \infty \) such that for all \(x \neq y \in X \) and \(z \) with \(\rho(x, z) \leq \varepsilon \rho(x, y) \),

\[
|K(x, y)| \leq \frac{C}{\mu(B(x, r))}, \quad \text{where} \quad r = \rho(x, y), \quad \text{and}
\]

\[
|K(x, y) - K(z, y)| + |K(y, x) - K(y, z)| \leq \frac{C}{\rho(x, y) \mu(B(x, r))}.
\]

Thus, a Calderón-Zygmund operator (with associated kernel \(K \)) is a linear operator \(T \) bounded in \(L^2 \) such that, for every \(f \in L^2 \) and \(x \) outside the support of \(f \),

\[
Tf(x) = \int_X K(x, y) f(y) \, d\mu(y).
\]

It is known that any Calderón-Zygmund operator as above is bounded in \(L^p(w \, d\mu) \), for \(1 < p < \infty \) and any weight \(w \) in the Muckenhoupt class \(A_p \) with respect to the measure \(d\mu \). They also map \(L^1(w \, d\mu) \) into \(L^{1,\infty}(w \, d\mu) \) for any weight \(w \) in the Muckenhoupt class \(A_1 \) with respect to the measure \(d\mu \), \(L^\infty(\mu) \) boundedly into \(\text{BMO}(d\mu) \) and \(H^1(d\mu) \) into \(L^1(d\mu) \) (see [21]).

For a Banach space, vector-valued Calderón-Zygmund operators, \(T \) from \(L^2(d\mu) \) into \(L^2_B(d\mu) \), are defined in the same way as scalar valued ones, but considering \(K : X \times X \setminus \{x = y\} \rightarrow \mathbb{B} \) instead of a scalar valued kernel, and taking \(\mathbb{B} \)-norms in (2.1) and (2.2) instead of absolute values. The boundedness results mentioned above also hold in the vector valued case (see [6]).

The symmetry with respect to \(\pi/2 \) in the kernels of our operators will play an important role in the proofs. Also, it will be useful to have in mind the picture of the area where we are placing the variables \(\theta \) and \(\phi \). Our first step is studying in detail the behavior of the measure of \(B(\theta, |\theta - \phi|) \).

Lemma 2.3. There exists a constant \(C > 0 \) such that for any \(\theta \in [0, \pi/2] \),

\[
m_\lambda(B(\theta, |\theta - \phi|)) \leq C \left\{ \begin{array}{ll}
|\theta - \phi| \left(\sin(\theta \vee \phi) \right)^{2\lambda} & \text{if } \phi \in [0, \pi/2] \\
\phi & \text{if } \phi \in [\pi/2, \pi], \ \phi > \frac{3}{2} \theta \\
|\theta - \phi| \left(\sin(\theta \vee \phi) \right)^{2\lambda} & \text{if } \phi \in [\pi/2, \pi], \ \phi < \frac{3}{2} \theta.
\end{array} \right.
\]
Theorem 2.4. Let \mathcal{B} be a Banach space, and $T : L^2(dm_\lambda) \rightarrow L^2(dm_\lambda)$ be an operator given by integration against a kernel K in the Calderón-Zygmund sense, such that

i) If $|\theta - \phi| \geq \pi/6$, then

$$\|K(\theta, \phi)\|_\mathcal{B} \leq C$$

and

$$\|\partial_\theta K(\theta, \phi)\|_\mathcal{B} + \|\partial_\phi K(\theta, \phi)\|_\mathcal{B} \leq C.$$

ii) For every (θ, ϕ) either belonging to $[0, \pi/2] \times [0, \pi/2]$ or to $[0, \pi/2] \times \{\phi \leq \frac{3\pi}{2}\}$, we have

iii) The kernel K is symmetric ($K(\pi - \theta, \pi - \phi) = K(\theta, \phi)$) or antisymmetric ($K(\pi - \theta, \pi - \phi) = -K(\theta, \phi)$).

Then, T is a Calderón-Zygmund operator in $(0, \pi)$ with $\rho(x, y) = |x - y|$.

Proof. Lemma 2.3 and (2.5) clearly imply (2.1) in the region stated in ii). On the other hand, for $(\theta, \phi) \in [0, \pi/2] \times [\pi/2, \pi] \cap \{\phi \geq \frac{3\pi}{2}\}$, we have $\pi/6 \leq |\theta - \phi| \leq \pi$, and therefore, by i), $\|K(\theta, \phi)\|_\mathcal{B} \leq C \leq \frac{C}{\phi}$. Using again Lemma 2.3, (2.5) and the symmetry condition iii), we obtain (2.1) easily.

By using Lemma 2.3 and (2.6), we get

$$\|\partial_\theta K(\theta, \phi)\|_\mathcal{B} + \|\partial_\phi K(\theta, \phi)\|_\mathcal{B} \leq \frac{C}{|\theta - \phi| \ m_\lambda(B(\theta, |\theta - \phi|))}$$

for θ and ϕ in the region stated in ii). For $(\theta, \phi) \in [0, \pi/2] \times [\pi/2, \pi] \cap \{\phi \geq \frac{3\pi}{2}\}$, we have $\pi/6 \leq |\theta - \phi| \leq \pi$, and therefore, by i), $\|\partial_\theta K(\theta, \phi)\|_\mathcal{B} + \|\partial_\phi K(\theta, \phi)\|_\mathcal{B} \leq C \leq \frac{C}{|\theta - \phi| \phi}$. By Lemma 2.3, we have (2.7) in $(\theta, \phi) \in [0, \pi/2] \times [\pi/2, \pi] \cap \{\phi \geq \frac{3\pi}{2}\}$. The symmetry condition iii) implies that (2.7) holds for any $(\theta, \phi) \in [0, \pi] \times [0, \pi]$. By standard calculations, this inequality implies condition (2.2) for $\varepsilon = 1/2$.

3. Proof of Theorem 1.5

Given a polynomial function f, we have

$$R^\lambda_{L_\lambda} f(\theta) = \partial_\theta^L (L_\lambda)^{-1/2} f(\theta) = \partial_\theta^L \left(\sum_{n=0}^{N} \frac{a_n}{(n + \lambda)^L} \frac{P^\lambda_n(\cos \theta)}{\|P^\lambda_n\|_{L^2(dm_\lambda)}} \right)$$

$$= \sum_{n=0}^{N} \frac{a_n}{(n + \lambda)^L} \frac{\partial_\theta^L P^\lambda_n(\cos \theta)}{\|P^\lambda_n\|_{L^2(dm_\lambda)}}.$$
The case $l = 1$ was extensively studied in [1]. There it was proved its boundedness in L^p for $p \in (1, \infty)$ and its weak type $(1, 1)$, as well as the fact that it is a principal value, the boundedness of the maximal operator, etc.. In order to prove Theorem 1.5, we first prove the boundedness in L^2 of the higher order Riesz transforms.

3.1. L^2 boundedness of higher order Riesz transforms. We shall see that for any polynomial function (1.9), we have $\|R^l_\lambda f\|_{L^2(dm_\lambda)} \leq C \|f\|_{L^2(dm_\lambda)}$ with a constant independent of N. First of all, let us observe that without loss of generality, we can consider only polynomial functions f such that there only appear $P^\lambda_n(\cos \theta)$ for $n \geq l + 1$ in their expansion. Since any linear operator is bounded on finite dimensional spaces, we have that the restriction of R^l_λ to the span of $\{P^\lambda_0, \ldots, P^\lambda_l\}$ is bounded, and it only remains to check the case when $n \geq l + 1$.

The case $l = 1$ was treated in [1], and it was seen to be bounded in $L^2(dm_\lambda)$. Lets us explore the case $l = 2$. In this case, for any $n \geq 3$

$$R^2_\lambda P^\lambda_n(\cos \theta) = \frac{1}{(n+\lambda)^2} \partial_\theta^2 P^\lambda_n(\cos \theta)$$

(3.2)

$$= \frac{-2\lambda}{(n+\lambda)^2} \cos \theta P^{\lambda+1}_{n-1}(\cos \theta) + \frac{4\lambda(\lambda + 1)}{(n+\lambda)^2} (\sin \theta)^2 P^{\lambda+2}_{n-2}(\cos \theta).$$

On the other hand, from (1.1) we obtain $\partial_\theta^2 = -L_\lambda - 2\lambda \cot \theta \partial_\theta + \lambda^2$ and therefore

$$R^2_\lambda = \partial_\theta^2 L_\lambda^{-1} = -\text{Id} - 2\lambda \cot \theta \partial_\theta L_\lambda^{-1} + \lambda^2 L_\lambda^{-1}.$$

With this expression,

$$R^2_\lambda P^\lambda_n = -P^\lambda_n + \frac{4\lambda^2}{(n+\lambda)^2} \cos \theta P^{\lambda+1}_{n-1} + \frac{\lambda^2}{(n+\lambda)^2} P^\lambda_n.$$

(3.4)

Mixing (3.2) and (3.4) one has

$$\frac{2\lambda(2\lambda + 1)}{(n+\lambda)^2} \cos \theta P^{\lambda+1}_{n-1}(\cos \theta)$$

(3.5)

$$= P^\lambda_n(\cos \theta) - \frac{\lambda^2}{(n+\lambda)^2} P^\lambda_n(\cos \theta) + \frac{4\lambda(\lambda + 1)}{(n+\lambda)^2} (\sin \theta)^2 P^{\lambda+2}_{n-2}(\cos \theta).$$

In particular, with this calculation we get from (3.4)

$$R^2_\lambda P^\lambda_n(\cos \theta) = \frac{-1}{2\lambda + 1} P^\lambda_n(\cos \theta) + \frac{1}{2\lambda + 1} \frac{1}{(n+\lambda)^2} P^\lambda_n(\cos \theta)$$

$$+ \frac{8\lambda^2(\lambda + 1)}{2\lambda + 1} (\sin \theta)^2 P^{\lambda+2}_{n-2}(\cos \theta),$$
and therefore

\[R^2_\lambda f(\theta) = \frac{-1}{2\lambda + 1} \sum_{n=3}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} P_n^\lambda(\cos \theta) \]

\[+ \frac{1}{2\lambda + 1} \sum_{n=3}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} \frac{1}{(n + \lambda)^2} P_n^\lambda(\cos \theta) \]

\[+ \frac{8\lambda^2(\lambda + 1)}{2\lambda + 1} \sum_{n=3}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} \frac{1}{(n + \lambda)^2} (\sin \theta)^2 P_{n-2}^{\lambda+2}(\cos \theta), \]

Clearly, the first two sums are operators bounded in \(L^2(dm_\lambda) \). For the third one, we will use the following lemma.

Lemma 3.6. For every \(k \geq 0 \), the operator \(T \) acting on polynomial functions

\[Tf(\theta) = \sum_{n=k+1}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} \frac{1}{(n + \lambda)^k} (\sin \theta)^k P_{n-k}^{\lambda+k}(\cos \theta) \]

is bounded in \(L^2(dm_\lambda) \).

PROOF. By using the orthogonality of \((\sin \theta)^k P_{n-k}^{\lambda+k} \) in \(L^2(dm_\lambda) \), and

\[\|P_n^\lambda\|_{L^2(dm_\lambda)}^2 = 2^{1-2\lambda} \pi \Gamma(\lambda)^{-2} \frac{\Gamma(n + 2\lambda)}{(n + \lambda)n!}, \]

(see [18]), we obtain

\[\left\| \sum_{n=k+1}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} \frac{1}{(n + \lambda)^k} (\sin \theta)^k P_{n-k}^{\lambda+k} \right\|_{L^2(dm_\lambda)}^2 \]

\[= \sum_{n=k+1}^{N} \frac{a_n^2}{\|P_n^\lambda\|_{L^2(dm_\lambda)}^2} \frac{\|P_{n-k}^{\lambda+k}\|_{L^2(dm_\lambda)^k}^2}{(n + \lambda)^2k} \leq C \sum_{n=k+1}^{N} a_n^2 = C \left\| f \right\|_{L^2(dm_\lambda)}^2. \]

\[\square \]

We use induction in \(l \) to prove the boundedness of \(R^l_\lambda \) for any \(l \geq 1 \). Let us assume that \(R^k_\lambda \) is bounded in \(L^2(dm_\lambda) \) for \(k \leq l - 1 \). From (3.3), for \(l \geq 3 \), we have

Riesz operator

\[R^l_\lambda = \partial^l_\theta L^{-l/2}_\lambda = \partial^l_\theta^2 R^2_\lambda L^{-l/2}_\lambda \]

\[= -\partial^l_\theta^2 L^{-l/2}_\lambda + 2\lambda \partial^l_\theta^2 \cot \theta \partial^l_\theta L^{-l/2}_\lambda + \lambda^2 \partial^l_\theta^2 L^{-l/2}_\lambda \]

\[= -R^{l-2}_\lambda L^{-l/2}_\lambda + 2\lambda \partial^l_\theta^2 \cot \theta \partial^l_\theta L^{-l/2}_\lambda + \lambda^2 R^l L^{-l}_\lambda. \]

By the induction hypothesis, first and last operators are bounded in \(L^2(dm_\lambda) \). It remains to show that the second term is also bounded.
Lemma 3.8. For any \(k \geq 0 \),
\[
\partial_\theta^k (\cos \theta P_{n-1}^{\lambda+1} (\cos \theta)) = \sum_{a=1}^{k+1} \sum_{A+B=a} C_{AB} (\cos \theta)^A (\sin \theta)^B P_n^{\lambda+a} (\cos \theta)
\]
where \(C_{AB} \in \mathbb{R} \) may be zero.

PROOF. We will prove the result by induction in \(k \). For \(k = 0 \) it is clearly true, with \(C_{10} = 1 \) and \(C_{01} = 0 \). Let us suppose that the formula holds until \(k - 1 \). For \(k \), we have
\[
\partial_\theta^k (\cos \theta P_{n-1}^{\lambda+1} (\cos \theta)) = \partial_\theta \sum_{a=1}^{k} \sum_{A+B=a} C_{AB} (\cos \theta)^A (\sin \theta)^B P_n^{\lambda+a} (\cos \theta)
\]
and it is enough to see that any term \(\partial_\theta ((\cos \theta)^A (\sin \theta)^B P_n^{\lambda+a} (\cos \theta)) \) is a sum of terms of the form \((\cos \theta)^A (\sin \theta)^B P_n^{\lambda+\tilde{a}} (\cos \theta) \) con \(1 \leq \tilde{a} \leq k + 1 \), \(\tilde{A} + \tilde{B} = \tilde{a} \).

And this holds, since
\[
\partial_\theta ((\cos \theta)^A (\sin \theta)^B P_n^{\lambda+a} (\cos \theta)) = A (\cos \theta)^{A-1} (\sin \theta)^{B+1} P_{n-a}^{\lambda+a} (\cos \theta)
+ B (\cos \theta)^{A+1} (\sin \theta)^{B-1} P_{n-a}^{\lambda+a} (\cos \theta)
- 2 (\lambda + a) (\cos \theta)^{A} (\sin \theta)^{B+1} P_{n-(a+1)}^{\lambda+(a+1)} (\cos \theta).
\]

Thus, for a polynomial function \(f = \sum_{n=0}^{N} a_n \| P_n^{\lambda} \|_{L^2(\mu_{\lambda})} P_n \), we can write
\[
\partial_\theta^{l-2} \cot \theta \partial_\theta L_{\lambda}^{-l/2} f(\theta) = \sum_{n=l+1}^{N} a_n \| P_n^{\lambda} \|_{L^2(\mu_{\lambda})} \frac{1}{(n+\lambda)^l} \partial_\theta^{l-2} \left(-2 \cos \theta P_{n-1}^{\lambda+1} (\cos \theta) \right)
\]

\[\text{(3.9)}\]
\[
= \sum_{a=1}^{l-1} \sum_{A+B=a} C_{AB} \sum_{n=l+1}^{N} \frac{a_n \| P_n^{\lambda} \|_{L^2(\mu_{\lambda})}}{(n+\lambda)^l} \cos \theta (\sin \theta)^A (\sin \theta)^B P_n^{\lambda+a} (\cos \theta)
\]

\[
= \sum_{a=1}^{l-1} \sum_{A+B=a} C_{AB} T_{A,B,a}^{l-1} f(\theta).
\]

Thus, the boundedness of this operator is done with the following lemma.

Lemma 3.10. For any \(l \geq 2 \), the operators \(T_{A,B,a}^{l-1} \) appearing in (3.9) with non zero coefficients are bounded in \(L^2(\mu_{\lambda}) \).

PROOF. We will proceed by induction in \(A \): in the case \(A = 0 \), we have to prove that for every \(a \leq l - 1 \),
\[
T_{0,a}^{l-1} f(\theta) = \sum_{n=l+1}^{N} \frac{a_n \| P_n^{\lambda} \|_{L^2(\mu_{\lambda})}}{(n+\lambda)^l} \cos \theta (\sin \theta)^a P_{n-a}^{\lambda+a} (\cos \theta)
\]
is bounded in $L^2(dm_\lambda)$. This holds by Lemma 3.6. Now assume that the induction hypothesis is true until $A - 1$, that is, for any $\tilde{A} \leq A - 1$, we have that for every $a \leq l - 1$, the operator $T_{\tilde{A}, a - \tilde{A}, a}^{l - 1} f(\theta)$ is bounded in $L^2(dm_\lambda)$. For $A \geq 1$, by (3.5) with $n - (a - 1)$ and $\lambda + (a - 1)$ instead of n and λ, one can write

$$
\frac{1}{(n + \lambda)^l} (\cos \theta)^A (\sin \theta)^B P_{n-a}^{\lambda+a} = \frac{C}{(n + \lambda)^{l-2}} (\cos \theta)^{A-1} (\sin \theta)^B \times
$$

$$
\left(P_{n-(a-1)}^{\lambda+(a-1)} + \frac{C}{(n + \lambda)^2} P_{n-(a-1)}^{\lambda+(a-1)} + \frac{C}{(n + \lambda)^2} (\sin \theta)^2 P_{n-(a-1)}^{\lambda+(a-1)} \right)
$$

$$
= \frac{C}{(n + \lambda)^{l-2}} (\cos \theta)^{A-1} (\sin \theta)^B P_{n-(a-1)}^{\lambda+(a-1)} + \frac{C}{(n + \lambda)^l} (\cos \theta)^{A-1} (\sin \theta)^B P_{n-(a-1)}^{\lambda+(a-1)}
$$

$$
+ \frac{C}{(n + \lambda)^l} (\cos \theta)^{A-2} (\sin \theta)^{B+2} P_{n-(a-1)}^{\lambda+(a+1)}.
$$

The first two terms give rise to operators bounded in $L^2(dm_\lambda)$, by the induction hypothesis. For the third factor, if $a+1 \leq l-1$, then by the same reason it is also a bounded operator. But we want to prove the boundedness for any $a \leq l - 1$, and thus it remains to prove the case $a = l - 1$. Since $\partial_\theta^{l-2} \cos \theta \partial_\theta L^{1/2}_A P_n^{\lambda} = -2\lambda \partial_\theta^{l-2} (\cos \theta P_{n-1}^{\lambda+1})$, an operator $T_{A,B,l-1}^{l-1}$ in which there appear terms with $P_{n-(l-1)}^{\lambda+(l-1)}$ in the left-hand of expression (3.9), necessarily comes from the factors in which the derivatives ∂_θ^{l-2} act on the polynomial $P_{n-1}^{\lambda+1}$ and not in any other term (otherwise we would obtain $P_{n-a}^{\lambda+a}$ with $a < l - 1$). Therefore, the only terms with non-zero coefficients coming by applying (3.5) in the right-hand of (3.9) must sum up a constant times the operator

$$
T_{1,l-2,l-1}^{l-1} f(\theta) = \sum_{n=l+1}^{N} \frac{a_n}{\|P_n^\lambda\|_{L^2(dm_\lambda)}} \frac{1}{(n + \lambda)^l} \cos \theta (\sin \theta)^{l-2} P_{n-(l-1)}^{\lambda+(l-1)} (\cos \theta).
$$

By using (3.5) with $n - (l - 2)$ and $\lambda + (l - 2)$ instead of n and λ, we can write

$$
\frac{1}{(n + \lambda)^l} \cos \theta (\sin \theta)^{l-2} P_{n-(l-2)}^{\lambda+(l-1)}
$$

$$
= \frac{C}{(n + \lambda)^{l-2}} (\cos \theta)^{l-1} (\sin \theta)^B P_{n-(l-2)}^{\lambda+(l-1)} + \frac{C}{(n + \lambda)^2} (\sin \theta)^2 P_{n-(l-2)}^{\lambda+l-1}
$$

$$
= \frac{C}{(n + \lambda)^{l-2}} (\cos \theta)^{l-1} P_{n-(l-2)}^{\lambda+(l-2)} + \frac{C}{(n + \lambda)^l} (\sin \theta)^{l-2} P_{n-(l-2)}^{\lambda+l-1}.
$$

By Lemma 3.6, the operators are bounded in $L^2(dm_\lambda)$.

3.2. Kernel of the Riesz transform

Observe that by (1.2), $P f(e^{-t}, \theta) = e^{-t} f(e^{-t}, \theta)$, where $f(r, \theta) = \sum_{n=0}^{\infty} a_n r^n P_n^\lambda (\cos \theta) \|P_n^\lambda\|_{L^2(dm_\lambda)}^{-1}$ is defined by Muckenhoupt and Stein in [55]. They compute explicitly the kernel $P(r, \theta, \phi)$ of
$$f(r, \theta): \quad P f(r, \theta) = r^{\lambda} \int_0^\pi P(r, \theta, \phi) f(\phi) \, dm_\lambda(\phi), \quad \theta \in [0, \pi]$$

where \(r = e^{-t} \) and

$$P(r, \theta, \phi) = \frac{\lambda}{\pi} \int_0^\pi \frac{(1 - r^2) \sin^{2\lambda - 1} t}{(1 - 2r(\cos \theta \cos \phi + \sin \theta \sin \phi \cos t) + r^2)^{\lambda+1}} \, dt.$$

Before continuing further, let us state some useful notation.

$$\Delta = \Delta r, \Delta \theta, \Delta \phi \quad \Delta_1 = \Delta r, \quad \Delta_2 = \Delta r + \Delta \theta, \quad \Delta = \Delta_1 + \Delta_2 = 2 \Delta r + \Delta \theta + \Delta \phi = \Delta_1 + \Delta_2 + \Delta \phi.$$

\[\text{Lemma 3.14 (Lemma 2 in [1]): Given } f \in L^1(dm_\lambda) \text{ and } l \geq 1, \text{ for almost every } \theta \in [0, \pi], \text{ we have that} \]

$$W^l_\lambda(\theta, \phi) = \frac{1}{\Gamma(l)} \int_0^1 r^{\lambda-1} \left(\log \frac{1}{r} \right)^{l-1} P(r, \theta, \phi) \, dr.$$
us call
\[b = \partial_\theta a = -\sin(\theta - \phi) - \cos \theta \sin \phi(1 - \cos t), \]
and observe \(\partial_\theta b = a \). We have the following lemma to describe \(\partial_\theta \left(\frac{1}{D_r^{1+\lambda}} \right) \) sum more precisely:

Lemma 3.17.

\[\partial_\theta \left(\frac{1}{D_r^{1+\lambda}} \right) = \sum c_{l,k,i,j} \frac{r^{i+j}a^ib^j}{D_r^{\lambda+1+k}} \]

and \(c_{l,k,i,j} \neq 0 \) only if:

\[k = 1, \ldots, l, \quad i + j = k, \quad j \geq 2k - l. \]

\[\text{(3.18)} \]

Proof. For \(l = 1 \), \(\partial_\theta \left(\frac{1}{D_r^{1+\lambda}} \right) = \frac{\partial b}{D_r^{1+\lambda}} \) and therefore only \(c_{1,1,0,1} \) is nonzero. Assume that the lemma is true for \(l \). Since

\[\partial_\theta \left(\frac{r^{i+j}a^ib^j}{D_r^{\lambda+1+k}} \right) = c_1 \frac{r^{i+j}a^ib^{j+1}}{D_r^{\lambda+1+k}} + c_2 \frac{r^{i+j}a^{i+1}b^{j+1}}{D_r^{\lambda+1+k}} + c_3 \frac{r^{i+j+1}a^ib^{j+1}}{D_r^{\lambda+1+(k+1)}} \]

(we assume \(c_1 = 0 \) if \(i = 0 \) and \(c_2 = 0 \) if \(j = 0 \)), we easily see that all these expressions satisfy (3.18) for \(l + 1 \). \(\square \)

As a consequence we may write: \[R_\lambda^l(\theta, \phi) = \sum c_{l,k,i,j} M_{n,k,i,j}(\theta, \phi) \], where \(c_{l,k,i,j} \) are as in the last lemma and

\[M_{l,k,i,j}(\theta, \phi) = \int_0^1 \int_0^\pi r^{\lambda+i+j-1}(\log \frac{1}{r})^{l-1}(1 - r^2) \frac{a^ib^j \sin^{2\lambda-1} t}{D_r^{\lambda+1+k}} dt dr. \]

The next step is checking that each of these terms verifies condition ii) of Theorem 2.4. This will be done in two lemmas.

Lemma 3.20. There exists a constant \(C > 0 \) such that, for every \(\theta \in [0, \pi/2] \) and \(2\theta/3 \leq \phi \leq 3\theta/2 \), we have

\[|M_{l,k,i,j}(\theta, \phi)| \leq \frac{C}{|\theta - \phi| (\sin \phi)^{2\lambda}}, \]

\[\text{equation r5} \quad (3.21) \]

\[|\partial_\theta M_{l,k,i,j}(\theta, \phi)| + |\partial_\phi M_{l,k,i,j}(\theta, \phi)| \leq \frac{C}{|\theta - \phi|^2 (\sin \phi)^{2\lambda}}. \]

\[\text{equation r6} \quad (3.22) \]

Proof. Let us start with the first inequality. Since for \(r \in (0, 1/2) \), \(D_r \geq C \), and for \(r \in (1/2, 1) \), \(\log \frac{1}{r} \leq C(1 - r) \), and also by using that \(|a| \leq C \), \(|b| \leq
The proof of these inequalities is trivial, although the argument differs when \(\phi \in [0, \pi/2] \) than when \(\phi \in [\pi/2, \pi] \). Analogously we may estimate II and III.
By (3.19) and analogous arguments as in (3.23), we have

\[|\partial_\theta M_{l,k,i,j}(\theta, \phi)| \leq C + C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{l} \frac{|b|^j + 1}{D_{\lambda + k + 1}^{\lambda + k + 1}} (\sin t)^{2\lambda - 1} dt \, dr \]

\[\quad + C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{l} \frac{|b|^j - 1}{D_{\lambda + k + 1}^{\lambda + k + 1}} (\sin t)^{2\lambda - 1} dt \, dr \]

\[\quad + C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{l} \frac{|b|^j + 1}{D_{\lambda + k + 2}^{\lambda + k + 2}} (\sin t)^{2\lambda - 1} dt \, dr \]

\[= C + A + B + D. \]

For the first integral, we have that

\[A \leq C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{l} \frac{|b|^j + 1}{D_{\lambda + k + 1}^{\lambda + k + 1}} (\sin t)^{2\lambda - 1} dt \, dr \leq \frac{C}{|\theta - \phi|^2} \frac{1}{(\sin(\theta \vee \phi))^{2\lambda}}, \]

as it was proven by the estimates of I, II and III above. Observe that if \(j = 0 \), the second term would not appear. So, we may proceed to estimate \(B \) assuming \(j \geq 1 \), and obtaining

\[B \leq C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{l} \frac{(\sin |\theta - \phi| + \sin \phi(1 - \cos t))^{j-1}}{D_{\lambda + k + 1}^{\lambda + k + 1}} (\sin t)^{2\lambda - 1} dt \, dr \]

\[\leq C \int_{1/2}^{1} \int_{0}^{\pi/2} (1 - r)^{l} \frac{(\sin |\theta - \phi|)^{j-1} (\sin t)^{2\lambda - 1}}{D_{\lambda + k + 1}^{\lambda + k + 1}} dt \, dr \]

\[+ C \int_{1/2}^{1} \int_{0}^{\pi/2} (1 - r)^{l} \frac{(\sin \phi(1 - \cos t))^{j-1} (\sin t)^{2\lambda - 1}}{D_{\lambda + k + 1}^{\lambda + k + 1}} dt \, dr \]

\[+ C \int_{1/2}^{1} \int_{\pi/2}^{\pi} (1 - r)^{l} \frac{(\sin \phi)^{j-1} (\sin t)^{2\lambda - 1}}{D_{\lambda + k + 1}^{\lambda + k + 1}} dt \, dr \]

\[\leq \frac{C}{\sigma^{\lambda \Delta}} \leq \frac{C}{|\theta - \phi|^2} \frac{1}{(\sin(\theta \vee \phi))^{2\lambda}}, \]

where the last two inequalities follows as in I, II and III above. Observe that

\[D \leq C \int_{1/2}^{1} (1 - r)^{l} \int_{0}^{\pi} \frac{(\sin |\theta - \phi| + \sin \phi(1 - \cos t))^{j+1}}{D_{\lambda + k + 2}^{\lambda + k + 2}} (\sin t)^{2\lambda - 1} dt \, dr \]

The same arguments drive to the bound

\[D \leq \frac{C}{|\theta - \phi|^2} \frac{1}{(\sin(\theta \vee \phi))^{2\lambda}}. \]

The proof of (3.22) for \(\partial_\phi \) follows the same lines. \(\square \)

Lemma 3.25. For every \(\theta, \phi \in [0, \pi/2] \) and \(\phi \) outside the region \(2\theta/3 \leq \phi \leq 3\theta/2 \), we also have (3.21) and (3.22).

Proof. In the following calculations we will use that for \(\theta, \phi \in [0, \pi/2] \), then

\[1 - \cos(\theta - \phi) \sim |\theta - \phi|^2 \sim (\sin |\theta - \phi|)^2. \]

Also, for \(\phi \) outside the region
2θ/3 ≤ φ ≤ 3θ/2, sin |θ − φ| ∼ sin(θ ∨ φ) and |b| ≤ C sin |θ − φ|. Therefore, by the same techniques applied in (3.23), for \(M_{l,k,i,j}(\theta, \phi) \) we have
\[
|M_{l,k,i,j}(\theta, \phi)| \leq C + C \int_{1/2}^{1} (1 - r)^{2k-j} \frac{|b|^j}{\Delta^l_{r+k+1}} dr
\]
\[
\leq C + C(\sin |\theta - \phi|)^j \int_{1/2}^{1} (1 - r)^{2k-j} \frac{dr}{\Delta^l_{r+k+1}}
\]
\[
\leq C + C(\sin |\theta - \phi|)^j \int_{0}^{\pi} \frac{2\sqrt{\lambda}}{\Delta^l_{r+k+1}((1 + u^2)^{1/2} + 1} du
\]
\[
\leq C + C(\sin |\theta - \phi|)^j \frac{1}{\Delta^l_{r+k+1}((\sin(\theta ∨ \phi))^2 + 1}.
\]

We proceed analogously for the derivative
\[
|\partial_\theta M_{l,k,i,j}(\theta, \phi)| \leq C + C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{j} \frac{|b|^{j+1}}{D_{r+k+1}^l}(\sin t)^{2\lambda-1} dt dr
\]
\[
+ C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{j} \frac{|b|^{j}}{D_{r+k+1}^l}(\sin t)^{2\lambda-1} dt dr
\]
\[
+ C \int_{1/2}^{1} \int_{0}^{\pi} (1 - r)^{j} \frac{|b|^{j+1}}{D_{r+k+1}^l}(\sin t)^{2\lambda-1} dt dr \leq \frac{C}{|\theta - \phi|^2} \frac{1}{(\sin(\theta ∨ \phi))^2 + 1}.
\]

4. Proof of Theorem 1.8

Let us write \(G^i f(\theta) = \|T_{G^i} f(\theta)\|_{L^2(0,1)} \), \(i = 1, 2 \) where \(T_{G^i} \) is the operator mapping a scalar valued functions into \(L^2(dr) \)-valued functions given by
\[
(4.1) \quad T_{G^1} f(\theta) = \sqrt{r} \log \frac{1}{r} \partial_r P f(r, \theta), \quad T_{G^2} f(\theta) = \sqrt{r} \log \frac{1}{r} \partial_\theta P f(r, \theta).
\]

4.1. Boundedness in \(L^2(dm_\lambda) \) of the \(g \)-functions. For any polynomial function \(f \in L^2(dm_\lambda) \), the operator \(\partial_r P f = \sum_{n=0}^{N}(n+\lambda) r^{n+\lambda-1} a_n P_n^\lambda \|P_n^\lambda\|^{-1} \) gives a well defined function in \(L^2(dm_\lambda) \), since for each fixed \(r \in (0,1) \), \(|(n+\lambda)r^{n+\lambda}| \leq C \) for any \(n \geq 0 \). Thus, we can write
\[
T_{G^1} f = \sum_{n=0}^{\infty} \sqrt{r} \log \frac{1}{r} (n+\lambda) r^{n+\lambda-1} a_n P_n^\lambda \|P_n^\lambda\|^{-1} = \sum_{n=0}^{\infty} g^1(n) a_n P_n^\lambda \|P_n^\lambda\|^{-1},
\]
where \(g^1(n) = \sqrt{r} \log \frac{1}{r} (n+\lambda) r^{n+\lambda-1} \) belongs to \(L^2(dr) \) uniformly in \(n \). In particular, this implies that \(G^1 \) is bounded in \(L^2 \). To get the boundedness of \(G^2 \) in \(L^2 \) we proceed similarly. Observe that for any polynomial \(f \in L^2(dm_\lambda) \),
\[
\partial_\theta P f = \sum_{n=1}^{N} r^{n+\lambda} a_n (-2\lambda) \sin \theta P_{n-1}^\lambda \|P_n^\lambda\|^{-1}
\]
We can write
\[T_{g^2} f = \sum_{n=1}^{N} \sqrt{r \log \frac{1}{r} r^{n+\lambda}} \frac{a_n}{n+\lambda} (-2\lambda) \sin \theta P^{\lambda+1}_{n-1} \| P_n \|^{-1} \]
\[= \sum_{n=0}^{\infty} g^2(n) \frac{a_n}{n+\lambda} (-2\lambda) \sin \theta P^{\lambda+1}_{n-1} \| P_n \|^{-1} = T_{g^2}(R_{\lambda} f), \]
where \(R_{\lambda} \) is the Riesz transform operator (see [1]) and \(T_{g^2} \) is the multiplier associated to the orthogonal system in \(L^2(dm_{\lambda}) \) given by the functions \(h_n(\theta) = \sin \theta P^{\lambda+1}_{n-1}(\cos \theta) \) with coefficients \(g^2(n) = \sqrt{r \log \frac{1}{r} (n+\lambda)} r^{n+\lambda-1}. \) The coefficients are uniformly bounded in \(L^2(\lambda). \) For negative \(\theta \) the Riesz transform, see [1] for the details, give that \(G^2 \) is bounded in \(L^2(dm_{\lambda}). \)

4.2. Kernel of the \(g \)-function. In the next lemma, we find the vector-valued kernel in the Calderón-Zygmund sense of \(T_{g^i}, \ i = 1, 2. \)

Lemma 4.2. For every \(f \in L^1(dm_{\lambda}) \) and \(\theta \) outside the support of \(f, \) we have
\[T_{g^i} f(\theta) = \int_{0}^{\pi} \tau^i_r(\theta, \phi) f(\phi) \, dm_{\lambda}(\phi), \quad i = 1, 2, \]
where
\[\tau^1_r(\theta, \phi) = \sqrt{r \log \frac{1}{r} r^{\lambda-1}} \left[\lambda r^{\lambda-1} P(r, \theta, \phi) - 2r^{\lambda+1} \int_{0}^{\pi} \frac{(\sin t)^{2\lambda-1}}{D_r^{\lambda+1}} \, dt \right] \]
\[- (\lambda + 1) r^{\lambda} (1 - r^2) \int_{0}^{\pi} \frac{(\sin t)^{2\lambda-1} \partial_{\theta} D_r}{D_r^{\lambda+2}} \, dt \]
\[\tau^2_r(\theta, \phi) = \sqrt{r \log \frac{1}{r} r^{\lambda(\lambda + 1)}} r^{\lambda} (1 - r^2) \int_{0}^{\pi} \frac{(\sin t)^{2\lambda-1} \partial_{\theta} D_r}{D_r^{\lambda+2}} \, dt \]
are kernels taking values in \(L^2(dr). \)

Proof. By the definition of \(T_{g^i}, \) in order to get (4.3) we only need to put the derivative inside the integrals in the expressions (4.1). With our usual notation (3.13), we write
\[\partial_r P(r, \theta, \phi) = -\frac{\lambda}{\pi} 2r \int_{0}^{\pi} \frac{(\sin t)^{2\lambda-1}}{D_r^{\lambda+1}} \, dt + \frac{\lambda}{\pi} (1 - r^2) \partial_r \int_{0}^{\pi} \frac{(\sin t)^{2\lambda-1}}{D_r^{\lambda+1}} \, dt \]
For negative \(a, \ D_r \geq 1, \) and for positive \(a, \ a \leq \cos(\theta - \phi). \) Therefore, if \(\theta \) does not belong to the support of \(f, \) we have that \(D_r \geq 1 - \cos(\theta - \phi)^2 \geq C. \)
This implies that for each \(r \) the remaining integrands in the right hand of the equations in (4.1) belong to \(L^1(dm_{\lambda} \times dt) \) for \(f \in L^1(dm_{\lambda} \). \) This shows (4.4). Also, if \(\theta \) does not belong to the support of \(f, \) we have that \(|\tau^1_r(\theta, \phi)| \leq C \sqrt{r \log \frac{1}{r} r^{\lambda-1}} \) and \(|\tau^2_r(\theta, \phi)| \leq C, \) which are functions in \(L^2(dr). \) \(\square \)
Our aim is to prove that the kernels of \(T_{G1} \) verify the hypothesis of Theorem 2.4. We have already seen that they are bounded in \(L^2(dm_{\lambda}) \). Observe that since \(P(r, \pi - \theta, \pi - \phi) = P(r, \theta, \phi) \), then the symmetry condition iii) holds.

On the other hand, for \(|\theta - \phi| > \pi/6 \) and \(r \in (1/2, 1) \), then \(D_r \geq 1 - (\cos(\theta - \phi))^2 \geq C \). For \(r \in (0, 1/2) \), clearly \(D_r \geq C \). Then \(\|\tau_r^i(\theta, \phi)\|_{L^2(dr)} \leq C \sqrt{\log \frac{1}{r} (r^{\lambda - 1} + 1)} \|L^2(dr) = C \) and \(\|\tau_r^2(\theta, \phi)\|_{L^2(dr)} \leq C \), as can be easily seen from (4.4) and (4.5). Thus condition i) in Theorem 2.4 also holds.

Checking condition ii) requires a bit more of work.

Lemma 4.7. There exists a constant \(C > 0 \) such that, for every \(\theta \in [0, \pi/2] \) and \(2\theta/3 \leq \phi \leq 3\theta/2 \), we have (for \(i = 1, 2 \))

\[
(4.8) \quad \|\tau_r^i(\theta, \phi)\|_{L^2(dr)} \leq \frac{C}{|\theta - \phi|} (\sin(\theta \lor \phi))^{2\lambda},
\]

\[
(4.9) \quad \|\partial_r \tau_r^i(\theta, \phi)\|_{L^2(dr)} + \|\partial_\phi \tau_r^i(\theta, \phi)\|_{L^2(dr)} \leq \frac{C}{|\theta - \phi|^2} (\sin(\theta \lor \phi))^{2\lambda}.
\]

Proof. When \(r \in (0, 1/2) \), \(D_r \geq (1 - r)^2 \geq C \) and therefore \(|\tau_r^1(\theta, \phi)| \leq C \sqrt{r \log \frac{1}{r} (r^{\lambda - 1} + C)} \) and \(|\tau_r^2(\theta, \phi)| \leq C \). For \(r \in (1/2, 1) \), let us observe that, by (4.4), we can split \(|\tau_r^1(\theta, \phi)| \) according to the following sum

\[
|\partial_r(r^\lambda P(r, \theta, \phi))| \leq \sum_{i=1}^3 N_i(r, \theta, \phi),
\]

where

\[
N_1(r, \theta, \phi) = C \int_0^{\pi/2} \frac{(\sin t)^{2\lambda - 1}}{D_r^{\lambda + 1}} dt,
\]

\[
N_2(r, \theta, \phi) = C \int_{\pi/2}^\pi \frac{(\sin t)^{2\lambda - 1}}{D_r^{\lambda + 1}} dt,
\]

\[
N_3(r, \theta, \phi) = C(1 - r) \int_0^\pi \frac{(\sin t)^{2\lambda - 1} |\partial_r D_r|}{D_r^{\lambda + 2}} dt.
\]

We will use the following estimate

\[
I_{\lambda+1}^{2\lambda-1} = \int_0^{\pi/2} \frac{t^{2\lambda-1}}{(\Delta_r + r \sigma t^2)^{\lambda+1}} dt \leq \frac{C}{\Delta_r r^{\lambda \sigma \lambda}},
\]

which can be easily obtained by the change of variables \(t = \Delta_r^{\frac{1}{2}} (r \sigma)^{-\frac{1}{2}} u \). By using that \(\sin x \sim x, 1 - \cos x \sim x^2 \) and \(1 + \cos x \geq C x^2 \) for \(x \in [0, \pi/2] \), it is not difficult to obtain the following estimate,

\[
N_1(r, \theta, \phi) + N_2(r, \theta, \phi) \leq CI_{\lambda+1}^{2\lambda-1},
\]

where in the case of \(N_2 \) we have firstly made the change of variables \(\pi - x = t \). For the term \(N_3 \), observe that for \(r \in [1/2, 1] \)

\[
(4.11) \quad (1 - r) |\partial_r D_r| \leq C(1 - r)[|1 - r| + |1 - \cos(\theta - \phi)| + |\sigma(1 - \cos t)|] \leq C D_r.
\]

Thus, after applying the same change of variables \(\pi - x = t \) used above for \(N_2 \), we get that \(N_3(r, \theta, \phi) \leq CI_{\lambda+1}^{2\lambda-1} \). This gives (and observe that with the only restriction \(r \in [1/2, 1] \)) that

\[
(4.12) \quad |\partial_r(r^\lambda P(r, \theta, \phi))| \leq C I_{\lambda+1}^{2\lambda-1}.
\]
Next step is integrating in \(r \). By using (4.10), \(\Delta_r \geq C ((1-r)^2 + \Delta) \), \(r \log \frac{1}{r} \sim 1 - r \) for \(r \in (1/2, 1) \), the change of variables \(u = 1 - r/\sqrt{\Delta} \) and (3.24), we obtain

\[
\int_{1/2}^{1} |\tau_r^1(\theta, \phi)|^2 \, dr \leq \frac{C}{\sigma^{2\lambda}} \int_{1/2}^{1} \frac{r \log \frac{1}{r} \, dr}{((1-r)^2 + \Delta)^{1/2}} \leq \frac{C}{\sigma^{2\lambda} \Delta} \leq \frac{C}{|\theta - \phi|^2 (\sin(\theta \vee \phi))^{2\lambda}}.
\]

The case of \(\tau_r^2 \) is treated similarly. For the estimates concerning the derivative, let us observe first that the same arguments as in Lemma 4.2 allow us to put the derivatives inside the integrals, and then

\[
(4.13) \quad \partial_\theta \tau_r^1(\theta, \phi) = \sqrt{r \log \frac{1}{r}} \frac{\lambda}{\pi} \left[r^{\lambda-1} (\lambda (1-r^2) - r^2) \int_0^\pi \frac{(\sin t)^{2\lambda-1} \partial_\theta D_r}{D_r^{\lambda+1}} \, dt \right] \, \frac{\partial_\theta D_r}{D_r} - (\lambda + 1) r^\lambda (1-r^2) \int_0^\pi \frac{(\sin t)^{2\lambda-1} \partial_\theta \partial_\theta D_r D_r - (\lambda + 2) \partial_\theta D_r \partial_\theta D_r}{D_r^{2}} \, dt \right] \, dr,
\]

By using (4.11), its analogous \(\left| \frac{(1-r)\partial_\theta D_r}{D_r} \right| \leq C, |\partial_\theta^2 D_r| \leq C \) and also the following estimates for \(1/2 \leq r \leq 1 \),

\[
(4.14) \quad \left| \frac{\partial_\theta D_r}{D_r} \right| \leq \frac{2r \sin |\theta - \phi|}{2r(1 - \cos(\theta - \phi))} + \frac{2r \cos \theta \sin \phi(1 - \cos t)}{2r \sin \theta \sin \phi(1 - \cos t)} \leq \frac{C}{|\theta - \phi|},
\]

we easily get that

\[
|\partial_\theta \tau_r^1(\theta, \phi)| \leq \frac{C}{\sigma^\lambda |\theta - \phi|} \sqrt{r \log \frac{1}{r}} \left(r^{\lambda-1} I_{(0,1/2)}(r) + I_{1/2,1}^{2\lambda-1} I_{1/2,1}(r) \right),
\]

and therefore, for \(\theta \) and \(\phi \) satisfying \(2\theta/3 \leq \phi \leq 3\theta/2 \), we have

\[
\| \partial_\theta \tau_r^1(\theta, \phi) \|_{L^2(dr)} \leq \frac{C}{|\theta - \phi|^2 (\sin(\theta \vee \phi))^{2\lambda}}.
\]

The derivative in \(\phi \) is treated in the same way, by using the parallel estimates to (4.11) and (4.14). Also, for \(\tau_r^2 \) similar arguments hold. \(\square \)

Lemma 4.15. For every \(\theta, \phi \in [0, \pi/2] \) and \(\phi \) outside the region \(2\theta/3 \leq \phi \leq 3\theta/2 \), we also have (4.8) and (4.9).

Proof. We use that from (4.12) one can achieve the following inequality

\[
|\tau_r^1(\theta, \phi)| \leq \sqrt{r \log \frac{1}{r}} \left(r^{\lambda-1} I_{(0,1/2)}(r) + I_{1/2,1}^{2\lambda-1} I_{1/2,1}(r) \right),
\]

and using that for \(r \in (1/2, 1) \), \(r \log \frac{1}{r} \sim 1 - r \), we get

\[
(4.16) \quad \| \tau_r^1(\theta, \phi) \|_{L^2(dr)}^2 \leq C + C \int_{1/2}^{1} \frac{r \log \frac{1}{r}}{\Delta_r^{2^{(\lambda+1)}}} \, dr,
\]

\[
\leq C + C \int_{1/2}^{1} \frac{1 - r}{((1-r)^2 + \Delta_r^{2(\lambda+1)})} \, dr \leq \frac{C}{\Delta_r^{2\lambda+1}},
\]

\[
\text{parte global g}
\]

\[
\text{au_r i estimate}
\]
where the last estimate can be easily obtained by the change of variable \(u = \frac{1-r}{\sqrt{\Delta}} \).

For \(\phi < 2\theta/3 \), \(\sin(\theta - \phi) \sim \sin \theta \) and \(1 - \cos(\theta - \phi) \sim |\theta - \phi|^2 \sim \sin(\theta - \phi)^2 \). Thus, by these properties, (4.16) implies

\[
\|\tau_r(\theta, \phi)\|_{L^2(dr)} \leq \frac{C}{(1 - \cos(\theta - \phi))^{\lambda+1/2}} \leq \frac{C}{|\theta - \phi| (\sin(\theta \lor \phi))^{2\lambda}}.
\]

Now, if \(\phi > 3\theta/2 \), then \(1 - \cos(\theta - \phi) \sim |\theta - \phi|^2 \sim (\sin(\theta - \phi))^2 \) and also \(|\sin(\theta - \phi)| \sim \sin \phi \). Then, from (4.16) we get as before

\[
\|\tau_r(\theta, \phi)\|_{L^2(dr)} \leq \frac{C}{|\theta - \phi| (\sin(\theta \lor \phi))^{2\lambda}}.
\]

The estimate for \(\tau_r^2 \) follows in an analogous way. We will obtain (4.9) for the derivative in \(\theta \) of \(\tau_r^1 \). The proof for the other derivative is completely analogous, and also for \(\tau_r^2 \). Let us observe that for \(r \in (0, 1/2) \), then \(D_r \geq C \) and therefore

\[|\partial_\theta \tau_r^1(\theta, \phi)| \leq C \sqrt{r \log \frac{1}{r} (r^{\lambda-1} + 1)} \] if \(r \in (1/2, 1) \), it is easy to see that

\[
|\partial_\theta D_r|, |\partial_\theta \partial_r D_r| \leq C(\sin |\theta - \phi| + \sin \phi)
\]

(4.17)

\[
|\partial_\theta^2 D_r| \leq C, \quad |\partial_\theta D_r|^2 \leq C((\sin |\theta - \phi|)^2 + (\sin \phi)^2).
\]

Thus, from (4.13), (4.11) and (4.17), it is not difficult to obtain that

\[
|\partial_\theta \tau_r^1(\theta, \phi)| \leq C \sqrt{r \log \frac{1}{r} (r^{\lambda-1} + 1)} \chi_{(0,1/2)}(r) + C \sqrt{r \log \frac{1}{r} (\sin |\theta - \phi| + \sin \phi)}
\]

From here,

\[
\|\partial_\theta \tau_r^1(\theta, \phi)\|_{L^2(dr)} \leq C + C(\sin |\theta - \phi| + \sin \phi) A,
\]

where

\[
A^2 = \int_{1/2}^1 \frac{r \log \frac{1}{r}}{(1 - r)^2 + \Delta}^{2\lambda+4} dr \leq \frac{C}{\Delta^{2\lambda+3}}.
\]

In the former inequality we have used that for \(r \in (1/2, 1) \) then \(r \log \frac{1}{r} \sim 1 - r \) and we have performed the change of variables \(u = (1 - r)/\sqrt{\Delta} \). Thus, we obtain

\[
\|\partial_\theta \tau_r^1(\theta, \phi)\|_{L^2(dr)} \leq C + C(\sin |\theta - \phi| + \sin \phi) \frac{\Delta^{2\lambda+3/2}}{\Delta^{\lambda+3/2}}
\]

In the region \(\phi < 2\theta/3 \), we have \(|\theta - \phi| \sim \sin |\theta - \phi| \sim \sin \theta \), and \(\Delta \sim |\sin |\theta - \phi||^2 \). Thus,

\[
\|\partial_\theta \tau_r^1(\theta, \phi)\|_{L^2(dr)} \leq C + C \frac{|\theta - \phi|}{\Delta^{\lambda+3/2}} \leq \frac{C}{\Delta^{\lambda}} \frac{1}{|\theta - \phi|^2 (\sin(\theta \lor \phi))^{2\lambda}}
\]

On the other hand, for \(\phi > 3\theta/2 \), \(|\theta - \phi| \sim \sin |\theta - \phi| \sim \sin \phi \), and \(\Delta \sim |\sin |\theta - \phi||^2 \). Thus, we obtain the desired estimate in the same way. \(\square \)
4.3. **Muckenhoupt-Stein g-function.** The g-function defined by Muckenhoupt and Stein in [5] associated to the ultraspherical polynomials is

$$g f(\theta) = \left(\int_0^1 (1 - r) |\partial_r f(r, \theta)|^2 dr \right)^{1/2},$$

(4.18)

where $f(r, \theta)$ is described in subsection 3.2. They obtain that this operator is bounded in $L^p(dm_\lambda)$ for every $p \in (1, \infty)$. A natural question is whether this operator can be handled with the technique developed in this paper. In other words, we would like to see if the operator can be described as a Calderón-Zygmund operator. It turns out that our computations hold for the operator

$$g_1 f(\theta) = \left(\int_{1/2}^1 (1 - r) |\partial_r f(r, \theta)|^2 dr \right)^{1/2}.$$

The remaining part

$$g_0 f(\theta) = \left(\int_0^{1/2} (1 - r) |\partial_r f(r, \theta)|^2 dr \right)^{1/2}$$

is easier to handle, and one easily gets that g_0 maps $L^p(dm_\lambda)$ into $L^p(dm_\lambda)$ for every $p \in [1, \infty]$.

References

Institute of Mathematics, Wroclaw University, Plac Grunwaldzki 2/4, 50-384 Wroclaw, Poland
E-mail address: dbura@math.uni.wroc.pl

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
E-mail address: teresa.martinez@uam.es

Same address in Madrid
E-mail address: joseluis.torrea@uam.es