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ABSTRACT. This survey addresses the class of queues with Lévy input, which covers the classical
M/G/1 queue and reflected Brownian motion as special cases. First the stationary behavior is treated,
with special attention to the case of the input process having one-sided jumps (i.e., spectrally one-sided
Lévy processes). Then various transient metrics are focused on (such as the transient distribution, the
busy period, and the workload correlation function). Distinguishing between light-tailed and heavy-
tailed input, we give an account of results on the tail of the workload distribution; in addition we
present the main asymptotic results for the various transient quantities. We then extend our basic model
to various more advanced queueing systems: queues with a finite buffer, queues in which the current
buffer level affects the characteristics of the Lévy input (‘feedback’), and polling type of models. The
last part of the survey considers networks of queues: starting with the tandem queue, we subsequently
describe the stationary behavior of a general class of Lévy-driven queueing networks. At the method-
ological level, a variety of techniques has been used, such as transform-based techniques, martingales,
rate-conservation arguments, change-of-measure, importance sampling, and large deviations.
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1. INTRODUCTION

The class of Lévy processes consists of all stochastic processes with stationary independent incre-
ments, and as such it covers well-studied processes such as for instance Brownian motions and
Poisson processes. In this sense Lévy processes can be seen as the genuine continuous-time coun-
terpart of the random walk Sn :=

∑n
i=1 ξi, with independent and identically distributed ξi.

Lévy processes play an increasingly important role in various application domains, ranging from
finance to biology. A brief account of the history of Lévy processes (initially simply known as
‘processes with stationary and independent increments’) and its application fields is given in [7].
In finance, Lévy processes are being used intensively to analyze various phenomena; they are for
instance suitable when studying credit risk, or for option pricing purposes [34], but play a pivotal
role in insurance mathematics as well [10]. An attractive feature of Lévy processes, particularly
with applications in finance in mind, is that this class is rich in terms of possible path structures:
it is perhaps the simplest class of processes that allows sample paths to have continuous parts
interspersed with jumps at random epochs.
Another important application domain lies in operations research. According to the functional
central limit theorem, under mild conditions on the distribution of the increments, a scaled version
of discrete-time random walks converges to a Brownian motion. In line with this one can argue
that, under a suitable scaling, there is convergence of ‘classical’ GI/G/1 queueing systems (with
discrete customers) to a queue with Brownian input [96], also often referred to as reflected Brownian
motion.
A more specific example, in which the limiting process is not necessarily Brownian motion, relates
to the performance analysis of resources in communication networks. In the mid-nineties it was ob-
served that the sizes of the documents transferred over the internet obey heavy-tailed distributions.
This entails that under particular conditions, see [75, 94] and [96, Ch. 4], the aggregate of traffic gen-
erated by many users converges to fractional Brownian motion, but under other conditions there
is convergence to (a specific class of) Lévy processes. In the latter regime, the performance of the
network element can be evaluated by analyzing a queue fed by Lévy input.
The above considerations underscore the importance of analyzing queues with Lévy input (or:
Lévy-driven queues). It should be noticed, though, that it is not a priori clear what should be un-
derstood by such a queue: for instance in case the Lévy process under consideration is Brownian
motion, the input process is not increasing, and therefore the corresponding queue cannot be seen
as a storage system in the classical sense. Relying on a description of the queue as the solution of
a so-called Skorokhod problem [96], however, a formal definition of a Lévy-driven queue can be
given (in fact, any stochastic process can serve as input). It is stressed that queues of the ‘classical’
M/G/1 type (that is, Poisson arrivals, generally distributed jobs, one server) fit in the framework
of Lévy-driven queues.

Having defined Lévy-driven queues, all questions that have been studied for classical queues now
have their Lévy counterpart. A first question relates to the distribution of the steady-state workload
of the queue, but also issues regarding the transient distribution, the busy period, the queue’s
correlation structure can be assessed. In addition, just as in the world of ‘classical’ queues, one
can think of a variety of variants of the standard Lévy-driven queue: queues with a finite buffer,
queues whose input characteristics are affected by the current workload level (‘feedback’), queues
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with vacations and service interruptions, and Lévy-driven polling models. Finally, under specific
conditions on the Lévy processes involved, one can let the output of a queue serve as the input for
a next queue, and in this way we arrive at a notion of Lévy-driven queueing networks.

The objective of this survey is to give an account of the literature on Lévy-driven queues. In addi-
tion, we also intend to give an impression of the wide set of techniques that has been developed
over the past decades. In this survey techniques that are highlighted include transform-based tech-
niques, martingales, rate-conservation arguments, change-of-measure, importance sampling, and
large deviations.
A few words on additional recommended literature. In the first place there are the textbooks by
Bertoin [26], Kyprianou [67], and Sato [90], which provide a fairly general account of the theory
of Lévy processes. All of these have a specific focus, though, on fluctuation theory, which can be
understood as the theory that describes the extreme values that are attained by the Lévy process
under consideration, and which is a topic that is intimately related to Lévy-driven queues. We
also mention the book by Applebaum [6], that concentrates more on stochastic calculus. The book
chapters [8, Ch. IX] and [83, Ch. 4] present elements of Lévy-driven queues.

The survey is organized as follows. Section 2 formalizes the notion of Lévy-driven queues; it is ar-
gued how in general queues can be defined without assuming that the input process is nondecreas-
ing. We also introduce the special class of spectrally one-sided Lévy inputs, that is, Lévy processes
with either only positive jumps or only negative jumps; we will extensively rely on this notion
throughout the survey. In Section 3 we characterize the steady-state workload Q. For spectrally-
positive input this is done through its Laplace transform, which is a result that dates back to [98]
and which is commonly referred to as the ‘generalized Pollaczek-Khinchine formula’, whereas the
spectrally-negative case can be dealt with explicitly.
Then, in Section 4, four metrics are analyzed that relate to the transient workload. In the first place
we characterize (in terms of transforms) the distribution of the workload Qt at time t, conditional
on Q0 = x. We then consider the busy period distribution: how long does it take for the queue
to idle? A variety of techniques is used to analyze the correlation between Q0 and Qt, assuming
the queue is in stationarity at time 0; specifically, it covers the structural result that the workload
correlation function is positive, decreasing and convex. The last part of this section addresses the
distribution of the lowest value attained by the workload process in an interval of given length.
Where the full distribution of Q was uniquely characterized in Section 3, Section 5 considers its tail
asymptotics. Distinguishing between Lévy processes with light-tailed and heavy-tailed features,
functions f(·) are identified such that P(Q > u)/f(u) → 1 as u → ∞. In Section 6 we present
asymptotics related to the transient metrics that we defined earlier. In addition, we point out how
importance-sampling based simulation are of great help when estimating rare-event probabilities
(and small covariances).
Where the previous section considered the standard Lévy driven queue, Section 7 presents results
on several variants: queues with a finite buffer, queues in which the current buffer level affects
the characteristics of the Lévy input (‘feedback’), and vacation and polling type of models. Then,
Section 8 presents results on Lévy-driven tandem queues: the output of the ‘upstream queue’ serves
as input for the ‘downstream queue’. For this model the joint steady state workload is determined,
and various special cases are considered. Section 9 is devoted to networks, with particular focus
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on feed-forward tree structures. In Section 10, that concludes this survey, a brief discussion of the
state of the art is given.

2. LÉVY PROCESSES, LÉVY DRIVEN QUEUES

In classical queueing systems, there is the notion of customers (or work) arriving at a server that is
working in a certain predefined manner. As Lévy processes are to be understood as processes with
stationary independent increments (covering for instance Brownian motion), it is not immediately
clear how a queue with Lévy input should be defined.
In this section we introduce the notion of Lévy-driven queues, by first providing an explicit defini-
tion of Lévy processes, and then extending the classical definition of a queue to a notion that can be
used for general input processes as well (i.e., any real-valued stochastic process can serve as input).
For more background, we refer to [6, 8, 67, 90].

2.1. Infinitely divisible distributions, Lévy processes. We say that a continuous-time process
(Xt)t is a Lévy process if it has stationary and independent increments, with X0 = 0 and càdlàg
sample paths a.s. (cádlág meaning ‘continuous from right, limits from left’). This definition implies
that Xt is, for any t, infinitely divisible: we have the distributional equality, with X(i)

t i.i.d. copies of
Xt:

Xt
d
=

n∑
i=1

X
(i)
t/n,

for any n ∈ N. Informally, each Lévy process can be associated with an infinitely divisible distri-
bution, and vice versa. One can alternatively say that, for any value of t, logEesXt = t logEesX1 ,
where s ∈ C. It is possible to characterize Lévy processes more specifically: the so-called Lévy
exponent logEesX1 is necessarily of the form

(2.1) logEesX1 = sd+
1

2
s2σ2 +

∫ ∞

−∞
(esx − 1− sx1[0,1)(|x|))Π(dx),

where d ∈ R, σ ≥ 0 and the spectral measure Π(·) satisfies∫
R\{0}

min{x2, 1}Π(dx) <∞.

The triplet (d, σ2,Π) is commonly referred to as the characteristic triplet, as it uniquely defines the
Lévy process.
It is immediately seen that this class of processes contains e.g. the Poisson process (logEesX1 =

λ(es − 1) for λ > 0) and Brownian motion (logEesX1 = 1
2σ

2s2 for σ2 > 0) as special cases; later
on we mention various other examples. For obvious reasons, we call the first parameter of the
characteristic triplet, d, the deterministic drift, whereas the term 1

2s
2σ2 is often referred to as the

Brownian term. The third term in (2.1) corresponds to the jumps of the Lévy process; if these
are only in the upward (downward) direction, then the integral should be over [0,∞) ((−∞, 0],
respectively).

2.2. Spectrally one-sided Lévy processes. Let (Xt)t≥0 be a Lévy process, with ‘mean drift’ EX1 <

0. In this survey, we specifically focus on two cases.
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FIGURE 2. Spectrally-negative case.

(A) (Xt)t≥0 has no negative jumps, or is spectrally positive; we write X ∈ S+. Then the Laplace
exponent is given by the functionφ(·) : [0,∞) 7→ [0,∞), defined throughφ(α) := logEe−αX1 .
It is a straightforward consequence of Hölder’s inequality that φ(·) is convex on [0,∞); due
to the assumption EX1 < 0, and observing that φ(·) has slope φ′(0) = −EX1 in the ori-
gin, we conclude that φ(·) is increasing on [0,∞). Therefore the inverse ψ(·) of φ(·) is
well-defined on [0,∞). In the sequel we also require that Xt is not a subordinator, i.e., a
monotone process; thus X1 has probability mass on the positive half-line, which implies
that limα→−∞ φ(α) = ∞.

(B) (Xt)t≥0 has no positive jumps, or is spectrally negative; we write X ∈ S−. Now we define
Φ(β) := logEeβX1 , which is well-defined for any β ≥ 0. Again ruling out that Xt is a
subordinator (and recalling that Φ′(0) = EX1 < 0), we see that Φ(β) is no bijection on
[0,∞); we define the right inverse through Ψ(q) := sup{β ≥ 0 : Φ(β) = q). Realize that
β0 := Ψ(0) > 0.

Important examples of such Lévy processes are the following. (1) Brownian motion with drift, being
actually both spectrally positive and negative (as its sample paths are continuous a.s.). We write
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X ∈ Bm(µ, σ2) when φ(α) = −αµ+ 1
2α

2σ2. The mean drift of this process is µ, which was assumed
to be negative. (2) Compound Poisson with drift, which is spectrally positive. Non-negative jobs arrive
according to a Poisson process of rate λ; the jobs B1, B2, . . . are i.i.d. samples from a distribution
with Laplace transform b(α) := Ee−αB ; the storage system is continuously depleted at a rate r.
We write X ∈ CP(r, λ, b(·)); it can be verified that φ(α) = rα − λ + λb(α). The mean drift of this
process is EX1 = λEB − r, which we assume to be negative. Clearly, if the depletion rate r would
be positive, and the jobs would be i.i.d. samples from a non-positive distribution (that is, the jumps
are downward), then the resulting process is spectrally negative.

We conclude this subsection with two lemmas. First consider X ∈ S+, and let τ(x) := inf{t ≥
0 : Xt ≤ −x}. Observe that e−φ(α)t e−αXt is a mean-1 martingale [97]. Noticing that Xτ(x) = −x
(which is a direct consequence of the process not having jumps in the downward direction), and,
assuming that EX1 < 0, it holds that τ(x) < ∞ almost surely. Then ‘optional sampling’ [97, Ch.
A14] implies the following property, which will be useful later on; observe that it entails that τ(x)
is an (increasing) Lévy process.

Lemma 1. Let X ∈ S+, and EX1 < 0. For ϑ ≥ 0, x > 0,

Ee−ϑτ(x) = e−ψ(ϑ)x.

There is no immediate counterpart of this lemma for X ∈ S−, in that no explicit expression for
Ee−ϑτ(x) can be given in the spectrally-negative case. It is possible though to uniquely characterize
the distribution of τ(x) through a so-called double transform.

Lemma 2. Let X ∈ S−, and EX1 < 0. For q ≥ 0, x > 0, β > 0,∫ ∞

0

e−βxEe−qτ(x)dx =
1

β

(
1− q

Ψ(q)

Ψ(q)− β

q − Φ(β)

)
.

The proof of the above lemma relies on part (ii) of [67, Exercise 6.7], which states that∫ ∞

0

e−βxEe−qτ(x)dx =
κ̂(q, β)− κ̂(q, 0)

βκ̂(q, β)
;

here κ̂(q, β) relates to the transform of the so-called descending ladder process, and is given, in this
spectrally-negative case, by κ̂(q, β) = (q − Φ(β))/(Ψ(q)− β).

2.3. α-stable Lévy motions. This subsection focuses on a subclass of Lévy processes that has at-
tracted substantial attention in the literature: α-stable Lévy motions. This class of models is partic-
ularly suitable when modelling various sorts of heavy-tailed phenomena [89].
To introduce these processes, we first define the class of stable distributions. We here follow the
exposition in [48], but various other parameterizations are possible [95]. We say that a random
variable Y has a stable distribution if for any a, b > 0 there exist c > 0 and d ∈ R such that

aY ′ + bY ′′ d
= cY + d,

where Y ′ and Y ′′ are independent copies of Y . It turns out [28, Thm. 8.3.2] that the characteristic
function of Y can be written in the form

logEeiθY =

{
−σα|θ|α(1− iβsign(θ) tan(πα/2)) + imθ α ̸= 1;

−σ|θ|(1 + iβπ/2sign(θ) log |θ|) + imθ α = 1,
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where α ∈ (0, 2], β ∈ [−1, 1], σ ∈ [0,∞), m ∈ R, and sign(x) = 1(0,∞)(x)− 1(−∞,0)(x). We write that
Y is distributed Sα(σ, β,m).
Let us consider the meaning of the parameters in more detail.

• The parameter α is commonly referred to as the index of stability. Later we will observe that
α is directly related to the ‘heaviness’ of the tail distribution. In particular, if α ∈ (0, 1], then
E|Y | = ∞ (for α = 1 we have the Cauchy distribution). For α = 2 we obtain the Normal
distribution.

• The parameter β is known as the skewness. The extreme cases are β = 1, corresponding to
a totally skewed to the right distribution, and β = −1, which corresponds to a totally skewed
to the left distribution. For α < 1, m = 0 and β = 1 (β = −1, respectively), the support of
the distribution is the positive (negative) half-line, but this is no longer true for α ≥ 1. The
choice of β = 0 and m = 0 leads to a symmetric distribution.

• For obvious reasons, σ is called the scale parameter.
• For α ∈ (1, 2], we have that EY = m. This explains why m is called the shift parameter.

The following useful property, describing the distribution’s tail asymptotics, can be found in e.g.
[89, p. 16]. The Gamma function Γ(·) is defined in the usual way.

Proposition 1. Let Y d
= Sα(σ, β,m) with β ∈ (−1, 1]. Then, as u→ ∞,

P(Y > u)uα → Cα,σ

(
1 + β

2

)
,

where

Cα,σ :=

{
σα(1− α)/ (Γ(2− α) cos(πα/2)) α ̸= 1;

2σ/π α = 1.

Having defined stable distribution, we can now introduce α-stable Lévy motions, as follows. We
say that (Xt)t is an α-stable Lévy motion if (Xt)t has stationary independent increments such that

Xt
d
= Sα(t

1/α, β,m);

we write X ∈ S(α, β,m). From the above we conclude that if β = ±1, then X ∈ S±.

One could say that α-stable Lévy motions are self-similar: picking m = 0, and writing (X
(α)
t )t to

stress the dependence on α, one has that(
X

(α)
Mt

)
t

d
=
(
M1/αX

(α)
t

)
t

(unless α = 1, β ̸= 0). In other words: when zooming in, one essentially sees the same pattern,
given that one adjusts the axes in a suitable fashion.

2.4. Lévy-driven queues. Having defined Lévy processes, we now introduce the notion of queues
with Lévy input (or: Lévy-driven queues). Notice, however, that these definitions are by no means
restricted to the Lévy framework; based on the formalism defined below, one can define for any
real-valued stochastic process the corresponding workload process. We provide two types of char-
acterizations.
In the first approach, we define the Lévy-driven queue as the continuous-time counterpart of the
classical discrete-time queue. In discrete time, a queue can be described through the well-known
Lindley recursion: we have

Qn+1 = max{Qn + Yn, 0}.
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Iterating this recursion, we obtain Qn+1 = max{Qn−1+Yn−1+Yn, Yn, 0}. With Xn :=
∑n
i=0 Yi, this

eventually leads to, with Q0 = x,

Qn = Xn +max

{
x, max

0≤i≤n
−Xi

}
.

Then a queue in continuous-time can be defined by just taking the continuous-time counterpart of
the above, so that we obtain

Qt = Xt +max{x, Lt}, t ≥ 0,

with
Lt := sup

0≤s≤t
−Xs = − inf

0≤s≤t
Xs;

this increasing process Lt is often referred to as local time. Assuming the queue has been running
from −∞, one can alternatively write Qt = sups≤t(Xt −Xs); in case of input processes (Xt)t with
stationary increments (as is the case in our Lévy context) it needs to be assumed that EX1 < 0 in
order to ensure stability (which we do throughout this survey). If the input process Xt is reversible
(which is true in the Lévy case), then we have the following distributional equality for the stationary
workload Q, commonly attributed to Reich [84]:

(2.2) Q
d
= sup

t≥0
Xt.

An alternative is to define the Lévy-driven queue as the solution of a so-called Skorokhod problem;
then one commonly says that (Qt)t is the reflection of (Xt)t at 0. This is done as follows. Let (L⋆t )t be
a nondecreasing right-continuous process such that the following two requirements are fulfilled:

(A) (Qt)t, given by Q0 = x and Qt = Xt + L⋆t , is non-negative for all t ≥ 0;
(B) L⋆t can only increase when Qt = 0, that is∫ T

0

QtdL
⋆
t = 0, for all T > 0.

Observe that it is natural to impose these conditions on a queueing process (in the M/G/1 context,
the process L⋆t directly relates to the queue’s idle time, and then requirement B essentially says that
this idle time only increases when the buffer is empty).
Then it can be proven that the only process satisfying these conditions is L⋆t = max{x, Lt}, so
that Qt = Xt + max{x, Lt} for t ≥ 0, where Lt is defined as above. Conclude that the definition
found in this way coincides with the one obtained when taking the continuous counterpart of the
discrete-time definition.

3. STEADY-STATE WORKLOAD

In this section we analyze the distribution of the stationary workload Q. We distinguish between
the spectrally-positive and spectrally negative case.

3.1. Spectrally-positive case. We first consider the special case of compound Poisson input and
constant depletion rate r; assume λEB < r. For any x > 0, a rate conservation argument yields
that the density fQ(·) of the steady-state workload satisfies

rfQ(x) = λ

(∫
(0,x)

fQ(y)P(B > x− y)dy + p0P(B > x)

)
,
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with p0 := P(Q = 0); the left-hand (right-hand) side represents the ‘probability flux’ into (out of)
the set (0, x]. Hence

κ̄(α) :=

∫
(0,∞)

e−αxfQ(x)dx

=
1

r

∫
(0,∞)

e−αxλ

(∫
(0,x)

fQ(y)P(B > x− y)dy + p0P(B > x)

)
dx,

which after elementary calculus (interchange the integrals, integration by parts) reduces to

rκ̄(α) = λ (κ̄(α) + p0)
1− b(α)

α
.

Realizing that κ(α) := Ee−αQ = p0+κ̄(α) and κ(α) → 1 asα ↓ 0, we conclude that p0 = (1−λEB/r),
so that we arrive at the following theorem, usually referred to as the Pollaczek-Khintchine formula
[64, 81].

Theorem 1. Let X ∈ CP(r, λ, b(·)). For α ≥ 0,

κ(α) := Ee−αQ =
rαp0

rα− λ(1− b(α))
=

α(r − λEB)

rα− λ(1− b(α))
.

Remark 1. Let Bres
1 , Bres

2 , . . . be i.i.d. samples from the residual lifetime distribution of B, that is

P(Bres ≤ x) =
1

EB

∫ x

0

P(B > y)dy.

Realizing that bres(α) := Ee−αBres

= (1− b(α))/(αEB), Thm. 1 can alternatively be written as

κ(α) =

(
1− λEB

r

) ∞∑
n=0

(
λEB
r

)n
(bres(α))

n
.

As a consequence, with ϱ := λEB/r,

(3.1) P(Q ≤ x) = P

(
N∑
n=1

Bres
n ≤ x

)
,

where P(N = n) = (1− ϱ)ϱn. This means that the steady-state workload Q can be interpreted as a
geometric number of residuals of the job size B. ♢

Now focus on the spectrally positive case. Our goal is to find an expression for κ(α) = Ee−αQ for
any X ∈ S+, by approximating φ(α) by a sequence φn(α) that correspond to compound Poisson
processes, then apply Thm. 1 for these compound Poisson processes, and finally take n→ ∞.

In the spectrally-positive case we have, for a certain d, σ2 ≥ 0, and measure Πφ(·) such that∫
(0,∞)

min{1, x2}Πφ(dx) <∞, that the Laplace exponent reads

φ(α) = αd+
1

2
α2σ2 +

∫
(0,∞)

(e−αx − 1 + αx 1(0,1)(x))Πφ(dx).

Now define, for a sequence εn such that εn → 0 as n→ ∞,

φn(α) :=

(
d+

∫ 1

εn

xΠφ(dx) +
σ2

εn

)
α+

σ2

ε2n

(
e−αεn − 1

)
+

∫ ∞

εn

(e−αx − 1)Πφ(dx).
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It is easily verified that φn(s) → φ(s) as n → ∞, whereas, for all n ∈ N, φ′
n(0) = φ′(0), but, more

importantly, φn(α) is the Laplace exponent of a compound Poisson process. This is seen as follows. The
drift term of this compound Poisson process is

dn := d+

∫ 1

εn

xΠφ(dx) +
σ2

εn
> 0.

Then, the term σ2/ε2n ·(e−αεn − 1) can be interpreted as the contribution of a Poisson stream (arrival
rate λ1,n := σ2/ε2n) of jobs of deterministic size β1,n := εn. Finally,∫ ∞

εn

(e−αx − 1)Πφ(dx) = Πφ([εn,∞))

∫ ∞

εn

(e−αx − 1)
Πφ(dx)

Πφ([εn,∞))
,

which is the contribution of a Poisson stream (arrival rate λ2,n := Πφ([εn,∞))) of jobs, whose sizes
are i.i.d. samples from a ‘truncated distribution’ with density Πφ(dx)/Πφ([εn,∞)), for x ≥ εn, and
mean

β2,n :=

∫ ∞

εn

x
Πφ(dx)

Πφ([εn,∞))
.

Let Qn be the steady state workload of the queue fed by a compound Poisson process with Laplace
exponent φn(α). Due to φn(α) → φ(α) it is conceivable that Ee−αQn → Ee−αQ. From Thm. 1,

Ee−αQn = α(dn − λ1,nβ1,n − λ2,nβ2,n)

/(
dnα− σ2

ε2n

(
1− e−αεn

)
−
∫ ∞

εn

(1− e−αx)Πφ(dx)

)
→ αφ′(0)

φ(α)
as n→ ∞;

the convergence follows from straightforward algebra. In other words, under the proviso that
we can prove that Ee−αQn → Ee−αQ, we have established the following result. Thm. 2 is often
attributed to Zolotarev [98].

Theorem 2. Let X ∈ S+. For α ≥ 0,

κ(α) = Ee−αQ =
αφ′(0)

φ(α)
.

The convergence Ee−αQn → Ee−αQ is a technical issue that lies beyond the scope of this survey.
Thm. 2 provides us with the Laplace transform of the random variable under consideration, but it
is noticed that there are powerful techniques to numerically invert these transforms. Besides the
classical reference [3], we wish to draw attention on novel ideas developed by den Iseger, reported
on in [42].
Alternative proofs of Thm. 2 rely on martingale techniques, most notably the celebrated Kella-Whitt
martingale [62]; see also [67, Section 4.4] and [8, Section IX.3]. With

Lt(x) := max{0, Lt − x} = max

{
0,− inf

0≤s≤t
Xs − x

}
,

it was shown using stochastic integration theory that, for X ∈ S+,

Kt := φ(α)

∫ t

0

e−αQsds+ e−αx − e−αQt − αLt(x)

is a martingale. Now consider this martingale, and assume that the queue is in stationarity at time
0. Then, stopping the martingale at time 1 results in the identity

0 = EK1 = φ(α)Ee−αQ + Ee−αQ − Ee−αQ − αEL1(Q),
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so that

Ee−αQ =
αEL1(Q)

φ(α)
.

Now realizing that Ee−αQ → 1 as α ↓ 0, we retrieve Thm. 2. In passing, we have shown that, in
stationarity, the ‘mean amount of local time per time unit’ equals φ′(0).

Example 1. Suppose X ∈ Bm(µ, σ2) for some µ < 0. Then, with ν := −2µ/σ2 > 0,

Ee−αQ =
αφ′(0)

φ(α)
=

ν

ν + α
.

We conclude that the steady-state workload in a Brownian queue has an exponential distribution
with mean 1/ν. Observe that the workload of this queue has no point mass at 0 (which could be
expected, due to the non-differentiability of the sample paths). ♢

Example 2. Consider the case of X ∈ S(α, 1,−r) with α ∈ (1, 2) and r > 0. Then, using that

φ(s) = rs+
1

cos (π(α/2− 1))
sα,

one can invert the transform of Thm. 2 to obtain [48]

P (Q > u) =
∞∑
n=0

(−r cos (π(α/2− 1)))
n

Γ(1 + (α− 1)n)
u(α−1)n.

It is concluded that Q has a so-called Mittag-Leffler distribution. ♢

Thm. 2 reveals all moments of the steady-state queue Q, and in particular its mean and variance:

(3.2) µ := EQ = − d

dα

αφ′(0)

φ(α)

∣∣∣∣
α↓0

=
φ′′(0)

2φ′(0)
,

and similarly

(3.3) v := VarQ =
1

4

(
φ′′(0)

φ′(0)

)2

− 1

3

φ′′′(0)

φ′(0)
.

3.2. Spectrally-negative case. For spectrally negative input, the reasoning is substantially simpler.
First observe that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0. ‘Optional sampling’ [97, Ch. A14]
thus gives, for any positive x,

P(∃t ≥ 0 : Xt > x)eβ0x = 1,

using that, due to the fact that there are no jumps in the upward direction, given a certain level
x > 0 is reached, it is attained with equality. As Q is distributed as the supremum over t ≥ 0 of Xt

(‘Reich’s identity’, see Eqn. (2.2)), we obtain the following result.

Theorem 3. Let X ∈ S−. Then Q is exponentially distributed with mean 1/β0.

4. TRANSIENT WORKLOAD

This section focuses on various transient metrics. In terms of Laplace transforms we subsequently
address (i) the transient distribution, (ii) the busy period, (iii) the correlation of the workload, and
(iv) the smallest value attained by the workload process in an interval of given length.
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4.1. Transform of transient distribution. In this section our objective is to analyze (in terms of
transforms) the distribution of Qt, for some t > 0, conditional on Q0 = x. As before, we distinguish
between X ∈ S+ and X ∈ S−.

Spectrally positive case. Let ζ(x) := Exe−αQT , where T is exponentially distributed with mean 1/ϑ >

0, independently of the Lévy process under consideration. We first focus on X ∈ CP(r, λ, b(·));
for ease we normalize time such that r = 1. Starting at zero, one should distinguish (i) between
the clock T expires before the first jump of the compound Poisson process, and vice versa, and
(ii) whether or not the buffer has become empty. One thus obtains

ζ(x) =

∫ ∞

0

∫ x

0

λe−(λ+ϑ)yζ(x− y + z)dydP(B ≤ z) +
ϑ

ϑ+ λ− α
(e−αx − e−(λ+ϑ)x)

+
λ

ϑ+ λ
e−(λ+ϑ)x

∫ ∞

0

ζ(z)dP(B ≤ z) +
ϑ

ϑ+ λ
e−(λ+ϑ)x.

It is a lengthy though elementary verification to check that ζ(x) = Ke−kx + Le−ℓx satisfies this
equation, when picking k = α, ℓ = ψ(ϑ), K = ϑ/(ϑ− φ(α)) and L = −Kα/ψ(ϑ). As before, we can
then approximate any X ∈ S+ by a compound Poisson process, yielding the following result.

Theorem 4. Let X ∈ S+, and let T be exponentially distributed with mean 1/ϑ, independently of X . For
α ≥ 0, x ≥ 0,

Exe−αQT = ϑ

∫ ∞

0

e−ϑtExe−αQt =
ϑ

ϑ− φ(α)

(
e−αx − α

ψ(ϑ)
e−ψ(ϑ)x

)
.

Thm. 4 can alternatively be derived by a level-crossing argument — see e.g. [23] —, or by applica-
tion of the Kella-Whitt martingale — see e.g. [8, Thm. IX.3.10] and [60]. We now detail the latter
approach. Let T be exponentially distributed with mean 1/ϑ; then we have

0 = EKT = φ(α)

∫ ∞

0

∫ t

0

ϑe−ϑte−αQsdsdt− e−αx − Exe−αQT − αELT (x).

The first term of the right-hand side can alternatively be written as

φ(α)

∫ ∞

0

∫ ∞

s

ϑe−ϑte−αQsdtds =
φ(α)

ϑ
Exe−αQT .

Now Exe−αQT can be solved, and we obtain an expression in which the unknown term ELT (x)
appears in the numerator, and in which the denominator equals ϑ−φ(α). Then use the fact that the
root of the denominator (i.e., α = ψ(ϑ)) should be a root of the numerator as well (otherwise the
transform equals ∞). This enables us to solve ELT (x), and finally we obtain the result of Thm. 4.

The special case of X ∈ Bm(µ, σ2) can be solved explicitly. It turns out that [51, p. 49]

P(Qt ≤ y |Q0 = x) = 1− ΦN

(
−y + x+ µt

σ
√
t

)
− e2µy/σ

2

ΦN

(
−y − x− µt

σ
√
t

)
,

with ΦN(·) denoting the distribution function of a standard Normal random variable.

Spectrally negative case. Following the setup of [67, Chapter 8], we first introduce, for spectrally
negative Lévy processes, families of functions W (q)(·) and Z(q)(·) as follows. Let W (q)(x) be a
strictly increasing and continuous function whose Laplace transform satisfies

(4.1)
∫ ∞

0

e−βxW (q)(x)dx =
1

Φ(β)− q
, β > Ψ(q).
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In addition,

(4.2) Z(q)(x) := 1 + q

∫ x

0

W (q)(y)dy.

W (q)(·) and Z(q)(·) are usually referred to as the q-scale functions. Then [80, Eqn. (19)] gives, with
some abuse of notation, the following transform (with respect to q) of the density of Qt, given that
Q0 = x: ∫ ∞

0

e−qtPx(Qt = y)dt = e−Ψ(q)yΨ(q)

q
Z(q)(x)−W (q)(x− y).

It is now a matter of straightforward calculus to show that the previous display leads to, with T

denoting an exponential random variable with mean q−1,∫ ∞

0

e−βxExe−αQT dx = I1(α, β, q)− I2(α, β, q);

where the integrals I1(α, β, q) and I2(α, β, q) are given by

I1(α, β, q) :=

∫ ∞

0

∫ ∞

0

qe−βxe−αye−Ψ(q)yΨ(q)

q
Z(q)(x)dxdy,

I2(α, β, q) :=

∫ ∞

0

∫ ∞

0

qe−βxe−αyW (q)(x− y)dxdy.

We now compute I1(α, β, q) and I2(α, β, q) explicitly. Using (4.1) and (4.2), we obtain

I1(α, β, q) =
Ψ(q)

Ψ(q) + α

∫ ∞

0

e−βxZ(q)(x)dx

=
Ψ(q)

Ψ(q) + α

(
1

β
+

∫ ∞

0

∫ ∞

y

qW (q)(y)e−βxdxdy

)
=

Ψ(q)

Ψ(q) + α

1

β

(
1 +

q

Φ(β)− q

)
.

Likewise,

I2(α, β, q) =

∫ ∞

0

qe−(α+β)y 1

Φ(β)− q
dy =

q

α+ β

1

Φ(β)− q
.

This leads to the following result.

Theorem 5. Let X ∈ S−, and let T be exponentially distributed with mean 1/q, independently of X . For
αge0 and β > 0,∫ ∞

0

e−βxExe−αQT dx =
1

β

(
Ψ(q)

Ψ(q) + α
+

q

Φ(β)− q

Ψ(q)− β

Ψ(q) + α

α

α+ β

)
.

4.2. Busy period. In this section we address the busy period in a Lévy-driven queue. We let τ
denote the busy-period duration, starting from steady-state at time 0: τ := inf{t ≥ 0 : Qt = 0},
where Q0 is distributed according to the stationary distribution. Throughout this section we write
p(t) := P(τ > t); we derive the Laplace transform of p(·).

Spectrally positive case. Let us start by considering the spectrally-positive case. We have, with τ(x) :=
inf{t ≥ 0 : Xt = −x}, due to Lemma 1,∫ ∞

0

e−ϑtp(t)dt =

∫ ∞

0

(∫ ∞

0

e−ϑtP(τ(x) > t)dt

)
dP(Q0 < x)

=
1

ϑ

∫ ∞

0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x) =

1

ϑ
(1− κ(ψ(ϑ))) ,

where we recall that κ(α) was defined as EeαQ, with Q the stationary workload. Application of
Thm. 2 now leads to the following result.
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Proposition 2. Let X ∈ S+. For ϑ ≥ 0,∫ ∞

0

e−ϑtp(t)dt =
1

ϑ
− φ′(0)

ψ(ϑ)

ϑ2
.

In the special case that X ∈ CP(r, λ, b(·)), the notion of a busy period starting in 0 is well-defined.
We denote this random variable by τ0; let π(ϑ) := Ee−ϑτ0

be the corresponding Laplace transform,
which is known to satisfy the fixed-point equation π(ϑ) = b(ϑ+ λ− λπ(ϑ)), after having renormal-
ized time such that r = 1. Recall that the Laplace exponent is φ(α) = α− λ+ λb(α). Therefore

0 = b(ϑ+ λ− λπ(ϑ))− π(ϑ) =
1

λ
φ(ϑ+ λ− λπ(ϑ))− ϑ

λ
,

and hence φ(ϑ+ λ− λπ(ϑ)) = ϑ. Apply ψ(·) to both sides, and we obtain the following result.

Proposition 3. Let X ∈ CP(1, λ, b(·)). For ϑ ≥ 0,

π(ϑ) =
λ+ ϑ

λ
− 1

λ
ψ(ϑ).

In fact, more refined results can be found [74]. Consider for instance

L(ϑ;α, ᾱ) :=

∫ ∞

0

e−ϑtE
[
e−αQ0−ᾱQt ; τ > t

]
dt =

∫ ∞

0

e−(α+ᾱ)xE

[∫ τ(x)

0

e−ᾱXt−ϑtdt

]
dP(Q0 ≤ x).

Now observe that for any Lévy process (Zt)t and δ for which the expressions are well-defined, we
have that

Ms := e−δZs − 1−
[
logEe−δZ1

]
·
∫ s

0

e−δZtdt

is a martingale. Now pick δ = ᾱ and Zt = Xt + (ϑ/ᾱ)t, and use ‘optional sampling’ to obtain

E

[∫ τ(x)

0

e−ᾱXt−ϑtdt

]
=

1− e(ᾱ−ψ(ϑ))x

ϑ− φ(ᾱ)
;

here it is used that Xτ(x) = −x. Combining the above, we end up with

L(ϑ;α, ᾱ) =
φ′(0)

ϑ+ φ(α)

(
α+ ᾱ

φ(α+ ᾱ)
− α+ ψ(ϑ)

φ(α+ ψ(ϑ))

)
.

It is actually also possible to compute the joint transform of the stationary workload and busy
period:

Ee−αQ−θτ =

∫ ∞

0

e−αxEe−ϑτ(x)dP(Q ≤ x) =

∫ ∞

0

e−αxe−ψ(ϑ)(x)dP(Q ≤ x) = κ(α+ ψ(ϑ)),

with κ(·) as given in Thm. 2.

Spectrally negative case. The spectrally-negative case can be dealt with similarly. First recall that∫ ∞

0

e−qtP(τ > t)dt =
1

q

(
1− Ee−qτ

)
.

Then Lemma 2, in conjunction with Thm. 3, yields

Ee−qτ =

∫ ∞

0

β0e
−β0xEe−qτ(x)dx = 1− q

Ψ(q)

Ψ(q)− β0
q − Φ(β0)

.

Using that Φ(β0) = 0, we find that Ee−qτ = Ψ(0)/Ψ(q), and in addition the following result is
obtained.
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Proposition 4. Let X ∈ S−. For q ≥ 0,∫ ∞

0

e−qtp(t)dt =
1

q

(
1− Ψ(0)

Ψ(q)

)
.

Similarly to what we did above for X ∈ S+, we have for X ∈ S−

L(q;β, β̄) :=

∫ ∞

0

e−qtE
[
e−βQ0−β̄Qt ; τ > t

]
dt =

∫ ∞

0

β0e
−(β0+β+β̄)xE

[∫ τ(x)

0

e−β̄Xt−qtdt

]
dx,

using that Q0 is exponentially distributed with mean 1/β0. As in the spectrally-positive case,

E

[∫ τ(x)

0

e−β̄Xt−qtdt

]
=

1− eβ̄Xτ(x)−qτ(x)

q − Φ(−β̄)
.

Applying the so-called second factorization identity — see e.g. [67] — we obtain that

L(q;β, β̄) =
β0

β0 + β + β̄

Ψ(q)− β0 − β

Ψ(q) + β̄

1

q − Φ(β + β0)
.

The joint transform of the stationary workload and busy period follows directly from Lemma 2 and
Thm. 3:

Ee−βQ−qτ = β0

∫ ∞

0

e−(β+β0)xEe−ϑτ(x)dx =
β0

β + β0

(
1− q

Ψ(q)

Ψ(q)− β − β0
q − Φ(β + β0)

)
.

4.3. Correlation function. Thms. 4 and 5 enable us to find explicitly the Laplace transform r̂(·)
corresponding to the correlation of the workload process:

r(t) := Corr(Q0, Qt) =
Cov(Q0, Qt)√
VarQ0 · VarQt

=
E(Q0Qt)− (EQ0)

2

VarQ0
,

as we show now. Here it is assumed that the system is in steady-state at time 0.

Spectrally positive case. In this case, Q0 obeys the distribution featured in Thm. 2. Let T have an
exponential distribution with mean 1/ϑ. First realize that

E(e−αQT | Q0 = q) =

∫ ∞

0

ϑe−ϑtE(e−αQt | Q0 = q)dt.

By differentiation with respect to α and subsequently letting α ↓ 0, we obtain

(4.3)
∫ ∞

0

ϑe−ϑtE(Qt | Q0 = q)dt = −φ
′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)
.

Concentrate on the Laplace transform γ(ϑ) of Cov(Q0, Qt). Straightforward calculus reveals that

γ(ϑ) :=

∫ ∞

0

Cov(Q0, Qt)e
−ϑtdt =

∫ ∞

0

(E(Q0Qt)− µ2)e−ϑtdt

=

∫ ∞

0

∫ ∞

0

q · E(Qt | Q0 = q) · e−ϑtdP(Q0 ≤ q)dt− µ2

ϑ
;

it is assumed that the queue is in stationarity at time 0 (and hence it is in stationarity at time t as
well). By invoking (4.3) we find that the expression in the previous display equals∫ ∞

0

q

ϑ

(
−φ

′(0)

ϑ
+ q +

e−ψ(ϑ)q

ψ(ϑ)

)
dP(Q0 ≤ q)− µ2

ϑ

= −µφ
′(0)

ϑ2
+
v

ϑ
+

1

ϑψ(ϑ)
E(Q0e

−ψ(ϑ)Q0).(4.4)
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From Thm. 2 we obtain by differentiating

E(Q0e
−αQ0) = φ′(0)

(
− 1

φ(α)
+ α

φ′(α)

(φ(α))2

)
.

Inserting this relation, in addition to (3.2), into (4.4) we obtain the Laplace transform of Cov(Q0, Qt):

γ(ϑ) = −φ
′′(0)

2ϑ2
+
v

ϑ
+
φ′(0)

ϑ2

(
1

ϑψ′(ϑ)
− 1

ψ(ϑ)

)
.

This trivially also provides us with the Laplace transform of Corr(Q0, Qt), as stated in the following
theorem, which is due to [46] . When specializing to compound Poisson input, we retrieve [23, Eqn.
(6.2)].

Theorem 6. Let X ∈ S+. For ϑ ≥ 0, and v as in (3.3),

(4.5) r̂(ϑ) :=

∫ ∞

0

r(t) e−ϑtdt =
γ(ϑ)

v
=

1

ϑ
− φ′′(0)

2vϑ2
+
φ′(0)

vϑ2

[
1

ϑψ′(ϑ)
− 1

ψ(ϑ)

]
.

Remark 2. Using Thm. 2, it is readily verified that the result in Thm. 6 can be simplified to

r̂(ϑ) =
1

ϑ
− 1

v

(
φ′′(0)

2ϑ2
+
κ′(ψ(ϑ))

ϑψ(ϑ)

)
,

with κ(α), as before, denoting Ee−αQ. ♢

Example 3. Consider the situation that (Xt)t≥0 corresponds to standard Brownian motion decreased
by a linear drift (say of rate 1, so X ∈ Bm(−1, 1)). In other words: the Laplace exponent of the Lévy
process is given by φ(α) = α + 1

2α
2, and its inverse is ψ(ϑ) = −1 +

√
1 + 2ϑ. Now consider the

workload process (Qt)t≥0 and its correlation function. The above theory yields that the Laplace
transform of r(·) is given by

r̂(ϑ) =
1

ϑ
− 2

ϑ2
+

2

ϑ3

(√
1 + 2ϑ− 1

)
.

It turns out to be possible to explicitly invert r̂(·):

(4.6) r(t) = 2(1− 2t− t2)
(
1− ΦN(

√
t)
)
+ 2

√
t(1 + t)ϕN(

√
t),

with ΦN(·) (resp. ϕN(·)) the standard Normal distribution (resp. density). Eqn. (4.6) is in agreement
with the results in [1] and [73, Section 12.1]. ♢

Spectrally negative case. The analysis of the spectrally-negative case is similar; it is based on the
facts (i) that we have the double transform of Qt through Thm. 5, and (ii) that Q0 is exponentially
distributed (as we know from Thm. 3). We refer to [50].

Theorem 7. Let X ∈ S−. For q ≥ 0,

r̂(q) :=

∫ ∞

0

r(t) e−qtdt =
1

q
+
β2
0

q2
Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
.

Relying on the theory of completely monotone functions, in particular on the fact that completely
monotone functions can be regarded as Laplace transforms of nonnegative random variables, var-
ious structural properties can be proven; [24]. The following result was established for compound
Poisson input in [78], and generalized to X ∈ S+ in [46], whereas the case of X ∈ S− was dealt
with in [50].

Proposition 5. Let X ∈ S+ or X ∈ S−. Then r(·) is positive, decreasing, and convex.
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In the proof for X ∈ S+ , it plays a crucial role that −ψ(·) is the Laplace exponent of an increasing
Lévy process, as follows from Lemma 1. This essentially means that this Lévy process does not have
a Brownian component, and it entails that ψ′(·) is completely monotone. Using this property, it is
then a matter of delicate manipulation with Laplace transforms to prove that the Laplace transform
of r′′(t) (the second derivative of the correlation function) is completely monotone, and therefore
r(·) is convex. Likewise, it is concluded that r(·) is decreasing and positive. Details are found in
[46, Section 3].
The proof for X ∈ S− works quite similarly. There it is a crucial to note that Ψ(0)/Ψ(q) is com-
pletely monotone, which follows from the fact that Ee−qτ = Ψ(0)/Ψ(q). The full proof is given in
[50, Section 2].

4.4. Infimum over given time interval. In this subsection, which is based on [40], we consider the
distribution of the random variable Mt := infs∈[0,t]Qs, assuming the workload is in stationarity
at time 0. Again, we find explicit expressions for Laplace transforms for the spectrally one-sided
situation. Observe that Mt > u corresponds to Q0 + infs∈[0,t]Xs > u. Hence∫ ∞

0

e−ϑt
∫ ∞

0

e−αuP(Mt > u)dudt

=

∫ ∞

0

e−ϑt
∫ ∞

0

e−αu
∫ ∞

u

P
(

inf
s∈[0,t]

Xs > u− q

)
dP(Q0 ≤ q)dudt

=

∫ ∞

0

∫ q

0

e−αu
∫ ∞

0

e−ϑtP(τ(q − u) > t)dtdudP(Q0 ≤ q).

The inner integral is the transform of the tail probability P(τ(q−u) > t), so that integration by parts
yields

(4.7)
∫ ∞

0

∫ q

0

e−αu
1

ϑ

(
1− Ee−ϑτ(q−u)

)
dudP(Q0 ≤ q).

Now we have to distinguish between X ∈ S+ and S−. In the former case we can use Lemma 1 to
evaluate the inner integral; then we have to perform a bit of straightforward calculus, and we have
to apply Thm. 2. We obtain the following result.

Proposition 6. Let X ∈ S+. For α, ϑ ≥ 0,∫ ∞

0

e−ϑt
∫ ∞

0

e−αuP(Mt > u)dudt =
1

ϑ

(
1

α
− φ′(0)

φ(α)

)
− φ′(0)

(α− ψ(ϑ))ϑ

(
ψ(ϑ)

ϑ
− α

φ(α)

)
.

In the latter case, i.e., X ∈ S−, we recall from Thm. 3 that Q0 has an exponential distribution with
parameter β0. Interchanging the order of integration in (4.7), and applying the second factorization
identity [67], we obtain the following result.

Proposition 7. Let X ∈ S−. For β, q ≥ 0,∫ ∞

0

e−qt
∫ ∞

0

e−βuP(Mt > u)dudt =
1

β + β0

Ψ(q)

Ψ(q) + β0
.

5. WORKLOAD ASYMPTOTICS

The goal of this section is to characterize P(Q > u) for u large. We distinguish between three classes
of Lévy processes: those with a light upper tail, an intermediate upper tail, and a heavy upper tail.
It should be born in mind that P(Q > u) equals P(∃t ≥ 0 : Xt > u) = P(σ(u) < ∞), where σ(u) is
defined as the hitting time of level u, i.e., inf{t : Xt ≥ u}.
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5.1. Light-tailed regime. We define by L the class of Lévy processes such that there is an ω > 0

such that EeωX1 = 1 and EX1e
ωX1 < ∞. For ease we start by focusing on X ∈ CP(1, λ, b(·)), and

consider the more general case of X ∈ L later.
Assume X ∈ CP(1, λ, b(·)), with ρ := λEB < 1. Then ω solves λ + ω = λb(−ω). Referring to the
original probability measure by P, we introduce an alternative measure Q that is characterized as
CP(1, λ + ω, b̄(·)), where b̄(α) := b(α − ω)/b(−ω). From the definition of ω and the convexity of
EeωX1 , it can be concluded (in self-evident notation) that

(5.1) (λ+ ω)EQB = (λ+ ω)

(
−b

′(−ω)
b(−ω)

)
= −λb′(−ω) =: ρQ > 1,

so that under Q the queue is unstable. In other words: under Q we have that σ(u) < ∞ almost
surely, for any u > 0. Using this fact, in conjunction with EeωXt = 1 for all t ≥ 0, it is a standard
that

(5.2) P(Q > u) = EQe
−ωXσ(u) .

Now realize that Xσ(u) = u + Ru, where Ru is the overshoot over level u. Let Ln be the n-th ladder
height, i.e., the difference between the n-th and (n−1)-st record; these random variables are positive
and i.i.d., and, due to (5.1), nondefective. Renewal theory now yields thatRu converges to a limiting
random variable R, where

Q(R ≤ v) =
1

EQL

∫ v

0

(1−Q(L ≤ y))dy,

with L denoting a ladder height. Due to the definition of Q, we have

dQ(L ≤ y) = eωydP(L ≤ y) = eωyλP(B > y)dy;

it follows from the definition of ω that this density integrates to 1. Combining the above, we obtain
that, as u→ ∞,

P(Q > u)eωu → 1

EQL

∫ ∞

0

e−ωy(1−Q(L ≤ y))dy.

Straightforward calculus now yields the classical Cramér-Lundburg asymptotics.

Theorem 8. Let X ∈ CP(1, λ, b(·)) ∩ L . Then, as u→ ∞,

P(Q > u)eωu → 1− ρ

ρQ − 1
.

In passing, we also proved that, for all u ≥ 0, P(Q > u) ≤ e−ωu (realize that Ru ≥ 0). In [39] it
is argued that this uniform bound applies for all X ∈ L , i.e., not just for compound Poisson; the
proof relies on a change-of-measure argument.

Corollary 1. Let X ∈ L . Then P(Q > u) ≤ e−ωu.

A next step is to consider asymptotics for more general Lévy processes in L : is it for instance
possible to extend Thm. 8 to S+? To this end, realize that we have the Laplace transform of Q, viz.
αφ′(0)/φ(α). Then we would like to use this transform to obtain the tail asymptotics. One such an
approach is through application of the so-called Heaviside principle, as advocated in e.g. [3]. To
apply this, first note that ∫ ∞

0

e−αxP(Q > x)dx =
1

α
− φ′(0)

φ(α)
.
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Now observe that when X ∈ L , φ(·) has a pole in −ω, and

lim
α↓−ω

∫ ∞

0

e−αxP(Q > x)dx =
φ′(0)

−φ′(−ω)
> 0;

note that we assumed that the denominator of the last expression is finite (due to EX1e
ωX1 < ∞).

Now the Heaviside principle yields that, as u→ ∞,

P(Q > u)eωu → φ′(0)

−φ′(−ω)
;

it is readily checked that for the compound Poisson case this expression agrees with that of Thm. 8.
It is noted, however, that the Heaviside principle, although well established in the literature and
frequently used [35], lacks full mathematical rigor.
The most general result is due to Bertoin and Doney [25]: there tail asymptotics for P(Q > u) are
derived for the full class L . These are of the form Ce−ωu, where ω solves EeωX1 = 1, but with some
rather involved expression for C. A nice alternative proof of this result, relying on an embedding
approach, was given in [43].

5.2. Intermediate regime. Define

ω := sup{δ ≥ 0 : EeδX1 <∞}.

We say that X ∈ I if ω ∈ (0,∞) and EeωX1 < 1; this basically means that at δ = ω, the moment
generating function EeδX1 jumps from a value strictly smaller than 1 to ∞.
Interestingly, again the change-of-measure technique can be used to find a uniform upper bound.
Defining M(δ) := EeδX1 , we could identify with Q(ϑ) the Lévy process that obeys

EQ(ϑ)e
δX1 =

M(δ + ϑ)

M(ϑ)
.

As before, we obtain the inequality, for all ϑ < ω,

P(Q > u) = EQ(u)

(
e−ϑXσ(u) · (M(ϑ))σ(u)

)
≤ e−ϑu.

We obtain the following bound.

Corollary 2. Let X ∈ I . Then P(Q > u) ≤ e−ωu.

The following exact asymptotics were derived in [43]; see also [65]. Interestingly, they show that
for X ∈ I the tail distribution of Q is asymptotically proportional to that of X1.

Proposition 8. Let X ∈ I . Then, as u→ ∞,

P(Q > u)

P(X1 > u)
→ EeωQ

M(ω) logM(ω)
.

5.3. Heavy-tailed regime. In this section we consider Lévy processes for which EeδX1 = ∞ for all
δ > 0. An important subclass of these are the regularly varying Lévy processes R. Considering the
class of compound Poisson inputs, regular variation refers to the tail of the distribution of the jobs:
it is assumed that for an index α and all y > 0, as x→ ∞,

P(B > yx)

P(B > x)
→ yα.

We here sketch how one can find the tail asymptotics P(Q > u) for u large, following a recipe
proposed in [99, pp. 36-39]. This recipe is based on the insight that in these heavy-tailed scenarios a
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large workload is (with overwhelming probability) due to a single big job. The approach therefore
consists of a lower bound, in which the probability of this most likely scenario is evaluated, and an
upper bound in which it is shown that the contributions of other scenarios (e.g. no big job, multiple
big jobs) can be neglected. We here demonstrate how the lower bound is derived.
We consider CP(r, λ, b(·)), and we denote, as earlier, ϱ := λEB. First it is noted that due the the law
of large numbers, we can find (for any δ, ε > 0) a tδ,ε such that for all t ≥ tδ,ε,

P(Xt > (ϱ− ε)t) > 1− δ.

It is noted that a sufficient condition for Q0 exceeding u is that a job of size at least u+ (r− ϱ)t+ εt

arrived at time −t, and that between −t and 0 at least (ϱ− ε)t arrived; notice that the former event
is rare, as opposed to the latter. We obtain

P(Q > u) ≥
∫ ∞

tδ,ε

λP(B > u+ (r − ϱ)t+ εt)P(−X−t > (ϱ− ε)t)dt

≥ (1− δ)

∫ ∞

tδ,ε

λP(B > u+ (1− ϱ)t+ εt)dt

= (1− δ)
ϱ

r − ϱ+ ε
P(Bres > u+ tδ,ε) ∼

(1− δ)ϱ

r − ϱ+ ε
P(Bres > u),

where the last step is due to the definition of regular variation. Now let δ, ε ↓ 0. After having
established the corresponding upper bound, the following theorem is obtained.

Theorem 9. Let X ∈ CP(r, λ, b(·)) ∩ R. Then, as u→ ∞,

P(Q > u) ∼ ϱ

r − ϱ
P(Bres > u).

There is an alternative approach though, that is helpful if the Laplace transform is available: Taube-
rian inversion. To this end, we first define the following notion.

Defintion 1. We say that f(x) ∈ Rδ(n, η), with δ ∈ (n, n+ 1), for x ↓ 0, if

f(x) =

n∑
i=0

f (i)(0)

i!
xi + ηxδL(1/x), x ↓ 0,

for a slowly varying function L(·), i.e., L(x)/L(tx) → 1 for x→ ∞, for any t.

Suppose now that φ(α) ∈ Rν(n, η), it is readily checked that

Ee−αQ =
αφ′(0)

φ(α)
∈ Rν−1

(
n− 1,

η

φ′(0)

)
.

The Tauberian theorem in Bingham, Goldie, and Teugels [28, Thm. 8.1.6] now yields the following
result; see also [27].

Theorem 10. Let X ∈ S+ ∩ R, with φ(α) ∈ Rν(n, η). Then, as u→ ∞,

P(Q > u) ∼ (−1)n

Γ(2− ν)
·
(

η

φ′(0)

)
u1−νL(u).

Example 4. ConsiderX ∈ CP(1, λ, b(·)). Suppose P(B > x) ∼ x−δL(x). From φ(α) = α+λb(α)−λ, it
follows that φ(α) ∈ Rδ(n, λΓ(1− δ)(−1)n) by applying ‘Tauber’. Then the above theorem confirms
the result of Thm. 9. ♢
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Now define the class of heavy-tailed (or: subexponential) Lévy processes, as follows. To this end,
we first introduce the notion of subexponential distribution functions, following the terminology
of [43]. With D(·) being a distribution function on [0,∞) and D⋆2 the convolution of D with itself,
we say that D is subexponential if 1−D⋆2(x) ∼ 2(1−D(x)) as x → ∞. For a measure µ(·) we say
that it is subexponential if (i) µ([1,∞)) <∞, and (ii) µ([1, ·])/µ([1,∞)) is subexponential. Then, for
the spectral measure Π(·) of (Xt)t, define

ΠI((x,∞)) :=

∫ ∞

x

Π((y,∞))dy.

We say that X ∈ H if ΠI(·) is a subexponential. The following result is found in [9]; a version with
also local asymptotics was first presented in [43].

Theorem 11. Let X ∈ H . Then, as u→ ∞,

P(Q > u) ∼ 1

−EX1

∫ ∞

u

P(X1 > x)dx.

The class of α-stable Lévy motions belongs to H . The following result [82] is an immediate conse-
quence of Thm. 11, Prop. 1 and Karamata’s theorem [28, Section 1.6]; recall that m < 0.

Proposition 9. Let X ∈ S(α, β,m), with α ∈ (1, 2) and β ∈ (−1, 1]. Then, as u→ ∞,

P(Q > u) ∼ 1

(−m)

∫ ∞

u

x−αCα,1

(
1 + β

2

)
dx ∼ 1

(−m)

1

α− 1
u−α+1Cα,1

(
1 + β

2

)
.

It is noted that there is a seeming incompatibility between the above symptotics and the corre-
sponding result in [82] (which is Prop. 3.7 in [48]), but it is a matter of (straightforward but tedious)
calculus to verify that both expressions match.
In [48] also the case is considered of Lévy input that is an aggregate of α-stable Lévy motion and
compound Poisson with regularly varying jobs; it then turns out that the heaviest tail essentially
dominates the asymptotics.

6. TRANSIENT ASYMPTOTICS, RARE-EVENT SIMULATION

In this section we first discuss the asymptotics of the transient metrics defined earlier, viz. the tail
distribution of the busy period P(τ > t), and the workload correlation function r(t). Then we
study, for various shapes of the function T (u), probabilities of the type P(Q0 > pu,QT (u) > qu), for
p, q > 0. We finally consider the option of estimating small probabilities (and small correlations)
through sophisticated simulation techniques.

6.1. Asymptotics of transient metrics. Let us first consider the light-tailed case. For X ∈ L we
have that Ee−sX1 = 1 has a negative root, say ω < 0, which implies that Ee−sX1 has a minimizer
somewhere between ω and 0. Relying on Heaviside heuristics, we now study the tail of P(τ > t)

and r(t). We show the computations for P(τ > t); those for r(t) work similarly, and can be found in
[46, 50].
We again start by considering the spectrally-positive case. As before, we assume that the equation
φ(α) = 0 has a negative root. Observe that then Prop. 2 holds for any positive ϑ, but we can
consider the analytic continuation up to the branching point ϑ⋆ < 0 of ψ(·); let in the sequel ζ < 0

denote the minimizer of φ(·), so that φ(ζ) = ϑ⋆ < 0 (where it is noticed that vφ := φ′′(ζ) > 0). Then
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the idea is to write, for ϑ ↓ ϑ⋆, that ψ(ϑ) − ζ ∼
√

2/vφ ·
√
ϑ− ϑ⋆. Hence, around ϑ⋆, we have that,

for some (irrelevant) constant κ,∫ ∞

0

e−ϑtP(τ > t)dt =
1

ϑ
− φ′(0)

ψ(ϑ)

ϑ2
∼ κ+Aφ

√
ϑ− ϑ⋆; Aφ := −φ

′(0)

(ϑ⋆)2

√
2

vφ
< 0,

and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period by

(6.1) P(τ > t) ∼ Aφ

Γ(− 1
2 )

· e
ϑ⋆t

t
√
t
.

We now turn to the spectrally-negative case. Prop. 4 holds for any positive q, but we can consider
the analytic continuation up to the branching point q⋆ < 0 of Ψ(·). Let ζ > 0 denote the minimizer
of Φ(·), so that Φ(ζ) = q⋆ < 0. Similarly to the spectrally-negative case, we obtain, with vΦ :=

Φ′′(ζ) > 0 and κ being some (irrelevant) number,∫ ∞

0

e−qtP(τ > t)dt =
1

q

(
1− Ψ(0)

Ψ(q)

)
∼ κ+AΦ

√
q − q⋆; AΦ :=

Ψ(0)

q⋆ζ2

√
2

vφ
< 0,

and hence ‘Heaviside’ estimates the tail of the busy-period distribution by

(6.2) P(τ > t) ∼ AΦ

Γ(−1
2 )

· e
q⋆t

t
√
t
.

For related results on the light-tailed case, we refer to e.g. [35, 79]. For the heavy-tailed case with
compound Poisson input, we refer for results on the busy period to e.g. [14, 41], and for results on
the correlation function to [46, Section 5].

6.2. Asymptotics of joint transient distribution. In [39] the focus is on probabilities of the type
P(Q0 > pu,QT (u) > qu), for p, q > 0. We summarize the main findings.
First conditions are identified under which the probability of interest is essentially dominated by
the ‘most demanding event’, in the sense that it is asymptotically equivalent to P(Q > max{p, q}u)
for u large, whereQ denotes the steady-state workload. These conditions turn out to reduce to T (u)
being sublinear (i.e., T (u)/u→ 0 as u→ ∞).
Then a second condition is derived under which the probability of interest ‘decouples’, in that it
is asymptotically equivalent to P(Q > pu)P(Q > qu) for u large (meaning that their ratio tends to
1). Here a crucial role is played by QD, for D > EX1, which is distributed as supt≥0Xt −Dt; as a
result QD resembles the original queue Q, but the drain rate is adapted by D, due to (2.2). Then the
decoupling condition is that for all η > 0, D > EX1,

lim
u→∞

P(QD > ηT (u))

P(Q > pu)P(Q > qu)
= 0.

For various types of input considered in the literature this ‘decoupling condition’ reduces to requir-
ing that T (u) is superlinear (i.e., T (u)/u → ∞ as u → ∞). This is for instance the case if the tails
of Q and QD decay exponentially, as is verified easily. The decoupling condition does not hold,
however, for X ∈ R. It is seen that, due to the fact that the tails of Q and QD decay in a regularly
varying fashion, the ‘decoupling condition’ reduces to T (u)/u2 → ∞. The rationale behind the fact
that we only have decoupling for T (u) increasing superquadratically, is that for T (u) increasing
subquadratically with overwhelming probability it suffices to have a single big jump to cause over-
flow over pu at time 0, and over qu at time T (u); ‘decoupling’, on the contrary, would correspond
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to two big jumps. These findings imply that for X ∈ R there is a third regime, viz. T (u) increasing
superlinearly but subquadratically; [39] also identifies the asymptotics for this case.
In [39] special attention is paid to the case T (u) = Ru for some R > 0; for X ∈ L intuitively
appealing asymptotics are derived, intensively relying on sample-path large deviations results [4].
The regimes obtained can be interpreted in terms of most likely paths to overflow. If R is small
(that is, fulfilling an explicit criterion in terms of p, q, and the characteristics of the Lévy process
(Xt)t), then one has asymptotics of the type P(Q > max{p, q}u). If this condition does not apply,
two cases are possible: for large R the most likely scenario is that the buffer drains, remains empty
for a while, and starts building up relatively short before R (in this case the asymptotics look like
P(Q > pu)P(Q > qu)), whereas for moderate R the buffer remains (most likely) nonempty between
0 and R. We thus obtain that there are (uniquely characterized) R̄ and Ř such that for all R smaller
than R̄, with ω solving EeωX1 = 1, as u→ ∞,

log (P(Q0 > pu,QRu > qu))u−1 →−max{p, q}ω,

for R between R̄ and Ř,

log (P(Q0 > pu,QRu > qu))u−1 →− pω −R · sup
δ

(
δ

(
q − p

R

)
− logEeδX1

)
,

and for R larger than Ř,

log (P(Q0 > pu,QRu > qu))u−1 →− (p+ q)ω.

6.3. Rare-event simulation, importance sampling. This subsection focuses on efficient computa-
tion of small tail probabilities using simulation techniques (based on importance sampling). Special
attention is paid to estimating the workload correlation function r(t) for t large.

Estimation of workload asymptotics. Let us consider X ∈ L . Then ideas that date back to [92] can be
applied to estimate P(Q > u) efficiently. It is well-known, see e.g. [73, Section 8.2], that the number
of simulation runs needed to obtain an estimate with a given predefined precision (expressed in
terms of the ratio of the width of the confidence interval and the estimate), is inversely proportional
to the probability to be estimated. In the situation at hand this means that this number grows
roughly exponentially in u, and as a result simulation experiments may take prohibitively long.
Our objective now is to speed up the simulation.
Let, as before, ω solves EeωX1 = 1. The idea is now to not perform the simulation under the original
measure P, corresponding to the characteristic triplet (d, σ2,Π), but under an alternative measure
Q under which the event of interest occurs more frequently. After weighing the simulation out-
put with an appropriate likelihood ratio, unbiasedness is recovered. This procedure is commonly
referred [13, pp. 127-128] to as importance sampling.
This Q is an exponentially twisted version of P, that is, Q is such that, in self-evident notation,

EQe
δX1 = Ee(δ+ω)X1 .

It is now elementary to check that Q also corresponds to a Lévy process, with triplet(
d+ σ2ω +

∫ 1

−1

x(eωx − 1)Π(dx), σ2, eωxΠ(dx)

)
.

Observe the methodological similarity with the derivation of the Cramér-Lundberg asymptotics in
Section 5.1.
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Recall that the convexity of EeδX1 implies that EQX1 = EX1e
ωX1 > 0, so that the random variable

σ(u) := inf{t : Xt ≥ u} becomes nondefective under Q. It thus follows that

P(Q > u) = EQe
−ωXσ(u) .

In other words: we should simulate under Q until σ(u), record the value xi of e−ωXσ(u) in each run
i, perform N runs, and estimate P(Q > u) by N−1

∑N
i=1 xi. It is easy to check that this estimator

is unbiased. In addition, due to the fact that each observation of e−ωXσ(u) is bounded by e−ωu, the
estimator has excellent variance properties (in particular it has bounded relative error, see [13, p.
159]). Clearly, a prerequisite to apply this method is that one should be able to sample trajectories
of Lévy processes; the state-of-the-art on this issue is presented in [13, Ch. XII].
For the case of heavy tails, we refer to [12, 16] and [13, Section VI.3]. Importantly, the above ideas
for X ∈ L do not carry over to the heavy-tailed case, basically because (most likely) not several
‘somewhat unlikely’ events cause overflow, but rather a single big jump.

Estimation of busy-period asymptotics. We now aim at efficiently estimating P(τ > t) for X ∈ L . In
this case [50] proposed the following alternative measure; for ease we concentrate on X ∈ S+, but
X ∈ S− can be dealt with similarly.

• Let, in the interval (0, t], the Lévy process be twisted with −ζ = −ψ(ϑ⋆) > 0, as described
above; ϑ⋆ is as defined before.

• We in addition twist the workload at time 0, Q0; we do so by a factor κ ≥ 0, for which
we identify a suitable value later on. This effectively means that we sample Q0 from a
distribution with Laplace transform Ee−(α−κ)Q0/EeκQ0 .

We denote from now on by Qκ this new measure, consisting of twisting Q0 (with κ) as well as a
twisting (Xs)s∈(0,t] (with ζ).
In each run we simulate the process under Qκ till time t, so that we can check whether τ > t or
not. In this way, we perform n independent runs. Then the estimator, based on these n runs, reads
n−1

∑n
i=1 Li1{τi > t}, where Li is the likelihood ratio of run i. Let us write down this likelihood

ratio more explicitly. First there is the contribution due to the twisted queue at time 0; using Thm. 2
we obtain

L1 := e−κQ0 · EeκQ0 = e−κQ0 · −κφ
′(0)

φ(−κ)
.

Then there is the contribution due to the twisted Lévy process between 0 and t:

L2 := eψ(ϑ
⋆)Xt · Ee−ψ(ϑ

⋆)Xt = eψ(ϑ
⋆)Xt · eϑ

⋆t.

The ‘total likelihood ratio’ is thusL := L1×L2. It is standard that the resulting estimator is unbiased
as EQκ L1{τ > t} equals the probability of our interest.
As VarQκ L1{τ > t} ≥ 0, we see that EQκL

21{τ > t} ≥ (EQκL1{τ > t})2. In this sense, we could
call our change of measure logarithmically efficient if

lim
t→∞

1

t
logEQκL

21{τ > t} ≤ lim
t→∞

1

t
log(EQκL1{τ > t})2 = 2ϑ⋆.

Logarithmic efficiency essentially means that the number of replications needed to obtain an es-
timate with a certain fixed precision grows subexponentially in the ‘rarity parameter’ t, cf. [13,
Ch. VI]. In [50] it is argued that κ = 0 does not necessarily lead to logarithmic efficiency, whereas
choosing κ = −ζ is, in a certain sense, optimal.
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Estimation of workload correlation function. We now consider the problem of estimating r(t); following
[50] we again restrict ourselves to X ∈ L ∩ S+ (were it is noted that the corresponding spectrally-
negative case works similarly). Note that it suffices to estimate c(t) := Cov(Q0, Qt), as v = VarQ is
known. The naı̈ve estimator of c(t) is, in self-evident notation, and recalling that EQ is known,

c(NS)
n (t) :=

1

n

n∑
i=1

Q
(i)
0 Q

(i)
t − (EQ)2,

based on n independent runs. The variance of this estimator reads (n−1) · Var(Q0Qt). Now note
that, as t→ ∞,

Var(Q0Qt) = E(Q2
0Q

2
t )− (EQ0Qt)

2 → (EQ2)2 − (EQ)4,

which is positive due to the fact that EQ2 > (EQ)2. Suppose our goal is to simulate until our
estimate has a certain given relative precision ε (defined as the ratio between the width of the
confidence interval and the estimate) and confidence α. The number of runs needed, say n(NS)(t),
is roughly equal to the smallest n satisfying

2δα

√
Varc(NS)

n (t)

c(t)
< ε,

for an appropriately chosen percentile of the standard Normal distribution δα. Now recall that in
the situation at hand c(t) decays roughly exponentially. We therefore obtain the following remark-
able result for the naı̈ve estimator: it says that the number of runs required blows up exponentially,
but it is quadratically inversely proportional to c(t), rather than just inversely proportional. This
result underscores that efficient (simulation-based) computation of the workload correlation c(t)

poses fundamentally new questions (compared to the estimation of rare event probabilities), de-
spite the fact that its decay resembles that of the busy-period asymptotics p(t).
To overcome this problem, we now consider a coupling-based algorithm, that reduces the number
of runs needed from quadratically inversely proportional to c(t), to just inversely proportional. We
write

c(t) = E(Q0 · (Qt −Q⋆t )),

where both Q and Q⋆ are stationary versions of the workload, and Q⋆t is independent of Q0. We
construct such a coupling as follows: generate Q0 and Q⋆0 independently, sampled from the sta-
tionary distribution of the workload. Now use exactly the same incoming Lévy process Xt over
(0, t] to drive both (Qs)s∈(0,t] and (Q⋆s)s∈(0,t] from their two independently generated initial condi-
tions. This makes Qt and Q0 correlated but Q⋆t and Q0 independent. The new estimator becomes,
in self-evident notation,

c(CS)
n (t) :=

1

n

n∑
i=1

Q
(i)
0

(
Q

(i)
t −Q

⋆ (i)
t

)
,

based on n independent runs. The key observation is that Q(i)
t = Q

⋆ (i)
t if in both systems the busy

period (that started at time 0) has ended. Mainly due to this property, it is proven in [50] that the
number of runs needed is roughly inversely proportional to c(t). If this algorithm is augmented
with importance sampling (very similarly to the way this was done in the algorithm to estimate
p(t) efficiently), one even obtains a logarithmically efficient algorithm [50, Section 4.3].
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7. VARIANTS OF THE STANDARD QUEUE

So far we consider the standard infinite-buffer queue with Lévy input. This section describes a
number of variants of this standard model.

7.1. Finite-buffer queues. We now consider a Lévy-driven queue in which the workload cannot
exceed level K > 0; again we call the corresponding process (Qt)t. A corresponding Skorokhod
problem can be formulated, in which Qt is expressed in terms of the local time at 0 (as before),
but now also the local time at K plays a role. Assuming for ease that Q0 = 0, we have that Qt =
Xt + Lt − L̄t, with Lt (L̄t) the local time at 0 (at K, respectively); popularly speaking, Lt only
increases when Qt = 0, whereas L̄t only increases when Qt = K. In [5, 66] it is shown that Qt can
be explicitly solved; [66] found

Qt = Xt − sup
s∈[0,t]

(
max

{
min

{
Xs −K, inf

u∈[0,t]
Xu

}
, inf
u∈[s,t]

Xu

})
,

whereas the alternative solution in [5] is slightly simpler, and reads

Qt = sup
s∈[0,t]

max

{
Xt −Xs, inf

u∈[s,t]
(K +Xt −Xu)

}
.

It was proven for the infinite-buffer model that E(Qt |Q0 = 0) is increasing and concave in t [59, 61],
but, interestingly, this conclusion remains valid also in the finite-buffer case [5].
The first part of the following result [71, 91] characterizes the steady-state workload Q in terms of a
first-passage time; note that it is not needed now to require EX1 < 0. The second part, that can be
found in e.g. [26, Thm. 8, p. 194], assumes spectrally-negative input, but realize that the spectrally-
positive case can be dealt with analogously. Recall the (implicit) definition of the scale function
W (0)(·) from Eqn. (4.1); write πK(u) := P(Q < u).

Proposition 10. (i) For u ∈ [0,K],

1− πK(u) = P(Xτ [u−K,u) ≤ u),

where τ [u, v) := inf{t ≥ 0 : Xt ̸∈ [u, v)}, for u ≤ 0 ≤ v.

(ii) Let X ∈ S−. Then, for u ∈ [0,K],

1− πK(u) =
W (0)(K − x)

W (0)(K)
.

As we know the transform of W (0)(·), this result characterizes P(Q ≥ u). For the case of Brownian
input, it turns out that Q has a truncated exponential distribution, as is easily checked. In [45] scale
functions are used to determine the busy-period distribution in a finite-buffer M/G/1 queue.
In models with a finite buffer , there is the notion of a loss rate ℓK , which we define by, in self-evident
notation,

ℓK := EπK
L̄1.

In [17] the following result was proven for general finite-buffer Lévy-driven queues.

Proposition 11. If
∫∞
1
yΠ(dy) = ∞, then ℓK = ∞, and otherwise

ℓK =
EX1

K

∫ K

0

xπk(dx) +
σ2

2K
+

1

2K

∫ K

0

∫ ∞

−∞
k(x, y)Π(dy)πK(dx),
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where k(x, y) := −(x2 + 2xy) for y ≤ −x, k(x, y) := y2 for −x < y < K − x, and k(x, y) :=

2y(K − x)− (K − x)2 for y ≥ K − x.

For X ∈ L , [17] also studies the asymptotics of ℓK for K large. These are of the form Ce−ωK , for
some rather complicated C, and ω solving EeωX1 = 1.

7.2. Models with feedback. In the queues we studied so far, the input stream was not affected
by the current level of the workload. In this section we do allow such dependencies. We start by
considering a queue whose input is CP(r(x), λ(x), b(·)) when the current workload level is x ≥ 0;
note that the distribution of the jobs B does not depend on x. Mimicking the procedure outlined in
Section 3.1, a rate conservation argument shows that the density fQ(·) of the stationary workload
obeys [20]

r(x)fQ(x) =

∫
(0,x)

λ(x)fQ(y)P(B > x− y)dy + λ(0)p0P(B > x),

with p0 := P(Q = 0). In the special case that the jobs have an exponential distribution with mean
1/µ, we obtain after multiplication with eµx the differential equation g′(x) = g(x)λ(x)/r(x), with
g(x) := eµxr(x)fQ(x). For the case p0 > 0 we obtain by an elementary separation of variables
argument that

fQ(x) =
λ(0)p0
r(x)

exp

(∫ x

0

(
λ(y)

r(y)
− µ

)
dy

)
,

under appropriate integrability conditions; the case p0 = 0 should be dealt with separately. Further
details can be found in [20].
In [22] the focus is on a queue fed by a spectrally-positive Lévy process, where feedback information
about the workload level may lead to adaptation of the Lévy exponent. Among other models, the
paper addresses the class of models in which the workload can only be observed at Poisson instants;
at these Poisson instants, the Lévy exponent may be adapted based on the amount of work present
at that time. In [21] a somewhat related model is studied: the focus is on a Lévy-driven queue,
where the Lévy exponent of the input process alternates between two different forms (depending
on the evolution of the workload process in the past). A classical related paper is [32].

7.3. Vacation and polling models. In [30] the following Lévy-driven queue with server vacations
is studied; it can be regarded as stochastic storage process alternatingly experiencing active and
passive (vacation) periods.
During active periods, work is generated according to a Lévy process XD(·) ∈ S+ with negative
drift, until the workload reaches zero (i.e., the storage reservoir is empty). From then on, the storage
level behaves according to a second Lévy process XU(·), which is assumed to be non-decreasing.
As during this period work accumulates in the queue, it may be interpreted as a vacation; it lasts
aI+ bV , where I is a function of the length of the preceding active period, and V is an independent
vacation time, and a and b are given nonnegative scalars. The case in which the workload is still
zero after aI + bV , has to be treated separately: then the vacation period is extended until work is
generated by XU(·). Subsequently a new active period starts; etc.
Consider the sequence of epochs right before an active period starts. The transform of the stor-
age level at such an embedded epoch can be expressed in terms of the transform at the previous
embedded epoch. As these transforms should be identical in equilibrium, we can thus obtain the
transform of the stationary storage level at those embedded epochs [30, Section 3]. Relying on the
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Kella-Whitt martingale, they can be translated into the transform of the workload at an arbitrary
epoch; see [30, Section 4]. Interestingly, these vacation models can be related to so-called polling
models, in which a single server visits multiple queues according to some predefined discipline.

The topic of Lévy-driven polling systems is explored in full detail in [29]. There the focus is on an
N -queue polling model with switchover times. Each of the queues is fed by a nondecreasing Lévy
process, which can be different during each of the consecutive periods within the server’s cycle.
The N -dimensional Lévy processes obtained in this fashion are described by their (joint) Laplace
exponent, thus allowing for non-independent input streams. Again as a first step the steady-state
distribution of the workload is determined at embedded epochs (which are now polling and switch-
ing instants); importantly the joint transform of all N workloads is found. As before, application
of the Kella-Whitt martingale yields the steady-state distribution at an arbitrary epoch. The anal-
ysis heavily relies on the link between our polling system and so-called multitype Jiřina processes
(continuous-state discrete-time branching processes). The results are so general that they cover the
most important polling disciplines, like exhaustive and gated.

7.4. Models with Markov-additive input. Markov-additive processes (MAP s) date back to [33,
77], and can be seen as the Markov-modulated version of Lévy processes; we here concentrate on
MAP s in continuous time. We now give the definition of a MAP; for ease we restrict ourselves
to the spectrally positive case (which we call S MAP

+ ), but more general cases can be introduced
analogously.
A MAP is a bivariate Markovian process (Xt, Jt) that is defined as follows. Let (Jt)t be an irreducible
continuous-time Markov chain with finite state space E = {1, . . . , N}, transition rate matrix Q =

(qij) and a (unique) stationary distribution π. For each state i that Jt can attain, let (X(i)
t )t be a Lévy

process with Laplace exponent φi(α) = logE exp(−αX(i)
1 ). Letting Tn and Tn+1 be two successive

transition epochs of Jt, and given that Jt jumps from state i to state j at t = Tn, we define the
additive process Xt in the time interval [Tn, Tn+1) through

Xt = XTn− + Unij + [X
(j)
t −X

(j)
Tn

],

where the (Unij)n constitute a sequence of independent and identically distributed random variables
with Laplace transform

bij(α) = Ee−αU
1
ij ,

where U1
ii ≡ 0, describing the jumps at transition epochs. To make the MAP spectrally positive, it is

required that U1
ij ≥ 0 (for all i, j ∈ {1, . . . , N}) and that X(i)

t is allowed to have only positive jumps
(for all i ∈ {1, . . . , N}).
Observe that the modulating Markov chain does not jump in [t, t+h) with probability 1+qjjh+o(h),
given Jt = j (recall that qjj < 0), and jumps to k with probability qjkh+ o(h). We therefore obtain,
in self evident notation, with

Ξij(α, t) := Ei(e−αXt , Jt = j),
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the following equation:

Ξij(α, t+ h) = (1 + qjjh)Ξij(α, t)Ee−αX
(j)
h +

∑
k ̸=j

qkjh · Ξik(α, t)bkj(α) + o(h)

= (1 + φi(α))Ξij(α, t) + h

N∑
k=1

Ξik(α, t)qkjbkj(α) + o(h).

Subtracting Ξij(α, t) from both sides and dividing by h, we obtain a system of linear differential
equations. Its solution is given in the following proposition, which shows some sort of infinite-
divisibility, but now at the matrix level. In this sense, the MAP can be regarded as a genuine matrix-
counterpart of the Lévy process.

Proposition 12. The matrix (Ξij(α, t))ij equals eM(α)t, where Mij(α) := 1{i=j}φi(α) + qijbij(α).

Just as in the Lévy case, we can now construct MAP-driven queues, which are stable under the
assumption that

EX1 =
N∑
i=1

πiEX(i)
1 +

∑
i ̸=j

πiqijEUij < 0.

Having defined these, all issues we have addressed so far for the Lévy-driven queue (stationary
distribution, transience, busy periods, tail probabilities, etc.) can be studied for the MAP-driven
queue as well. We will not give an exhaustive overview of all results in this area here, as a vast
body of literature is devoted to this topic; we rather restrict ourselves to a relatively short account
of the main findings on the stationary distribution.
In [15] martingale methods are developed such to analyze, for X ∈ S MAP

+ , the joint distribution
of the steady-state workload Q and the steady-state of the Markov chain J . Under the stability
condition identified above,

E(e−αQ, J = j) =
(
αℓ(M(α))−1

)
j
,

where ℓ is a row vector. It is interesting to compare the structure of this result with Thm. 2: observe
that it is essentially its MAP-counterpart. The authors of [15] do not succeed in uniquely charac-
terizing the vector ℓ; it can be seen that

∑
i ℓi = EX1 though. We also refer to [53] for related

results.
In [36] a method is developed to determine ℓ. In this approach, an important role is played by the
first passage time process τ(x) := inf{t ≥ 0 : X(t) = −x}. It is readily seen that Jτ(x) is a time-
homogeneous Markov process (as a function of x), say with generator Λ. The main finding of [54]
is a way to identify this matrix, relying on the theory of Jordan chains. Then ℓ can be expressed
in terms of the invariant that is associated with Λ; in the proof of the key result a lemma on the
number of zeros of the determinant of M(α) plays a crucial role [54]. A different approach is
described in [44].
The case of X ∈ S MAP

− is also dealt with in [44, 54]. Then Q has a phase-type distribution, whose
parameters again follow directly with the techniques developed in [54]; this can be viewed as the
MAP-counterpart of the exponential distribution identified in Thm. 3. In that paper, also the case
of doubly-reflected (i.e., finite buffer capacity) Markov modulated Brownian motion is dealt with.
Other important papers are e.g. [31, 87, 68], and various parts of [83].
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8. LÉVY-DRIVEN TANDEM QUEUES

In this section we analyze a system consisting of two concatenated Lévy-driven queues, a so-called
Lévy-driven tandem queue. This model, being a natural extension of the one-node queuing system,
can be regarded as a building-block for more complex network architectures, that will be concen-
trated on in Section 9.
We begin by giving an informal description of the tandem queue. Consider two single-node Lévy-
driven queues. The output of the first (upstream) queue is fed into the second (downstream) queue.
Let r1 be the (positive, constant) service rate at the upstream node, and r2 at the downstream
node. In order to avoid the downstream node becoming degenerate, it is assumed throughout that
r2 < r1. Suppose that a Lévy process Jt feeds into the first queue, with EJ1 < r2 to ensure stability.
We assume that no additional work enters the second queue.
Notice, however, that the notion of ‘output’ is not always well defined: in a queue with compound
Poisson input there is a logical concept of output, but in the Brownian case we lack this. This
problem can be circumvented as follows. Let Q(1), Q(2) be the stationary workload at first and
second node respectively, and let Q denote the total stationary workload present in stations 1 and
2 together. The stationary workload of the upstream queue can be defined in the usual way: with
X

(1)
t := Jt − r1t, we have due to (2.2) that Q(1) is distributed as supt≥0X

(1)
t . In addition, the

total queue behaves as a single queue fed by Jt, but emptied at rate r2 [18, 47, 88]. Then we can
reconstruct Q(2) as the difference between the total workload, and the workload in the upstream
queue, to obtain the distributional equality

(Q(1), Q(2))
d
=

(
sup
t≥0

X
(1)
t , sup

t≥0
X

(2)
t − sup

t≥0
X

(1)
t

)
.

To make the notation more compact, in the sequel we let, for S ⊂ R,

X̄
(i)
S := sup

t∈S
X

(i)
t , X̄(i) = X̄

(i)
[0,∞).

8.1. A representation of the downstream workload distribution. In this section we focus on dis-
tributional properties of the downstream queue. Based on the above, we have that

(8.1) P(Q(2) > u) = P
(
X̄

(2)
[0,∞) − X̄

(1)
[0,∞) > u

)
.

We note that despite this explicit formula, its direct applicability is limited, since (X
(1)
t )t≥0 and

(X
(2)
t )t≥0 are highly dependant (e.g., note that X(1)

t − X
(2)
t = (r2 − r1)t). However, under the

assumption that J is Lévy , a considerably more tractable representation can be deduced. This is
done as follows.
In the first place, it can be shown that we can ‘shrink’ the sets over which both suprema in (8.1)
are taken, so that we obtain two adjacent intervals, as follows. For given u > 0, we define tu :=

u/(r1 − r2), the minimal time needed for the second queue to exceed level u, starting empty. Then
a sample-path argument, which intensively uses the fact that r1 > r2, leads to [38]

P(Q(2) > u) = P
(
X̄

(2)
[tu,∞) − X̄

(1)
[0,tu]

> u
)
.

Using that X(1)
tu −X

(2)
tu = u, we have

X̄
(2)
[tu,∞) − X̄

(1)
[0,tu]

=
(
X̄

(2)
[tu,∞) −X

(2)
tu

)
−
(
X̄

(1)
[0,tu]

−X
(1)
tu

)
+ u.
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In view of the stationarity and independence of the increments, this leads to the following repre-
sentation [38].

Theorem 12. For each u > 0, and (X̌
(1)
t )t≥0, (X̌

(2)
t )t≥0 independent copies of (X(1)

t )t≥0, (X
(2)
t )t≥0 re-

spectively,

P(Q(2) > u) = P

(
sup

t∈[0,∞)

X̌
(2)
t > sup

t∈[0,tu]

−X̌(1)
t

)
.

8.2. Steady-state workload of the downstream queue. Direct application of Thm. 12 to the class of
spectrally one-sided input processes yields the Laplace transform Ee−βQ(2)

. In the case of J ∈ S+,
we also obtain a representation in the spirit of (3.1).

Spectrally positive case. Indeed, assume that J1 ∈ S+. Let φi(α) = logEe−αX
(i)
1 and ψi(·) the corre-

sponding inverse. Also τ (1)(x) := inf{t ≥ 0 : X
(1)
t ≤ −x}. Then, for each x ≥ 0, using the notation

of Thm. 12,

P

(
sup

t∈[0,tu]

−X(1)
t < x

)
= P

(
τ (1)(x) > tu

)
and Ee−ϑτ (1)(x) = e−xψ

−1
1 (ϑ), see Lemma 1. Obviously, supt∈[0,∞)X

(2)
t

d
= Q, as we saw above.

Application of the above to Thm. 12, after a few elementary steps, leads to∫ ∞

0

e−αuP(Q(2) > u)du =

∫ ∞

0

e−αu
∫ ∞

0

P
(
τ (1)(x) > tu

)
dP(Q ≤ x)du

= (r1 − r2)

∫ ∞

0

∫ ∞

0

e−α(r1−r2)vP
(
τ (1)(x) > v

)
dvdP(Q ≤ x)

=
1

α

(
1−

∫ ∞

0

∫ ∞

0

e−α(r1−r2)vdP
(
τ (1)(x) ≤ v

)
dP(Q ≤ x)

)
=

1

α

(
1− Ee−ψ1(α(r1−r2))Q

)
.

As a consequence we obtain

(8.2) Ee−αQ
(2)

= Ee−ψ1(α(r1−r2))Q,

which, combined with Thm. 2, gives the following result.

Theorem 13. Let J ∈ S+. For α ≥ 0,

Ee−αQ
(2)

=
−EX(2)

1

r1 − r2

ψ1(α(r1 − r2))

α− ψ1(α(r1 − r2))
.

Now define τ̄ (1)(x) := (r1 − r2)τ
(1)(x). It follows from Lemma 1 that the process (τ̄ (1)(x))x≥0 is an

increasing Lévy process with Ee−ϑτ̄(1)(x) = e−xξ(ϑ), where ξ(ϑ) := ψ1((r1 − r2)ϑ). Thm. 13 can be
written in the form [38]

Ee−αQ
(2)

= (1− ϱ)
∞∑
i=1

ϱi−1 (ℓH(α))
i
,

where H(·) is a distribution function such that H(x) = 0 for x < 0 and ℓH(α) :=
∫∞
0
e−αvdH(v) =

ξ(α)/(ϱα), with

ϱ := lim
α↓0

ξ(α)

α
=

r1 − r2

−EX(1)
1

,
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cf. [93, Eq. (23)]. As a consequence we get the following counterpart of (3.1) for the downstream
queue.

Proposition 13. Let J ∈ S+. For u ≥ 0,

P(Q(2) ≤ u) = (1− ϱ)
∞∑
i=1

ϱi−1H⋆i(u).

Remark 3. The distribution H(·) has a natural representation in the language of the Lévy measure
associated with (τ̄ (1)(x))x≥0. As it is an increasing process, there is no Brownian term. In other
words, we can let (d, 0,Π) be the characteristic triplet corresponding to this Lévy process, so that

ξ(α) = αd+ x

∫ ∞

0

e−αxΠ̄(dx),

where Π̄(x) := Π((x,∞)) is the tail of the Lévy measure and

H(t) =
d

ϱ
+

1

ϱ

∫ t

0

Π̄(dx)

for all t ≥ 0. In addition ϱ = d+
∫∞
0

Π̄(dx). ♢

Following [38], Thm. 12 enables us to find exact distribution function of the downstream workload
for several input processes.

Example 5. Suppose J ∈ Bm(0, 1). Then the density function of supt∈[0,tu] −X
(1)
t equals

d

dx
P

(
sup

t∈[0,tu]

−X(1)
t ≤ x

)
=

√
2

πtu
exp

(
− (x− r1tu)

2

2tu

)
− 2r1e

2r1x

(
1− ΦN

(
x+ r1tu√

tu

))
,

see, e.g., [19]. Combining this with Example 1 and Thm. 12 yields, after standard calculus, for u ≥ 0,

(8.3) P(Q(2) > u) =
r1 − 2r2
r1 − r2

e−2r2uΦN

(
r1 − 2r2√
r1 − r2

√
u

)
+

r1
r1 − r2

(
1− ΦN

(
r1√
r1 − r2

√
u

))
,

with, ΦN(·), as before, the distribution function of a standard Normal random variable. ♢

A similar argument works also for the case of J ∈ CP(0, λ, b(·)) (so X(i) ∈ CP(ri, λ, b(·)) for i =
1, 2). However, in this case, P(Q2 > u) is expressed in terms of a convolution involving Q and
supt∈[0,tu] −X

(1)
t , and of the corresponding distribution functions only series representations are

available, see [38].

Spectrally negative case. Using the same line of reasoning for X ∈ S− as for X ∈ S+, and using Th.
3, we obtain

Ee−βQ
(2)

= β0

∫ ∞

0

Ee−β(r1−r2)τ
(1)(x)e−β0xdx,

where β0 solves β0 = Ψ2(0) > 0, with Ψi(·) denoting the right inverse of Φi(·) := logEeβX
(i)
1 (see

Section 3.2). Now invoking Lemma 2, we eventually obtain the following result.

Theorem 14. Let J ∈ S−. For β ≥ 0,

Ee−βQ
(2)

=
β0β(r1 − r2)−Ψ1(β(r1 − r2))Φ1(β0)

Ψ1(β(r1 − r2))(β(r1 − r2)− Φ1(β0))
.
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8.3. Downstream workload asymptotics. The aim of this section is to characterize P(Q2 > u) as
u → ∞. We analyze two regimes: light- and heavy-tailed input (leaving out the intermediate
regime).

Light-tailed regime. To get a feel for the general form of the asymptotics, we start by focusing on the
special case of J ∈ Bm(0, 1). The more general case of J ∈ L is considered later.
Suppose J ∈ Bm(0, 1) and r1 > r2. Then, after some lengthy but standard calculus, formula (8.3)
leads to the following asymptotics, as u→ ∞:

(i) if r1 > 2r2, then

P(Q(2) > u)e2r2u → r1 − 2r2
r1 − r2

;

(ii) if r1 = 2r2, then

P(Q(2) > u)
√
ue2r2u → 1√

2πr2
;

(iii) if r1 < 2r2, then

P(Q(2) > u)

(
u

r1 − r2

)3/2

exp

(
r21

2(r1 − r2)
u

)
→ 1√

2π

4r2
r21(r1 − 2r2)2

.

One can now distinguish between two situations. With r⋆1 := 2r2, there is qualitatively different
behavior for r1 ≥ r⋆1 and r1 < r⋆1 . In the former case, i.e., r1 ≥ r⋆1 , the most likely overflow scenario
of the downstream queue is that, upon overflow, the upstream queue remains essentially empty.
Thus the asymptotics in cases (i)-(ii) have roughly the same shape as those of P(Q > u) = e−2r2u.
In the latter case, i.e., r1 < r⋆1 , the most likely scenario is that J feeds into the first queue at a rate of
about r1 during tu units of time.
The observed dichotomy extends to the more general class of light-tailed inputs. Assuming J ∈
L ∩ S+, following the setup given in [70], the asymptotics of the Laplace transform Ee−αQ2 can
be analyzed by the use of the Heaviside technique. Let t̄ be (non-zero) root of φ1(α) = (r1 − r2)α,
tb := infα φ1(α)/(r1 − r2) and ᾱ := arg inf φ1(α). Then ’Heaviside’ gives that

(i) if φ′
1(t̄) > 0, then, as u→ ∞,

P(Q(2) > u)e−t̄u → −EX(2)
1 φ′

1(t̄)

(r1 − r2)(r1 − r2 − φ′
1(t̄))

;

(ii) if φ′
1(t̄) = 0, then, as u→ ∞,

P(Q(2) > u)
√
ue−t̄u → 1√

2π

−EX(2)
1

r1 − r2

√
φ′′
1(t̄)

r1 − r2
;

(iii) if φ′
1(t̄) < 0, then, as u→ ∞,

P(Q(2) > u)u3/2e−tbu → 1√
2π

−EX(2)
1

(tb − s̄)2

√
1

(r1 − r2)φ′′
1(s̄)

.

Heavy-tailed regime. We now study the asymptotics of the workload of the downstream queue in
the case when J ∈ S+ ∩R. Before we state the main result, we relate these asymptotics to those of
P(Q > u). Following Section 5, assume that

P(Q > u) = u1−νL(u)(1 + o(1))
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as u→ ∞, where L(·) is slowly varying at ∞, with ν ∈ (1, 2). Then, by (8.2), Thm. 2 and ’Tauber’

Ee−αQ
(2)

− 1 = Ee−ψ1(α(r1−r2))Q − 1

= Γ(2− ν)(ψ1(α(r1 − r2)))
ν−1L

(
1

ψ1(α(r1 − r2))

)
(1 + o(1))

= Γ(2− ν)ϱν−1αν−1L

(
1

α

)
(1 + o(1)),

as α→ 0, since limα→0 ψ1(α(r1 − r2))/α = ϱ with ϱ = (r2 − r1)/EX(1)
1 . Thus, again using ’Tauber’,

we obtain the asymptotics, as u→ ∞,

P(Q(2) > u) = ϱν−1u1−νL(u)(1 + o(1)).

The following theorem generalizes the above findings to the case of X1 ∈ S+ ∩ R, with φ1(α) ∈
Rν(n, η); see [70, Thm. 4.7].

Theorem 15. Let X1 ∈ S+ ∩ R, with φ1(α) ∈ Rν(n, η). Then, as u→ ∞,

P(Q(2) > u) =

(
−EX(1)

1

r1 − r2

)1−ν

P(Q > u)(1 + o(1)) =

=
(−1)n+1

Γ(2− ν)

η

−EX(2)
1

(
−EX(1)

1

r1 − r2

)1−ν

u1−νL(u)(1 + o(1)).

Example 6. Consider the case of J ∈ S(α, 1, 0), with α ∈ (1, 2). Then Prop. 9 and Thm. 15 immedi-
ately give the asymptotics of P(Q(2) > u), as u→ ∞. ♢

Example 7. Suppose J ∈ CP(0, λ, b(·)) and P(B > x) = x−δL(x) with δ > 1. The combination of
Example 4 with Thm. 15 immediately implies

P(Q(2) > u) ∼
(
r1 − λEB
r1 − r2

)1−δ

P(Q > u) ∼ λ

r2 − λEB

(
r1 − λEB
r1 − r2

)1−δ
1

δ − 1
u1−δL(u).

♢

8.4. Bivariate distribution. We now analyze the joint distribution of Q(1) and Q(2). It turns out
that in order to derive the associated bivariate Laplace transform, the notion of splitting times is
particularly useful.

Recall that (Q(1), Q(2))
d
= (X̄(1), X̄(2) − X̄(1)), so that

Ee−αQ
(1)−ᾱQ(2)

= Ee−(α−ᾱ)X̄1−ᾱX̄2 .

Also, we letGi := arg supt≥0X
(i)
t be the (first) epoch that (X(i)

t )t≥0 attains its maximum, for i = 1, 2.
Then

Ee−αX̄
(1)−ᾱX̄(2)

= Ee−αX
(1)
G1

−ᾱX(2)
G1 e−ᾱ(X̄

(2)−X(2)
G1

).

Now, using that X(2)
t −X

(1)
t = (r1 − r2)t > 0, we have

−αX(1)
G1

− βX
(2)
G1

= −(α+ ᾱ)X̄(1) − ᾱ(r1 − r2)G1

and

X̄(2) −X
(2)
G1

= sup
t≥G1

X
(2)
t −X

(2)
G1
,
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since G2 ≥ G1 a.s. Then a crucial step is that −αX(1)
G1

− ᾱX
(2)
G1

and X̄(2) −X
(2)
G1

are independent; see
[26, Lemma VI.6] or [37, Lemma 2.2]. This straightforwardly leads to

Ee−αX̄
(1)−ᾱX̄(2)

= Ee−(α+ᾱ)X̄(1)−ᾱ(r1−r2)G1Ee−ᾱ(X̄
(2)−X(2)

G1
).

The factor Ee−ᾱ(X̄
(2)−X(2)

G1
) can be computed upon choosing in the above equality α = 0. Hence

Ee−αX̄
(1)−ᾱX̄(2)

= Ee−(α+ᾱ)X̄(1)−ᾱ(r1−r2)G1
Ee−ᾱX̄(2)

Ee−ᾱX̄(1)−ᾱ(r1−r2)G1
.

Combining the above with the known fact that for X(i) ∈ S+,

Ee−αGi−ᾱX̄(i)

= −EX(i)
1

ψi (α)− ᾱ

α− φi(ᾱ)
.

for α, ᾱ ≥ 0, (α, ᾱ) ̸= (0, 0), ᾱ ̸= ψi(α), i = 1, 2 (see, e.g., [26, Thm. VII.4]) directly leads to the
following result, see [37].

Theorem 16. Let J ∈ S+. For α, ᾱ ≥ 0,

Ee−αQ
(1)−ᾱQ(2)

=
−EX(2)

1 ᾱ

ᾱ− ψ1((r1 − r2)ᾱ)

ψ1((r1 − r2)ᾱ)− α

(r1 − r2)ᾱ− φ1(α)
.

This idea can be generalized to considerably more complex network structures, including n-node
tandem networks and networks with a tree-type structure (see Section 9). The corresponding spec-
trally negative case can be dealt with as well, cf. Section 8.2.
Having the formula for bivariate transform of the workload, one may try to use it to explicitly
obtain the joint distribution of the workloads in steady-state. Due to the complexity of this task,
it was solved only in few special cases; see [69, 72]. In the following proposition we consider the
Brownian tandem case, see [69].

Proposition 14. Let J ∈ Bm(0, 1). For u, v ≥ 0,

P(Q(1) > u,Q(2) > v) =

=
r2

r1 − r2

(
1− ΦN

(
u+ vr1/(r1 − r2)√

v/(r1 − r2)

))
+

(
1− ΦN

(
−u+ vr1/(r1 − r2)√

v/(r1 − r2)

))
e−2r1u

+
r1 − 2r2
r1 − r2

ΦN

(
−u+ v(r1 − 2r2)/(r1 − r2)√

v/(r1 − r2)

)
e−2((r1−r2)u+r2v).

We refer to [69, 70] for the asymptotic analysis of the joint buffer overflow probabilities of the type
P(Q(1) > Au,Q(2) > (1−A)u) as u→ ∞, for a given A ∈ (0, 1).
Several other issues concerning tandem Lévy systems, including steady-state characteristics and
correlation analysis, can be found in [58, 63].

9. NETWORKS

In this section we consider a general class of Lévy-driven queueing networks. We first formally
introduce these networks through a Skorokhod formulation. Restricting ourselves to the class of
tree networks, the joint Laplace transform of the workloads can be given.
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9.1. Definition, multi-dimensional Skorokhod problem. We consider a network of n infinite-
buffer queues. Queue i is externally fed by the process J (i)

t , where it is assumed that J := (J t)t =

((J
(1)
t , ..., J

(n)
t )′)t is an n-dimensional Lévy process, with J0 = 0 and E|J1| <∞. Let r = (r1, ..., rn)

′,
where ri is the output rate of queue i. The interaction between the queues is given by the routing
matrix P = (pij)i,j=1,...,n, where pij ∈ [0, 1] is the fraction of output of station i that is immediately
transferred to station j, where a fraction 1 −

∑
j ̸=i pij leaves the system. We assume that pii = 0

and
∑n
j=1 pij ≤ 1, for all i = 1, . . . , n. We represent such a network by the triplet (J , r, P ).

Following [52, 85], the corresponding workload process (Qt)t≥0 = (Q
(1)
t , ..., Q

(n)
t )′t≥0 is the solution

of the following multidimensional Skorokhod problem:

(A+) Qt given by Q0 = w and, for t ≥ 0,

Qt = w + J t − (I − P ′) rt+ (I − P ′)Lt,

is non-negative for all t ≥ 0;
(B+) L0 = 0 and Lt is nondecreasing, and

n∑
i=1

∫ T

0

Q
(i)
t dL

(i)
t = 0, for all T > 0,

where w ≥ 0, I is the identity matrix and L = (Lt)t = (L
(1)
t , ..., L

(n)
t )′t is the so-called reflecting

process or regulator. The reflecting process L(i)
t has the informal interpretation as accumulated, in

time interval [0, t], unused capacity of node i, for i = 1, ..., n. It is known that pair (Q,L) satisfying
(A+) and (B+) exists and that it is unique; see [85].

Example 8. Consider, as introduced in Section 2.4, a single-node Lévy queue driven by (Xt)t≥0.
This system can be described by triplet (J1, r1, P ), with P = (p11) = (0); here Xt = J1,t − r1t. Then
Qt solves the corresponding Skorokhod problem. It is easily seen how the solution of the single-
dimensional Skorokhod problem (A)-(B), as we introduced in Section 2.4, maps on the conditions
(A+)-(B+).

Example 9. Consider the two-node Lévy tandem network analyzed in Section 8. This network is
described by triplet (J , r, P ), with

J t =

(
Jt

0

)
, r =

(
r1

r2

)
, and P =

(
0 1

0 0

)
.

It is a simple verification that the bivariate workload process Qt = (Q
(1)
t , Q

(2)
t )′ solves the related

Skorokhod problem. ♢

9.2. Lévy-driven tree networks. Above we observed that, both for single-node queues and tandem
networks, it is possible to solve the corresponding Skorokhod problem, leading to a representation
for the workload process in terms of the driving triplet. In general, however, it is not clear how to
explicitly express the pair (Q,L) in terms of the triplet (J , r, P ). An important large class for which
this is possible is the class of so-called tree-type networks.
In the rest of this section we suppose that (J , r, P ) obeys the following properties, see [37]:

(T1) P is strictly upper triangular and the j-th column of P contains exactly one strictly positive
element for j = 2, . . . , n;

(T2) if pij > 0, then pij > rj/ri;
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(T3) the processes (J (j)
t )t≥0 are non-decreasing for j = 2, . . . , n;

(T4) (I − P ′)−1 EJ1 < r.

The resulting network can be represented by a tree graph, where a directed vertex from node i to
node j is put if pij > 0; due to (T1) this corresponds to a ’tree network’. Assumption (T2) is to be
interpreted as some sort of work-conserving property, since Q(i)

t > 0 implies that for all j > i for
which pij > 0 we also have Q(j)

t > 0. Condition (T4) ensures stability of the network. Importantly,
we do not impose the requirement that J1 be non-decreasing. Observe that both the single-node
and tandem Lévy-driven queues, as described in earlier sections, satisfy (T1)-(T4).

9.3. Representation for the stationary workload. In order to find the solution of the Skorokhod
problem, and hence to get the explicit representation for the workload process, we use that by [85,
Thm. D.3] the process L(i)

t (i.e., the regulator of the i-th queue) satisfies the following fixed-point
equation:

L
(i)
t = max

{
0, sup
s∈[0,t]

(
(P̌Ls)i − wi − J (i)

s + (I − P̌ )r)is
)}

,(9.1)

where P̌ := P ′. Under (T1)-(T4), iterating Eqn. (9.1) yields

L
(i)
t = max

{
0, sup
s∈[0,t]

(
−
i−1∑
k=0

(
P̌ k
(
Js − (I − P̌ )rs+w

))
i

)}
.(9.2)

The combination of (9.2) with the fact that (I−P̌ )−1 = I+P̌+P̌ 2+...+P̌n−1 (use T1!), immediately
leads to ([37, Thm. 5.1]

Lt = max

{
0, sup
s∈[0,t]

(
−(I − P̌ )−1(w + Js) + rs

)}
,

and hence

Qt = w + J t − (I − P̌ )rt+ (I − P̌ )Lt

= w + J t − (I − P̌ )rt+max

{
0, sup
s∈[0,t]

(
−(w + Js) + (I − P̌ )rs

)}
,(9.3)

where the supremum should be interpreted componentwise. It is readily verified that this is a
genuine generalization of the single-node and tandem queues that we discussed before.

In order to characterize the distribution of the steady state workload Q, we follow the setup given
in [37]. To this end we introduce the process

Xt := (I − P̌ )−1J t − rt.

Let, as in the tandem case, X̄ =
(
X̄(1), ..., X̄(n)

)′
be defined by X̄(i) := supt≥0X

(i)
t . Then it is

convenient to consider the transformed version of the workload process Q̃t := (I − P̌ )−1Qt. By
(9.3) we have, for any t ≥ 0,

Q̃t = max

{
(x+Xt), sup

0≤s≤t
(Xt −Xs)

}
,

where x := (I − P̌ )−1w. Due to the stationarity of increments of X , we have

Q̃t
d
= max

{
(x−X−t), sup

−t≤s≤0
(−Xs)

}
.
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Since x−X−t → −∞, as t→ ∞, then

Q̃t
d→ sup
s≤0

(−Xs)
d
= X̄.

Finally we arrive at the following representation of the stationary workload for the (J , r, P ) net-
work:

Qt
d
= (I − P̌ )X̄.

This argument extends to the representation of the joint distribution of the workload, age of the busy
period B and age of the idle period I . More precisely, we can define Bt = (B

(1)
t , ..., B

(n)
t )′ by

B
(i)
t := t− sup{s ≤ t : Q(i)

s = 0}

and It = (I
(1)
t , ..., I

(n)
t )′ by

I
(i)
t := t− sup{s ≤ t : Q(i)

s > 0}.

Let G := (G1, ..., Gn)
′, with Gi := inf{s ≥ 0 : X

(i)
s = supt≥0X

(i)
t } (cf. the definitions for the tandem

in Section 8) and H := (H1, ...,Hn)
′, with Hi := inf{s ≥ 0 : X

(i)
s ̸= supt≥sX

(i)
t }. The following

result can be found in [37].

Theorem 17. Let (T1)-(T4) hold for the tree fluid network (J , r, P ). Then for any initial condition Q0 = w,
the triplet of vectors (Qt,Bt, It)

′ converges in distribution to (I − P̌ )(X̄,G,H)′ as t→ ∞.

With ⟨ · , · ⟩ denoting the usual inner product, the Laplace transform Ee−⟨α,X̄⟩−⟨ϑ,G⟩, for α,ϑ ∈ Rn+,
was computed in [37, Thm. 3.3], and obeys a so-called quasi-product formula. It leads to the following
result.

Theorem 18. Let (T1)-(T4) hold for the tree fluid network (J , r, P ). For α,ϑ ∈ Rn+,

Ee−⟨α,Q⟩−⟨ϑ,B⟩ =
n−1∏
j=1

Ee−[
∑n

ℓ=j ϑℓ]Gj−
∑n

ℓ=j α̃ℓX
(ℓ)
Gj

Ee−[
∑n

ℓ=j+1 ϑℓ]Gj−
∑n

ℓ=j+1 α̃ℓX
(ℓ)
Gj

× Ee−α̃nX̄
(n)−ϑnGn ,

with α̃ = (α̃1, ..., α̃n)
′ = (I − P̌ )α.

Example 10. Consider an n-node tandem system, i.e., the network (J , r, P ) with the routing matrix
P such that pi,i+1 > 0 for i = 1, ..., n − 1, and pij = 0 otherwise. Assume that (T1)-(T4) apply and
that J has mutually independent components with J (1) ∈ S+. Importantly, in contrast to Section
8, we allow independent inputs to nodes 2, ..., n; in addition, at each station some output may leave
the system. Then, applying Thm. 18, for α,ϑ ∈ Rn+,

Ee−⟨α,Q⟩−⟨ϑ,B⟩ = −EX(n)
1

ψn (ϑn)− αn
ϑn − φn(αn)

×
n−1∏
j=1

ψj

(∑n
ℓ=j+1 θ

J
ℓ (αℓ) +

∑n
ℓ=j+1(pℓ−1,ℓrℓ−1 − rℓ)αℓ +

∑n
ℓ=j ϑℓ

)
− αj

ψj

(∑n
ℓ=j+1 θ

J
ℓ (αℓ) +

∑n
ℓ=j+1(pℓ−1,ℓrℓ−1 − rℓ)αℓ +

∑n
ℓ=j+1 ϑℓ

)
− pj,j+1αj+1

×
n−1∏
j=1

∑n
ℓ=j+1 θ

J
ℓ (αℓ) +

∑n
ℓ=j+1(pℓ−1,ℓrℓ−1 − rℓ)αℓ +

∑n
ℓ=j+1 ϑℓ − φj(pj,j+1αj+1)∑n

ℓ=j+1 θ
J
ℓ (αℓ) +

∑n
ℓ=j+1(pℓ−1,ℓrℓ−1 − rℓ)αℓ +

∑n
ℓ=j ϑℓ − φj(αj)

,
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with θJi (α) := − logEe−αJ
(i)
1 , α ≥ 0, φi(α) = logEe−αX

(i)
1 and ψi(·) = φ−1

i (·); see also [37, Thm.
6.1]. We note that if

J t =

(
J
(1)
t

0

)
, P =

(
0 1

0 0

)
,

and choosing ϑ1 = ϑ2 = 0, then we recover Thm. 16. We finally mention that the case J (1) ∈ S−

can be solved as well, in a way that is similar to the approach followed in Section 8.2. ♢

Besides the Laplace transforms of the age B of the busy periods, Thm. 18 also enables to find
the Laplace transforms of the length of the steady-state running busy periods. We refer to [37,
Cor. 6.1] for details. Other interesting problems related to Lévy networks, such as stability and
the applicability of (quasi-)product form solutions, are analyzed in a series of papers by Kella and
Whitt [55, 56, 57, 58, 62].

10. CONCLUDING REMARKS

In this survey we have highlighted a set of important results on queues with Lévy input. An
obvious disclaimer is in place here: with this field being large, some relevant contributions may
have been overlooked. Also, given the connection between Lévy-driven queues and risk theory in
a Lévy-environment — cf. Eqn. (2.2)—, perhaps not all relations with the vast finance and insurance
literature have been fully exploited.
Many problems in this area are still open; we mention here a few directions. In the first place, many
results are restricted to the spectrally one-sided case, where in practical situations the underlying
Lévy process often has two-sided jumps — see however [11]. Another domain in which the results
are still quite partial, is that of the Lévy-driven networks: hardly any results are available when the
underlying network does not satisfy the conditions (T1)-(T4) — see however [76].
The variety of open questions, that emerge from analyzing Lévy-driven queueing systems, enforces
the current research to lie at the interface between such areas as extreme value theory, fluctuation
theory, stochastic geometry, large deviations, stochastic simulations etc. This makes the theory of
Lévy-driven queues especially stimulating for applied and theoretical probability.
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Models, pp. 112-128, U. Bhat and I. Basawa (eds.). Oxford University Press, Oxford, UK.
[64] A. KHINTCHINE (1932). Matematischeskaya teoriya statsionarnoi ocheredi. Matematicheskii Sbornik 30,

pp. 73-84.
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Forthcoming.
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[93] L. TAKÁCS (1965). On the distribution of the supremum of stochastic processes with exchangeable incre-

ments. Trans. Am. Math. Soc. 119, pp. 367–379.
[94] M. TAQQU, W. WILLINGER, and R. SHERMAN (1997). Proof of a fundamental result in self-similar traffic

modeling. Comp. Comm. Rev. 27, pp. 5-23.
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