1.4. Application: A Randomized Min-Cut Algorithm

A cut-set in a graph is a set of edges whose removal breaks the graph into two or
more connected components. Given a graph G = (V, E) with n vertices, the minimum
cut — or min-cut — problem is to find a minimum cardinality cut-set in G. Minimum
cut problems arise in many contexts, including the study of network reliability. In the
case where nodes correspond to machines in the network and edges correspond to con-
nections between machines, the min-cut is the smallest number of edges that can fail
before some pair of machines cannot communicate. Minimum cuts also arise in clus-
tering problems. For example, if nodes represent Web pages (or any documents in a
hypertext-based system) and two nodes have an edge between them if the correspond-
ing nodes have a hyperlink between them, then small cuts divide the graph into clusters
of documents with few links between clusters. Documents in different clusters are
likely to be unrelated.

We shall proceed by making use of the definitions and techniques presented so far in
order to analyze a simple randomized algorithm for the min-cut problem. The main op-
eration in the algorithm is edge contraction. In contracting an edge {u, v} we merge the
two vertices u and v into one vertex, eliminate all edges connecting « and v, and retain
all other edges in the graph. The new graph may have parallel edges but no self-loops.
Examples appear in Figure 1.1, where in each step the dark edge is being contracted.

The algorithm consists of n — 2 iterations. In each iteration, the algorithm picks an
edge from the existing edges in the graph and contracts that edge. There are many pos-
sible ways one could choose the edge at each step. Our randomized algorithm chooses
the edge uniformly at random from the remaining edges.

Each iteration reduces the number of vertices in the graph by one. After n — 2 it-
erations, the graph consists of two vertices. The algorithm outputs the set of edges
connecting the two remaining vertices.

Itis easy to verify that any cut-set of a graph in an intermediate iteration of the algo-
rithm is also a cut-set of the original graph. On the other hand, not every cut-set of the
original graph is a cut-set of a graph in an intermediate iteration, since some edges of
the cut-set may have been contracted in previous iterations. As a result, the output of
the algorithm is always a cut-set of the original graph but not necessarily the minimum
cardinality cut-set (see Figure 1.1).

1 3 1
5 5 5 O 5
34 1,34 1234
2 4 2 2
(a) A successful run of min-cut.
1 3 1 1 1
5 5 N
34 3,45
2.3.4.5
2 4 2 2

(b) An unsuccessful run of min-cut.

Figure 1.1: An example of two executions of min-cut in a graph with minimum cut-set of size 2.

We now establish a lower bound on the probability that the algorithm returns a Cor-
rect output.

Theorem 1.8: The algorithm outputs a min-cut set with probability at least2 /n(n —1).

Proof: Let k be the size of the min-cut set of G. The graph may have several cut-sets
of minimum size. We compute the probability of finding one specific such set C.

Since C is a cut-set in the graph, removal of the set C partitions the set of vertices
into two sets, S and V — S, such that there are no edges connecting vertices in S to
Jertices in V — S. Assume that, throughout an execution of the algorithm, we contract
only edges that connect two vertices in S or two vertices in V — S, but not edges in C.
In that case, all the edges climinated throughout the execution will be edges connect-
ing vertices in S or verticesin V. — S, and aftern — 2 iterations the algorithm returns a
graph with two vertices connected by the edges in C. We may therefore conclude that,
if the algorithm never chooses an edge of C inits n — 7 iterations, then the algorithm
returns C as the minimum cut-set.

This argument gives some intuition for why we choose the edge at each iteration
uniformly at random from the remaining existing edges. If the size of the cut C is small
and if the algorithm chooses the edge uniformly at each step, then the probability that
the algorithm chooses an edge of C 18 small — at least when the number of edges re-
maining is large compared to C.

Let E; be the event that the edge contracted in iteration i is not in C, and let F; =
ﬂij=1 E; be the event that no edge of C was contracted in the first i iterations. We need
to compute Pr(F,-2)-

We start by computing Pr(E;) = Pr(F 1). Since the minimum cut-set has k edges,
all vertices in the graph must have degree k or larger. If each vertex is adjacent to at
least k edges, then the graph must have at least nk/2 edges. The first contracted edge
is chosen uniformly at random from the set of all edges. Since there are at least nk/2
edges in the graph and since C has k edges, the probability that we do not choose an
edge of C in the first iteration is given by

2k 2
Pr(E)) =Pr(F}))>1— —=1— —.
nk n

Let us suppose that the first contraction did not eliminate an edge of C. In other
words, we condition on the event F. Then, after the first iteration, we are left with an
(n —1)-node graph with minimum cut-set of size k. Again, the degree of each vertex in
the graph must be at least k, and the graph must have at least k(n — 1)/2 edges. Thus,

k 2
Pr(E2|F1)Zl—m-=]—n__—l.
Similarly,

k 2
B i v A g

To compute Pr(F,_,), we use

Pr(F,—2) =Pr(Ey—2 N Fy—3) = Pr(Ep—2 | F_3) - Pr(F,_3)
=Pr(En—2 | Fi-3) - Pr(Ep—3 | Fy—4)---Pr(E; | Fy) - Pr(Fy)
n—2 n—2 S
>]_[< n—l+1) r!(n—i+1)
- n—2)(n——3> n—4) <4_1 g) 2 (1
sl R
2

= —. [|
nn—1)

Since the algorithm has a one-sided error, we can reduce the error probability by repeat-
ing the algorithm. Assume that we run the randomized min-cut algorithm n(n — 1) Inn
times and output the minimum size cut-set found in all the iterations. The probability
that the output is not a min-cut set is bounded by

(n=1)1
]_—2_ n(n nn<e_21nn=i.
nn—1) B n?

In the first inequality we have used the fact that 1 — x < e™™.

