Definable Valuation on dependent fields

Katharina Dupont

University of Konstanz
Department of Mathematics

2019/01/21

Main Question

Question

Let K be a dependent field.
Under which conditions does K admit a non-trivial valuation ring $(\mathcal{O} \neq K)$ definable in $\mathcal{L}_{\text {ring }}=(0,1 ;+,-, \cdot) ?$

Example

For the p-adic valuation on \mathbb{Q}_{p} we have

$$
\mathcal{O}_{v_{p}}:=\left\{x \in \mathbb{Q}_{p} \mid v_{p}(x) \geq 0\right\}=\left\{x \in \mathbb{Q}_{p} \mid \exists y y^{2}-y=p \cdot x^{2}\right\}
$$

Definition

Let (K, v) be a valued field. We say v is a definable valuation if there exists an $\mathcal{L}_{\text {ring }}=\{0,1 ;+,-, \cdot\}$ formula φ such that

$$
\mathcal{O}_{v}:=\{x \in K \mid v(x) \geq 0\}=\{x \in K \mid \varphi(x)\}
$$

Example

For the p-adic valuation on \mathbb{Q}_{p} we have

$$
\mathcal{O}_{v_{p}}:=\left\{x \in \mathbb{Q}_{p} \mid v_{p}(x) \geq 0\right\}=\left\{x \in \mathbb{Q}_{p} \mid \exists y y^{2}-y=p \cdot x^{2}\right\}
$$

Definition

Let (K, v) be a valued field. We say v is a definable valuation if there exists an $\mathcal{L}_{\text {ring }}=\{0,1 ;+,-, \cdot\}$ formula φ such that

$$
\mathcal{O}_{v}:=\{x \in K \mid v(x) \geq 0\}=\{x \in K \mid \varphi(x)\}
$$

Example

Let K be an algebraically closed field. Then the only definable valuation on K is the trivial valuation.

> Example
> Let K be an real closed field. Then the only definable valuation on K is the trivial valuation.

Example

Let K be an algebraically closed field. Then the only definable valuation on K is the trivial valuation.

Example

Let K be an real closed field. Then the only definable valuation on K is the trivial valuation.

Fact
Let K be a field.
There exists a non-trivial valuation on K if and only if there exists no finite field F such that K / F is an algebraic field extension.

From now on we assume that no fields are algebraic extensions of finite fields.

Fact
Let K be a field.
There exists a non-trivial valuation on K if and only if there exists no finite field F such that K / F is an algebraic field extension.

From now on we assume that no fields are algebraic extensions of finite fields.

Fact and Notation

Let (K, v) be a valued field.
Then $\mathcal{B}_{v}:=\{\{x \in K \mid v(x-a)>\gamma\} \mid \gamma \in \Gamma, a \in K\}$ is an open basis of a topolology \mathcal{T}_{v} on K.

Definition and Lemma

Let K a field and $\mathcal{N} \subseteq \mathcal{P}(K)$ such that
$(\mathrm{V} 1) \bigcap \mathcal{N}:=\bigcap_{U \in \mathcal{N}} U=\{0\}$ and $\{0\} \notin \mathcal{N}$
(V2) $\forall U, V \in \mathcal{N} \exists W \in \mathcal{N} W \subseteq U \cap V$
(V3) $\forall U \in \mathcal{N} \exists V \in \mathcal{N} V-V \subseteq U$
(V4) $\forall U \in \mathcal{N} \forall x, y \in K \exists V \in \mathcal{N}(x+V) \cdot(y+V) \subseteq x \cdot y+U$
(V5) $\forall U \in \mathcal{N} \forall x \in K^{\times} \exists V \in \mathcal{N}(x+V)^{-1} \subseteq x^{-1}+U$
(V6) $\forall U \in \mathcal{N} \exists V \in \mathcal{N} \forall x, y \in K x \cdot y \in V \Rightarrow x \in U \vee y \in U$
Then

$$
\mathcal{T}_{\mathcal{N}}:=\{U \subseteq K \mid \forall x \in U \exists V \in \mathcal{N} x+V \subseteq U\}
$$

is a V-topology on K.
\mathcal{N} is a basis of zero neighbourhoods of $\mathcal{T}_{\mathcal{N}}$.

Theorem
A topology is a V-topology if and only if it is induced by a non-trivial valuation or by a non-trivial absolute value.

Theorem (Koenigsmann)

Let (K, v) be a valued field. Let v be non-trivial and henselian. Then there exists a non-trivial definable valuation on K if and only if K is not real closed and not separably closed.

Conjecture

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime
$\left(L^{\times}:\left(L^{\times}\right)^{q}\right)=\#\left\{a \cdot\left(L^{\times}\right)^{q} \mid a \in L^{\times}\right\}<\infty$.
Then either K is algebraically closed or there exists a non-trivial definable valuation on K.

> Fact
> Let L / K be a finite field extension and v a non-trivial definable valuation on L. Then $\left.v\right|_{k}$ is a non-trivial definable valuation on

Fact
Let L / K be a finite field extension. If K is dependent, then L is dependent as well.

Conjecture

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime
$\left(L^{\times}:\left(L^{\times}\right)^{q}\right)=\#\left\{a \cdot\left(L^{\times}\right)^{q} \mid a \in L^{\times}\right\}<\infty$.
Then either K is algebraically closed or there exists a non-trivial definable valuation on K.

Fact

Let L / K be a finite field extension and v a non-trivial definable valuation on L. Then $\left.v\right|_{k}$ is a non-trivial definable valuation on K.

[^0]
Conjecture

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime
$\left(L^{\times}:\left(L^{\times}\right)^{q}\right)=\#\left\{a \cdot\left(L^{\times}\right)^{q} \mid a \in L^{\times}\right\}<\infty$.
Then either K is algebraically closed or there exists a non-trivial definable valuation on K.

Fact

Let L / K be a finite field extension and v a non-trivial definable valuation on L. Then $\left.v\right|_{K}$ is a non-trivial definable valuation on K.

Fact

Let L / K be a finite field extension. If K is dependent, then L is dependent as well.

Proposition

Let K be a field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. Let $\mathcal{N}_{G}:=\left\{\bigcap_{i=1}^{n} a_{i} \cdot(G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\right\}$.
If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime
($\left.L^{\times}:\left(L^{\times}\right)^{9}\right)$
Then there exists a finite field extension L / K and a prime $q \neq \operatorname{char}(K)$ such that $L^{\times} \neq\left(L^{\times}\right)^{q}$.

Proposition

Let K be a field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. Let $\mathcal{N}_{G}:=\left\{\bigcap_{i=1}^{n} a_{i} \cdot(G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\right\}$.
If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma
Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all
finite field extensions L / K and all $q \in \mathbb{N}$ prime
Then there exists a finite field extension L / K and a prime $q \neq \operatorname{char}(K)$ such that $L^{\times} \neq\left(L^{\times}\right)^{q}$.

Proposition

Let K be a field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. Let
$\mathcal{N}_{G}:=\left\{\bigcap_{i=1}^{n} a_{i} \cdot(G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\right\}$.
If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime $\left(L^{\times}:\left(L^{\times}\right)^{q}\right)<\infty$.
Then there exists a finite field extension L / K and a prime
$q \neq \operatorname{char}(K)$ such that L^{\times}

Proposition

Let K be a field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. Let
$\mathcal{N}_{G}:=\left\{\bigcap_{i=1}^{n} a_{i} \cdot(G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\right\}$.
If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L / K and all $q \in \mathbb{N}$ prime $\left(L^{\times}:\left(L^{\times}\right)^{q}\right)<\infty$.
Then there exists a finite field extension L / K and a prime $q \neq \operatorname{char}(K)$ such that $L^{\times} \neq\left(L^{\times}\right)^{q}$.

Let K be a field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology if and only if
(V1) $\bigcap_{U \in \mathcal{N}_{G}} U=\{0\}$ and $\{0\} \notin \mathcal{N}_{G}$
(V2) $\forall U, V \in \mathcal{N}_{G} \exists W \in \mathcal{N}_{G} W \subseteq U \cap V$
(V3) $\forall U \in \mathcal{N}_{G} \exists V \in \mathcal{N}_{G}$ $V-V \subseteq U$
(V4) $\forall U \in \mathcal{N}_{G} \forall x, y \in K$
$\exists V \in \mathcal{N}_{G}(x+V) \cdot(y+V) \subseteq x \cdot y+U$
(V5) $\forall U \in \mathcal{N}_{G} \forall x \in K^{\times} \exists V \in \mathcal{N}_{G}$
$(x+V)^{-1} \subseteq x^{-1}+U$
(V6) $\forall U \in \mathcal{N}_{G} \exists V \in \mathcal{N}_{G} \forall x, y \in K$
$x \cdot y \in V$
$\Rightarrow x \in U \vee y \in U$

Let K be a field and $-1 \in G \subsetneq K^{\times}$a multiplicative subgroup.
\mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology if and only if
(V1)' \checkmark and

$$
\{0\} \notin \mathcal{N}_{G}
$$

(V2)'
(V3)' $\exists V \in \mathcal{N}_{G} V-V \subseteq G+1$
(V4)' $\exists V \in \mathcal{N}_{G} V \cdot V \subseteq G+1$
(V5)'
(V6)' $\exists V \in \mathcal{N}_{G} \forall x, y \in K x \cdot y \in V \Rightarrow x \in G+1 \vee y \in G+1$

Let K be a field and $-1 \in G \subsetneq K^{\times}$a multiplicative subgroup.
\mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology if and only if
(V1)' \checkmark and

$$
\{0\} \notin \mathcal{N}_{G}
$$

(V2)'
(V3)' $\exists V \in \mathcal{N}_{G} V-V \subseteq G+1$
(V4)' $\exists V \in \mathcal{N}_{G} V \cdot V \subseteq G+1$
(V5)'
(V6)' $\exists V \in \mathcal{N}_{G} \forall x, y \in K x \cdot y \in V \Rightarrow x \in G+1 \vee y \in G+1$

Let \mathfrak{T} be a theory and let A be a set of parameters. Let $\mathcal{L}_{X}(A)$ denote the set of all A definable sets in the variable x.

Lemma

$\mathcal{L}_{X}(A)$ is an algebra.

Definition

A Keisler measure μ over A in the variable x is a finitely additive probability measure on $\mathcal{L}_{x}(A)$.

Definition

Let K be a field and μ a Keisler measure on K. We say that μ is additively [multiplicatively] invariant if for all $x \in K\left[x \in K^{\times}\right]$and all $X \in \mathcal{L}_{X}(A)$ we have $\mu(X+X)=\mu(X)[\mu(X \cdot X)=\mu(X)]$.

Let \mathfrak{T} be a theory and let A be a set of parameters. Let $\mathcal{L}_{X}(A)$ denote the set of all A definable sets in the variable x.

Lemma

$\mathcal{L}_{\chi}(A)$ is an algebra.
Definition
A Keisler measure μ over A in the variable x is a finitely additive probability measure on $\mathcal{L}_{x}(A)$.

Definition
Let K be a field and μ a Keisler measure on K. We say that μ is additively [multiplicatively] invariant if for all $x \in K\left[x \in K^{\times}\right]$and all $X \in \mathcal{L}_{X}(A)$ we have $\mu(X+X)=\mu(X)[\mu(X \cdot X)=\mu(X)]$

Let \mathfrak{T} be a theory and let A be a set of parameters. Let $\mathcal{L}_{\chi}(A)$ denote the set of all A definable sets in the variable x.

Lemma

$\mathcal{L}_{\chi}(A)$ is an algebra.

Definition

A Keisler measure μ over A in the variable x is a finitely additive probability measure on $\mathcal{L}_{\chi}(A)$.

Definition
Let K be a field and μ a Keisler measure on K. We say that μ is additively [multiplicatively] invariant if for all $x \in K\left[x \in K^{\times}\right]$and all $X \in \mathcal{L}_{X}(A)$ we have $\mu(X+X)=\mu(X)[\mu(X \cdot X)=\mu(X)]$.

Let \mathfrak{T} be a theory and let A be a set of parameters. Let $\mathcal{L}_{X}(A)$ denote the set of all A definable sets in the variable x.

Lemma

$\mathcal{L}_{X}(A)$ is an algebra.

Definition

A Keisler measure μ over A in the variable x is a finitely additive probability measure on $\mathcal{L}_{X}(A)$.

Definition

Let K be a field and μ a Keisler measure on K. We say that μ is additively [multiplicatively] invariant if for all $x \in K\left[x \in K^{\times}\right.$] and all $X \in \mathcal{L}_{X}(A)$ we have $\mu(X+X)=\mu(X)[\mu(X \cdot X)=\mu(X)]$.

Proposition
Let K be an dependent field. Then there exists an additively and multiplicatively invariant definable Keisler measure on K.

From now on we will assume that K is dependent and μ is an additively and multiplicatively invariant definable Keisler measure on K.

Proposition

Let K be an dependent field. Then there exists an additively and multiplicatively invariant definable Keisler measure on K.

From now on we will assume that K is dependent and μ is an additively and multiplicatively invariant definable Keisler measure on K.

Lemma

Let $a_{0}, \cdots, a_{m} \in K$ and $X \subseteq K$ be definable. Then $\mu\left(\bigcap_{i=0}^{m}\left(a_{i}+X\right)\right)=\mu(X)$.

Proposition

Let $G \subsetneq K^{\times}$a multiplicative group subgroup of K with $-1 \in G$. Assume $\mu(G)>0$.
Then $\{0\} \notin \mathcal{N}_{G}$ i.e. $\{0\} \neq \bigcap_{i=1}^{n} a_{i} \cdot(G+1)$ for all $a_{1}, \ldots, a_{n} \in K^{\times}$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence
$\cap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence
$\bigcap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\cap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$
$\cap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.

exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$
$\cap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$.

exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence $\bigcap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.

exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence $\bigcap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there

As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{\epsilon_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{\epsilon_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence $\bigcap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.

Proof: (sketch) Let $a_{1}, \ldots, a_{n} \in K^{\times}$.
Let $i \in\{1, \ldots, n\}$ and $x \in G$.
We have $x \in\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$ iff there exists $g \in G$ s.th. $1=a_{i} \cdot g+x \cdot a_{i}$ iff $\frac{1}{a_{i}}-x \in G$ iff $x \in G+\frac{1}{a_{i}}$. Hence $\bigcap_{i=1}^{n}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}=\bigcap_{i=1}^{n}\left(G+\frac{1}{a_{i}}\right) \cap G$.
$\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right) \cap(G+0)\right)=\mu(G)>0$ and therefore there exists $t_{0} \in \bigcap_{i=1}^{m}\left\{t \in G \mid 1 \in\left(a_{i} \cdot G+t \cdot a_{i}\right)\right\}$.
As $t_{0} \in G$ and G is a multiplicative group we have
$0 \neq \frac{1}{t_{0}} \in \bigcap_{i=1}^{m}\left(a_{i} \cdot \frac{1}{t_{0}} \cdot G+a_{i}\right)=\bigcap_{i=1}^{m}\left(a_{i} \cdot G+a_{i}\right)$.

Let $G=\left(K^{\times}\right)^{q}$ for some prime q and $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$. Then $\mu(G)>0$.

Corollary
Let $G=\left(K^{\times}\right)^{q}$ for some prime q and $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)$
Assume $-1 \in G$.
Then $\{0\} \notin \mathcal{N}_{G}$.

Lemma

Let $G=\left(K^{\times}\right)^{q}$ for some prime q and $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$.
Then $\mu(G)>0$.

Corollary

Let $G=\left(K^{\times}\right)^{q}$ for some prime q and $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$.
Assume $-1 \in G$.
Then $\{0\} \notin \mathcal{N}_{G}$.

Proposition (K.D.)

Let K be a dependent field, $\sqrt{-1} \in K$ and $G=\left(K^{\times}\right)^{q} \neq K^{\times}$for $q \neq \operatorname{char}(K)$. Let $\left(K^{\times}:\left(K^{\times}\right)^{q}\right)<\infty$.
Assume that

$$
\begin{aligned}
\text { (V 3)' } & \exists a_{1}, \ldots, a_{n} \in K^{\times} \\
& \bigcap_{i=1}^{n} a_{i} \cdot(G+1)-\bigcap_{i=1}^{n} a_{i} \cdot(G+1) \subseteq G+1 \\
\text { (V 4)' } & \exists a_{1}, \ldots, a_{n} \in K^{\times} \\
& \left(\bigcap_{i=1}^{n} a_{i} \cdot(G+1)\right) \cdot\left(\bigcap_{i=1}^{n} a_{i} \cdot(G+1)\right) \subseteq G+1 \\
\text { (V 6)' } & \exists a_{1}, \ldots, a_{n} \in K^{\times} \forall x, y \in K \\
& x \cdot y \in \bigcap_{i=1}^{n} a_{i} \cdot(G+1) \\
& \Rightarrow x \in G+1 \vee y \in G+1
\end{aligned}
$$

hold.
Then K admits a non-trivial definable valuation.

[^0]: Let L / K be a finite field extension. If K is dependent, then L is dependent as well.

