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Main Question

Question

Let K be a dependent field.
Under which conditions does K admit a non-trivial valuation ring
(O 6= K ) definable in Lring = (0, 1; +,−, ·)?



Example

For the p-adic valuation on Qp we have

Ovp := {x ∈ Qp | vp(x) ≥ 0} = {x ∈ Qp | ∃y y2 − y = p · x2}.

Definition

Let (K , v) be a valued field. We say v is a definable valuation if
there exists an Lring = {0, 1; +,−, ·} formula ϕ such that

Ov := {x ∈ K | v(x) ≥ 0} = {x ∈ K | ϕ(x)}
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Fact

Let K be a field.
There exists a non-trivial valuation on K if and only if there
exists no finite field F such that K/F is an algebraic field
extension.

From now on we assume that no fields are algebraic extensions
of finite fields.
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Fact and Notation

Let (K , v) be a valued field.
Then Bv := {{x ∈ K | v(x − a) > γ} | γ ∈ Γ, a ∈ K} is an open
basis of a topolology Tv on K .



Definition and Lemma

Let K a field and N ⊆ P (K ) such that

(V 1)
⋂N :=

⋂

U∈N U = {0} and {0} /∈ N
(V 2) ∀U, V ∈ N ∃W ∈ N W ⊆ U ∩ V

(V 3) ∀U ∈ N ∃V ∈ N V − V ⊆ U

(V 4) ∀U ∈ N ∀ x , y ∈ K ∃V ∈ N (x + V ) · (y + V ) ⊆ x · y + U

(V 5) ∀U ∈ N ∀ x ∈ K× ∃V ∈ N (x + V )−1 ⊆ x−1 + U

(V 6) ∀U ∈ N ∃V ∈ N ∀ x , y ∈ K x · y ∈ V ⇒ x ∈ U ∨ y ∈ U

Then

TN := {U ⊆ K | ∀ x ∈ U ∃V ∈ N x + V ⊆ U}

is a V-topology on K .
N is a basis of zero neighbourhoods of TN .



Theorem

A topology is a V-topology if and only if it is induced by a
non-trivial valuation or by a non-trivial absolute value.



Theorem (Koenigsmann)

Let (K , v) be a valued field. Let v be non-trivial and henselian.
Then there exists a non-trivial definable valuation on K if and
only if K is not real closed and not separably closed.



Conjecture

Let K be a dependent field with
√
−1 ∈ K . Assume that for all

finite field extensions L/K and all q ∈ N prime
(L× : (L×)q) = #{a · (L×)q | a ∈ L×} < ∞.
Then either K is algebraically closed or there exists a non-trivial
definable valuation on K .

Fact

Let L/K be a finite field extension and v a non-trivial definable
valuation on L. Then v |K is a non-trivial definable valuation on
K .

Fact

Let L/K be a finite field extension. If K is dependent, then L is
dependent as well.
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Proposition

Let K be a field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞. Let
NG := {⋂n

i=1 ai · (G + 1) | n ∈ N, ai ∈ K×}.
If NG is a basis of neighbourhoods of zero of a V-topology, then
there exists a non-trivial definable valuation on K .

Lemma

Let K be a dependent field with
√
−1 ∈ K . Assume that for all

finite field extensions L/K and all q ∈ N prime
(L× : (L×)q) < ∞.
Then there exists a finite field extension L/K and a prime
q 6= char(K ) such that L× 6= (L×)

q.



Proposition

Let K be a field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞. Let
NG := {⋂n

i=1 ai · (G + 1) | n ∈ N, ai ∈ K×}.
If NG is a basis of neighbourhoods of zero of a V-topology, then
there exists a non-trivial definable valuation on K .

Lemma

Let K be a dependent field with
√
−1 ∈ K . Assume that for all

finite field extensions L/K and all q ∈ N prime
(L× : (L×)q) < ∞.
Then there exists a finite field extension L/K and a prime
q 6= char(K ) such that L× 6= (L×)

q.



Proposition

Let K be a field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞. Let
NG := {⋂n

i=1 ai · (G + 1) | n ∈ N, ai ∈ K×}.
If NG is a basis of neighbourhoods of zero of a V-topology, then
there exists a non-trivial definable valuation on K .

Lemma

Let K be a dependent field with
√
−1 ∈ K . Assume that for all

finite field extensions L/K and all q ∈ N prime
(L× : (L×)q) < ∞.
Then there exists a finite field extension L/K and a prime
q 6= char(K ) such that L× 6= (L×)

q.



Proposition

Let K be a field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞. Let
NG := {⋂n

i=1 ai · (G + 1) | n ∈ N, ai ∈ K×}.
If NG is a basis of neighbourhoods of zero of a V-topology, then
there exists a non-trivial definable valuation on K .

Lemma

Let K be a dependent field with
√
−1 ∈ K . Assume that for all

finite field extensions L/K and all q ∈ N prime
(L× : (L×)q) < ∞.
Then there exists a finite field extension L/K and a prime
q 6= char(K ) such that L× 6= (L×)

q.



Let K be a field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞. NG is a basis of
neighbourhoods of zero of a V-topology if and only if

(V 1)
⋂

U∈NG
U = {0} and

{0} /∈ NG

(V 2) ∀U, V ∈ NG ∃W ∈ NG W ⊆ U ∩ V

(V 3) ∀U ∈ NG ∃V ∈ NG
V − V ⊆ U

(V 4) ∀U ∈ NG ∀ x , y ∈ K
∃V ∈ NG (x + V ) · (y + V ) ⊆ x · y + U

(V 5) ∀U ∈ NG ∀ x ∈ K× ∃V ∈ NG
(x + V )−1 ⊆ x−1 + U

(V 6) ∀U ∈ NG ∃V ∈ NG ∀ x , y ∈ K
x · y ∈ V
⇒ x ∈ U ∨ y ∈ U



Let K be a field and −1 ∈ G ( K× a multiplicative subgroup.

NG is a basis of neighbourhoods of zero of a V-topology if and
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Let T be a theory and let A be a set of parameters. Let Lx(A)
denote the set of all A definable sets in the variable x .

Lemma

Lx(A) is an algebra.

Definition

A Keisler measure µ over A in the variable x is a finitely additive
probability measure on Lx(A).

Definition

Let K be a field and µ a Keisler measure on K . We say that µ is
additively [multiplicatively] invariant if for all x ∈ K [x ∈ K×] and
all X ∈ Lx(A) we have µ(x + X ) = µ(X ) [µ(x · X ) = µ(X )].
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Lemma

Let a0, · · · , am ∈ K and X ⊆ K be definable.
Then µ

(
⋂m

i=0 (ai + X )
)

= µ (X ).



Proposition

Let G ( K× a multiplicative group subgroup of K with −1 ∈ G.
Assume µ(G) > 0.
Then {0} /∈ NG i.e. {0} 6= ⋂n

i=1 ai · (G + 1) for all
a1, . . . , an ∈ K×.



Proof: (sketch) Let a1, . . . , an ∈ K×.

Let i ∈ {1, . . . , n} and x ∈ G.

We have x ∈ {t ∈ G | 1 ∈ (ai · G + t · ai)} iff there exists g ∈ G
s.th. 1 = ai · g + x · ai iff 1

ai
− x ∈ G iff x ∈ G + 1

ai
. Hence

⋂n
i=1 {t ∈ G | 1 ∈ (ai · G + t · ai)} =

⋂n
i=1

(

G + 1
ai

)

∩ G.

µ
(

⋂m
i=1

(

G + 1
ai

)

∩ (G + 0)
)

= µ(G) > 0 and therefore there

exists t0 ∈ ⋂m
i=1 {t ∈ G | 1 ∈ (ai · G + t · ai)}.

As t0 ∈ G and G is a multiplicative group we have

0 6= 1
t0
∈ ⋂m

i=1

(

ai · 1
t0
· G + ai

)

=
⋂m

i=1 (ai · G + ai). �
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Lemma

Let G = (K×)q for some prime q and (K× : (K×)q) < ∞.
Then µ(G) > 0.

Corollary

Let G = (K×)q for some prime q and (K× : (K×)q) < ∞.
Assume −1 ∈ G.
Then {0} /∈ NG.
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Proposition (K.D.)

Let K be a dependent field,
√
−1 ∈ K and G = (K×)

q 6= K× for
q 6= char(K ). Let

(

K× : (K×)
q)

< ∞.
Assume that

(V 3)’ ∃ a1, . . . , an ∈ K×

⋂n
i=1 ai · (G + 1)−⋂n

i=1 ai · (G + 1) ⊆ G + 1

(V 4)’ ∃ a1, . . . , an ∈ K×

(
⋂n

i=1 ai · (G + 1)
)

·
(
⋂n

i=1 ai · (G + 1)
)

⊆ G + 1

(V 6)’ ∃ a1, . . . , an ∈ K× ∀ x , y ∈ K
x · y ∈ ⋂n

i=1 ai · (G + 1)
⇒ x ∈ G + 1 ∨ y ∈ G + 1

hold.
Then K admits a non-trivial definable valuation.


