Definable Valuation on dependent fields

Katharina Dupont

University of Konstanz Department of Mathematics

2019/01/21

Question

Let K be a dependent field. Under which conditions does K admit a non-trivial valuation ring $(\mathcal{O} \neq K)$ definable in $\mathcal{L}_{ring} = (0, 1; +, -, \cdot)$?

For the *p*-adic valuation on \mathbb{Q}_p we have

$$\mathcal{O}_{v_{p}} := \{ \boldsymbol{x} \in \mathbb{Q}_{p} \mid v_{p}(\boldsymbol{x}) \geq 0 \} = \{ \boldsymbol{x} \in \mathbb{Q}_{p} \mid \exists \boldsymbol{y} \ \boldsymbol{y}^{2} - \boldsymbol{y} = \boldsymbol{p} \cdot \boldsymbol{x}^{2} \}.$$

Definition

Let (K, v) be a valued field. We say v is a definable valuation if there exists an $\mathcal{L}_{ring} = \{0, 1; +, -, \cdot\}$ formula φ such that

$$\mathcal{O}_{v} := \{x \in K \mid v(x) \ge 0\} = \{x \in K \mid \varphi(x)\}$$

・ロト・雪・・雨・・雨・ 日・ うらの

For the *p*-adic valuation on \mathbb{Q}_p we have

$$\mathcal{O}_{v_{p}} := \{ x \in \mathbb{Q}_{p} \mid v_{p}(x) \geq 0 \} = \{ x \in \mathbb{Q}_{p} \mid \exists y \ y^{2} - y = p \cdot x^{2} \}.$$

Definition

Let (K, v) be a valued field. We say v is a definable valuation if there exists an $\mathcal{L}_{ring} = \{0, 1; +, -, \cdot\}$ formula φ such that

$$\mathcal{O}_{\mathsf{v}} := \{ \mathsf{x} \in \mathsf{K} \mid \mathsf{v}(\mathsf{x}) \ge \mathsf{0} \} = \{ \mathsf{x} \in \mathsf{K} \mid \varphi(\mathsf{x}) \}$$

< ロ > < 同 > < 回 > .

Let K be an algebraically closed field. Then the only definable valuation on K is the trivial valuation.

Example

Let K be an real closed field. Then the only definable valuation on K is the trivial valuation.

イロト イポト イヨト イヨト

э

Let K be an algebraically closed field. Then the only definable valuation on K is the trivial valuation.

Example

Let K be an real closed field. Then the only definable valuation on K is the trivial valuation.

イロト イポト イヨト イヨト

э

Fact

Let K be a field. There exists a non-trivial valuation on K if and only if there exists no finite field F such that K/F is an algebraic field extension.

From now on we assume that no fields are algebraic extensions of finite fields.

<ロト < 同ト < 三ト

Fact

Let K be a field. There exists a non-trivial valuation on K if and only if there exists no finite field F such that K/F is an algebraic field extension.

From now on we assume that no fields are algebraic extensions of finite fields.

< □ > < 同 > < 回 > <

Fact and Notation

Let (K, v) be a valued field. Then $\mathcal{B}_{v} := \{ \{ x \in K \mid v(x - a) > \gamma \} \mid \gamma \in \Gamma, a \in K \}$ is an open basis of a topolology \mathcal{T}_{v} on K.

э

イロト イ押ト イヨト イヨト

Definition and Lemma

Let *K* a field and $\mathcal{N} \subseteq \mathcal{P}(K)$ such that (V 1) $\bigcap \mathcal{N} := \bigcap_{U \in \mathcal{N}} U = \{0\}$ and $\{0\} \notin \mathcal{N}$ (V 2) $\forall U, V \in \mathcal{N} \exists W \in \mathcal{N} W \subseteq U \cap V$ (V 3) $\forall U \in \mathcal{N} \exists V \in \mathcal{N} V - V \subseteq U$ (V 4) $\forall U \in \mathcal{N} \forall x, y \in K \exists V \in \mathcal{N} (x + V) \cdot (y + V) \subseteq x \cdot y + U$ (V 5) $\forall U \in \mathcal{N} \forall x \in K^{\times} \exists V \in \mathcal{N} (x + V)^{-1} \subseteq x^{-1} + U$ (V 6) $\forall U \in \mathcal{N} \exists V \in \mathcal{N} \forall x, y \in K x \cdot y \in V \Rightarrow x \in U \lor y \in U$

Then

$$\mathcal{T}_{\mathcal{N}} := \{ U \subseteq K \mid \forall x \in U \exists V \in \mathcal{N} \ x + V \subseteq U \}$$

is a *V-topology* on *K*. \mathcal{N} is a basis of zero neighbourhoods of $\mathcal{T}_{\mathcal{N}}$.

Theorem

A topology is a V-topology if and only if it is induced by a non-trivial valuation or by a non-trivial absolute value.

イロト 不得 トイヨト イヨト

3

Theorem (Koenigsmann)

Let (K, v) be a valued field. Let v be non-trivial and henselian. Then there exists a non-trivial definable valuation on K if and only if K is not real closed and not separably closed.

< ロ > < 同 > < 臣 > < 臣 > .

Conjecture

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) = \#\{a \cdot (L^{\times})^q \mid a \in L^{\times}\} < \infty$. Then either *K* is algebraically closed or there exists a non-trivial

definable valuation on K.

Fact

Let L/K be a finite field extension and v a non-trivial definable valuation on L. Then $v|_K$ is a non-trivial definable valuation on K.

Fact

Let L/K be a finite field extension. If K is dependent, then L is dependent as well.

Conjecture

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) = \#\{a \cdot (L^{\times})^q \mid a \in L^{\times}\} < \infty$. Then either *K* is algebraically closed or there exists a non-trivial

definable valuation on K.

Fact

Let L/K be a finite field extension and v a non-trivial definable valuation on L. Then $v|_K$ is a non-trivial definable valuation on K.

Fact

Let L/K be a finite field extension. If K is dependent, then L is dependent as well.

Conjecture

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) = \#\{a \cdot (L^{\times})^q \mid a \in L^{\times}\} < \infty$. Then either *K* is algebraically closed or there exists a non-trivial

definable valuation on K.

Fact

Let L/K be a finite field extension and v a non-trivial definable valuation on L. Then $v|_K$ is a non-trivial definable valuation on K.

Fact

Let L/K be a finite field extension. If K is dependent, then L is dependent as well.

Let *K* be a field, $\sqrt{-1} \in K$ and $G = (K^{\times})^{q} \neq K^{\times}$ for $q \neq char(K)$. Let $(K^{\times} : (K^{\times})^{q}) < \infty$. Let $\mathcal{N}_{G} := \{\bigcap_{i=1}^{n} a_{i} \cdot (G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\}$. If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topo

there exists a non-trivial definable valuation on K.

_emma

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) < \infty$. Then there exists a finite field extension L/K and a prime $q \neq char(K)$ such that $L^{\times} \neq (L^{\times})^q$.

Let K be a field, $\sqrt{-1} \in K$ and $G = (K^{\times})^q \neq K^{\times}$ for $q \neq char(K)$. Let $(K^{\times} : (K^{\times})^q) < \infty$. Let $\mathcal{N}_G := \{\bigcap_{i=1}^n a_i \cdot (G+1) \mid n \in \mathbb{N}, a_i \in K^{\times}\}$. If \mathcal{N}_G is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

.emma

Let K be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) < \infty$. Then there exists a finite field extension L/K and a prime $q \neq char(K)$ such that $L^{\times} \neq (L^{\times})^q$.

Let K be a field, $\sqrt{-1} \in K$ and $G = (K^{\times})^q \neq K^{\times}$ for $q \neq char(K)$. Let $(K^{\times} : (K^{\times})^q) < \infty$. Let $\mathcal{N}_G := \{\bigcap_{i=1}^n a_i \cdot (G+1) \mid n \in \mathbb{N}, a_i \in K^{\times}\}$. If \mathcal{N}_G is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^{q}) < \infty$. Then there exists a finite field extension L/K and a prime $q \neq char(K)$ such that $L^{\times} \neq (L^{\times})^{q}$.

Let K be a field, $\sqrt{-1} \in K$ and $G = (K^{\times})^{q} \neq K^{\times}$ for $q \neq char(K)$. Let $(K^{\times} : (K^{\times})^{q}) < \infty$. Let $\mathcal{N}_{G} := \{\bigcap_{i=1}^{n} a_{i} \cdot (G+1) \mid n \in \mathbb{N}, a_{i} \in K^{\times}\}$. If \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology, then there exists a non-trivial definable valuation on K.

Lemma

Let *K* be a dependent field with $\sqrt{-1} \in K$. Assume that for all finite field extensions L/K and all $q \in \mathbb{N}$ prime $(L^{\times} : (L^{\times})^q) < \infty$. Then there exists a finite field extension L/K and a prime $q \neq char(K)$ such that $L^{\times} \neq (L^{\times})^q$. Let *K* be a field, $\sqrt{-1} \in K$ and $G = (K^{\times})^q \neq K^{\times}$ for $q \neq \operatorname{char}(K)$. Let $(K^{\times} : (K^{\times})^q) < \infty$. \mathcal{N}_G is a basis of neighbourhoods of zero of a V-topology if and only if

$$\begin{array}{l} (\vee 1) \ \bigcap_{U \in \mathcal{N}_G} U = \{0\} \text{ and} \\ \{0\} \notin \mathcal{N}_G \\ (\vee 2) \ \forall \ U, \ V \in \mathcal{N}_G \exists \ W \in \mathcal{N}_G \ W \subseteq U \cap V \\ (\vee 3) \ \forall \ U \in \mathcal{N}_G \exists \ V \in \mathcal{N}_G \\ V - V \subseteq U \\ (\vee 4) \ \forall \ U \in \mathcal{N}_G \ \forall \ x, \ y \in K \\ \exists \ V \in \mathcal{N}_G \ (x + V) \cdot (y + V) \subseteq x \cdot y + U \\ (\vee 5) \ \forall \ U \in \mathcal{N}_G \ \forall \ x \in K^{\times} \exists \ V \in \mathcal{N}_G \\ (x + V)^{-1} \subseteq x^{-1} + U \\ (\vee 6) \ \forall \ U \in \mathcal{N}_G \exists \ V \in \mathcal{N}_G \ \forall \ x, \ y \in K \\ x \cdot y \in V \\ \Rightarrow x \in U \ \lor \ y \in U \\ \end{array}$$

Let *K* be a field and $-1 \in G \subsetneq K^{\times}$ a multiplicative subgroup.

 \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology if and only if

```
\begin{array}{l} (V 1)' \checkmark \text{and} \\ \{0\} \notin \mathcal{N}_G \\ (V 2)' \checkmark \\ (V 3)' \exists V \in \mathcal{N}_G \ V - V \subseteq G + 1 \\ (V 4)' \exists V \in \mathcal{N}_G \ V \cdot V \subseteq G + 1 \\ (V 5)' \checkmark \\ (V 6)' \exists V \in \mathcal{N}_G \ \forall x, \ y \in K \ x \cdot y \in V \Rightarrow x \in G + 1 \lor y \in G + 1 \end{array}
```

Let *K* be a field and $-1 \in G \subsetneq K^{\times}$ a multiplicative subgroup.

 \mathcal{N}_{G} is a basis of neighbourhoods of zero of a V-topology if and only if

```
(V 1)' \checkmark \text{and} 
\{0\} \notin \mathcal{N}_{G}
(V 2)' \checkmark
(V 3)' \exists V \in \mathcal{N}_{G} \ V - V \subseteq G + 1
(V 4)' \exists V \in \mathcal{N}_{G} \ V \cdot V \subseteq G + 1
(V 5)' \checkmark
(V 6)' \exists V \in \mathcal{N}_{G} \ \forall x, y \in K \ x \cdot y \in V \implies x \in G + 1 \ \forall y \in G + 1
```

_emma

 $\mathcal{L}_{x}(A)$ is an algebra.

Definition

A *Keisler measure* μ over *A* in the variable *x* is a finitely additive probability measure on $\mathcal{L}_x(A)$.

Definition

Lemma

 $\mathcal{L}_{x}(A)$ is an algebra.

Definition

A *Keisler measure* μ over *A* in the variable *x* is a finitely additive probability measure on $\mathcal{L}_x(A)$.

Definition

Lemma

 $\mathcal{L}_x(A)$ is an algebra.

Definition

A *Keisler measure* μ over *A* in the variable *x* is a finitely additive probability measure on $\mathcal{L}_x(A)$.

Definition

Lemma

 $\mathcal{L}_x(A)$ is an algebra.

Definition

A *Keisler measure* μ over *A* in the variable *x* is a finitely additive probability measure on $\mathcal{L}_x(A)$.

Definition

Let K be an dependent field. Then there exists an additively and multiplicatively invariant definable Keisler measure on K.

From now on we will assume that K is dependent and μ is an additively and multiplicatively invariant definable Keisler measure on K.

ヘロト ヘアト ヘヨト

Let K be an dependent field. Then there exists an additively and multiplicatively invariant definable Keisler measure on K.

From now on we will assume that K is dependent and μ is an additively and multiplicatively invariant definable Keisler measure on K.

< ロ > < 同 > < 回 > .

Lemma

Let $a_0, \dots, a_m \in K$ and $X \subseteq K$ be definable. Then $\mu \left(\bigcap_{i=0}^m (a_i + X) \right) = \mu (X)$.

Let $G \subsetneq K^{\times}$ a multiplicative group subgroup of K with $-1 \in G$. Assume $\mu(G) > 0$. Then $\{0\} \notin \mathcal{N}_G$ i.e. $\{0\} \neq \bigcap_{i=1}^n a_i \cdot (G+1)$ for all $a_1, \ldots, a_n \in K^{\times}$.

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$.

Let $i \in \{1, ..., n\}$ and $x \in G$.

We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^n \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^n \left(G + \frac{1}{a_i}\right) \cap G$.

 $\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right)\cap\left(G+0\right)\right)=\mu(G)>0 \text{ and therefore there}$ exists $t_{0}\in\bigcap_{i=1}^{m}\left\{t\in G\mid 1\in\left(a_{i}\cdot G+t\cdot a_{i}\right)\right\}.$

As $t_0 \in G$ and G is a multiplicative group we have $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m (a_i \cdot G + a_i).$

・ロト・日本・日本・日本・日本・日本

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$.

Let $i \in \{1, \ldots, n\}$ and $x \in G$.

We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^n \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^n \left(G + \frac{1}{a_i}\right) \cap G$.

 $\mu\left(\bigcap_{i=1}^{m}\left(G+\frac{1}{a_{i}}\right)\cap\left(G+0\right)\right)=\mu(G)>0 \text{ and therefore there}$ exists $t_{0}\in\bigcap_{i=1}^{m}\left\{t\in G\mid 1\in\left(a_{i}\cdot G+t\cdot a_{i}\right)\right\}.$

As $t_0 \in G$ and G is a multiplicative group we have $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m (a_i \cdot G + a_i).$ *Proof:* (sketch) Let $a_1, \ldots, a_n \in K^{\times}$.

Let $i \in \{1, ..., n\}$ and $x \in G$.

We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^n \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^n \left(G + \frac{1}{a_i}\right) \cap G.$

 $\mu\left(\bigcap_{i=1}^{m}\left(G+rac{1}{a_{i}}
ight)\cap\left(G+0
ight)
ight)=\mu(G)>0$ and therefore there exists $t_{0}\in\bigcap_{i=1}^{m}\left\{t\in G\mid 1\in\left(a_{i}\cdot G+t\cdot a_{i}
ight)
ight\}.$

As $t_0 \in G$ and G is a multiplicative group we have $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m \left(a_i \cdot G + a_i \right).$

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, ..., n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence

 $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m \left(a_i \cdot G + a_i \right).$

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, ..., n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence

 $0\neq \tfrac{1}{t_0}\in \bigcap_{i=1}^m \left(a_i\cdot \tfrac{1}{t_0}\cdot G+a_i\right)=\bigcap_{i=1}^m \left(a_i\cdot G+a_i\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ シック・

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, \ldots, n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^n \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^n (G + \frac{1}{a_i}) \cap G$.

 $\mu\left(\bigcap_{i=1}^{m}\left(G+rac{1}{a_{i}}
ight)\cap\left(G+0
ight)
ight)=\mu(G)>0$ and therefore there exists $t_{0}\in\bigcap_{i=1}^{m}\left\{t\in G\mid 1\in(a_{i}\cdot G+t\cdot a_{i})
ight\}.$

As $t_0 \in G$ and G is a multiplicative group we have $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m \left(a_i \cdot G + a_i \right).$

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, ..., n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^{n} \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^{n} \left(G + \frac{1}{a_i}\right) \cap G.$ $\mu\left(\bigcap_{i=1}^{m}\left(G+rac{1}{a_{i}}
ight)\cap\left(G+0
ight)
ight)=\mu(G)>0$ and therefore there

▲ロと▲聞と▲臣と▲臣と 臣 のんの

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, ..., n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a}$. Hence $\bigcap_{i=1}^{n} \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^{n} \left(G + \frac{1}{a_i}\right) \cap G.$ $\mu\left(\bigcap_{i=1}^{m}\left(\mathbf{G}+\frac{1}{a_{i}}\right)\cap\left(\mathbf{G}+\mathbf{0}\right)\right)=\mu(\mathbf{G})>0$ and therefore there exists $t_0 \in \bigcap_{i=1}^m \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$.

 $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m \left(a_i \cdot G + a_i \right).$

Proof: (sketch) Let $a_1, \ldots, a_n \in K^{\times}$. Let $i \in \{1, ..., n\}$ and $x \in G$. We have $x \in \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$ iff there exists $g \in G$ s.th. $1 = a_i \cdot g + x \cdot a_i$ iff $\frac{1}{a_i} - x \in G$ iff $x \in G + \frac{1}{a_i}$. Hence $\bigcap_{i=1}^{n} \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\} = \bigcap_{i=1}^{n} \left(G + \frac{1}{a_i}\right) \cap G.$ $\mu\left(\bigcap_{i=1}^{m}\left(\mathbf{G}+\frac{1}{a_{i}}\right)\cap\left(\mathbf{G}+\mathbf{0}\right)\right)=\mu(\mathbf{G})>0$ and therefore there exists $t_0 \in \bigcap_{i=1}^m \{t \in G \mid 1 \in (a_i \cdot G + t \cdot a_i)\}$. As $t_0 \in G$ and G is a multiplicative group we have $0 \neq \frac{1}{t_0} \in \bigcap_{i=1}^m \left(a_i \cdot \frac{1}{t_0} \cdot G + a_i \right) = \bigcap_{i=1}^m \left(a_i \cdot G + a_i \right).$

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Lemma

Let $G = (K^{\times})^q$ for some prime q and $(K^{\times} : (K^{\times})^q) < \infty$. Then $\mu(G) > 0$.

Corollary

Let $G = (K^{\times})^q$ for some prime q and $(K^{\times} : (K^{\times})^q) < \infty$. Assume $-1 \in G$. Then $\{0\} \notin \mathcal{N}_G$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへの

Lemma

Let $G = (K^{\times})^q$ for some prime q and $(K^{\times} : (K^{\times})^q) < \infty$. Then $\mu(G) > 0$.

Corollary

Let $G = (K^{\times})^q$ for some prime q and $(K^{\times} : (K^{\times})^q) < \infty$. Assume $-1 \in G$. Then $\{0\} \notin \mathcal{N}_G$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへの

Proposition (K.D.)

Let K be a dependent field, $\sqrt{-1} \in K$ and $G = (K^{\times})^q \neq K^{\times}$ for $q \neq char(K)$. Let $(K^{\times}: (K^{\times})^{q}) < \infty$. Assume that $(\vee 3)' \exists a_1, \ldots, a_n \in K^{\times}$ $\bigcap_{i=1}^{n} a_i \cdot (G+1) - \bigcap_{i=1}^{n} a_i \cdot (G+1) \subseteq G+1$ $(\vee 4)' \exists a_1, \ldots, a_n \in K^{\times}$ $(\bigcap_{i=1}^{n} a_i \cdot (G+1)) \cdot (\bigcap_{i=1}^{n} a_i \cdot (G+1)) \subseteq G+1$ $(\vee 6)$ ' $\exists a_1, \ldots, a_n \in K^{\times} \forall x, y \in K$ $x \cdot y \in \bigcap_{i=1}^{n} a_i \cdot (G+1)$ $\Rightarrow x \in G + 1 \lor y \in G + 1$

< ロ > < 同 > < 臣 > < 臣 > .

hold.

Then K admits a non-trivial definable valuation.