Domination 000 Results and Questions

< □ > < 同 > < E > < E > E = 9000

## Domination and Products in Unstable Theories

Rosario Mennuni

University of Leeds

PhD project supervised by H.D. Macpherson and V. Mantova

Preprint about this available at https://arxiv.org/abs/1810.13279

Groups and NIP Leeds, 22nd January 2019

Results and Questions

#### Overview

Motivation and Main Result

T complete,  $\kappa$  large enough,  $\mathfrak{U}$  a  $\kappa$ -monster. Small = of size  $< \kappa$ .



Results and Questions

### Overview

Motivation and Main Result

T complete,  $\kappa$  large enough,  $\mathfrak{U}$  a  $\kappa$ -monster.  $Small = of size < \kappa$ . In [HHM] to  $\mathfrak{U}$  is associated  $(\widetilde{Inv}(\mathfrak{U}), \otimes) \coloneqq (S^{inv}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$ , and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson) In ACVF,  $\widetilde{Inv}(\mathfrak{U}) \cong \widetilde{Inv}(k) \times \widetilde{Inv}(\Gamma)$ .  $k := residue field, \Gamma := value group$ 



Results and Questions

## Overview

Motivation and Main Result

T complete,  $\kappa$  large enough,  $\mathfrak{U}$  a  $\kappa$ -monster.  $Small = of size < \kappa$ . In [HHM] to  $\mathfrak{U}$  is associated  $(\widetilde{Inv}(\mathfrak{U}), \otimes) := (S^{inv}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$ , and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson) In ACVF,  $\widetilde{Inv}(\mathfrak{U}) \cong \widetilde{Inv}(k) \times \widetilde{Inv}(\Gamma)$ .  $k := residue field, \Gamma := value group$ 

Theorem (M.)

There is a theory where  $(\widetilde{\mathrm{Inv}}(\mathfrak{U}), \otimes)$  is not well-defined.

Results and Questions

# Overview

Motivation and Main Result

T complete,  $\kappa$  large enough,  $\mathfrak{U}$  a  $\kappa$ -monster.  $Small = of size < \kappa$ . In [HHM] to  $\mathfrak{U}$  is associated  $(\widetilde{Inv}(\mathfrak{U}), \otimes) := (S^{inv}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$ , and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson) In ACVF,  $\widetilde{Inv}(\mathfrak{U}) \cong \widetilde{Inv}(k) \times \widetilde{Inv}(\Gamma)$ .  $k \coloneqq residue field, \Gamma \coloneqq value group$ 

Theorem (M.)

There is a theory where  $(\widetilde{Inv}(\mathfrak{U}), \otimes)$  is not well-defined.

In this talk:

- What is  $\widetilde{Inv}(\mathfrak{U})$ .
- What does such a theory look like.
- Properties of  $\sim_{\rm D}$ .
- Open questions, mostly in the  $\mathsf{NIP}$  unstable case.

Results and Questions

# Overview

#### Motivation and Main Result

T complete,  $\kappa$  large enough,  $\mathfrak{U}$  a  $\kappa$ -monster.  $Small = of size < \kappa$ . In [HHM] to  $\mathfrak{U}$  is associated  $(\widetilde{Inv}(\mathfrak{U}), \otimes) := (S^{inv}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$ , and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson) In ACVF,  $\widetilde{Inv}(\mathfrak{U}) \cong \widetilde{Inv}(k) \times \widetilde{Inv}(\Gamma)$ .  $_{k := residue field, \Gamma := value group (to be precise, they use <math>\overline{Inv}(\mathfrak{U})$ )

# Theorem (M.)

There is a theory where  $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$  is not well-defined. Nor is  $\overline{\operatorname{Inv}}(\mathfrak{U})$ .

In this talk:

- What is  $\widetilde{Inv}(\mathfrak{U})$ .
- What does such a theory look like.
- Properties of  $\sim_{\rm D}$ .
- Open questions, mostly in the  $\mathsf{NIP}$  unstable case.

Results and Questions

# Invariant Types

Canonical extension and product

#### Definition (A small)

p is A-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is *invariant* iff it is A-invariant for some small  $A \subset \mathfrak{U}$ .

Results and Questions

# Invariant Types

#### Canonical extension and product

#### Definition (A small)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is *invariant* iff it is A-invariant for some small  $A \subset \mathfrak{U}$ .

Example ( $T = \mathsf{DLO}$ , A small)  $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$ 

Results and Questions

## Invariant Types

Canonical extension and product

#### Definition (A small)

p is A-invariant iff whether  $p(x) \vdash \varphi(x;d)$  or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is *invariant* iff it is A-invariant for some small  $A \subset \mathfrak{U}$ .

Example ( $T = \mathsf{DLO}, A \mathsf{small}$ )  $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \not> A\}$ 

Results and Questions

# Invariant Types

#### Canonical extension and product

#### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is *invariant* iff it is A-invariant for some small  $A \subset \mathfrak{U}$ .

Example ( $T = \mathsf{DLO}, \mathbf{A}$  small)  $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$   $p_{A^+}$  $\varphi(x; d) \in (p \mid \mathfrak{UB}) \stackrel{\text{def}}{\longleftrightarrow} \text{ for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{\mathbf{A}} \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$ 

Results and Questions

# Invariant Types

#### $\label{eq:canonical extension and product} Canonical extension and product$

### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is invariant iff it is A-invariant for some small  $A \subset \mathfrak{U}$ .

Example ( $T = \mathsf{DLO}, A \mathsf{small}$ )  $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$   $p_{A^+}$  $\varphi(x; d) \in (p \mid \mathfrak{U}B) \stackrel{\text{def}}{\longleftrightarrow} \text{ for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_A \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$ 

Using this, define  $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b$   $(b \vDash q)$ 

しょう 日間 エルマ・エット 二日マ

Results and Questions

# Invariant Types

#### $\label{eq:canonical extension and product} Canonical extension and product$

### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is invariant iff it is A-invariant for some small  $A \subset \mathfrak{U}$ . Example  $(T = \mathsf{DLO}, A \text{ small})$   $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \not> A\}$   $p_{A^+}(x) \otimes p_{A^+}(y)$  $\varphi(x; d) \in (p \mid \mathfrak{U}B) \stackrel{\text{def}}{\Longrightarrow}$  for  $\tilde{d} \in \mathfrak{U}$  such that  $d \equiv_A \tilde{d}$ , we have  $\varphi(x; \tilde{d}) \in p$ .

Using this, define  $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b$   $(b \models q)$ 

しょう 日間 エルマ・エット 二日マ

Results and Questions

# Invariant Types

#### $\label{eq:canonical extension and product} Canonical extension and product$

#### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is invariant iff it is A-invariant for some small  $A \subset \mathfrak{U}$ . Example  $(T = \mathsf{DLO}, A \text{ small})$   $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \not> A\}$   $p_{A^+}(x) \otimes p_{A^+}(y)$  $\varphi(x; d) \in (p \mid \mathfrak{U}B) \stackrel{\text{def}}{\Longrightarrow}$  for  $\tilde{d} \in \mathfrak{U}$  such that  $d \equiv_A \tilde{d}$ , we have  $\varphi(x; \tilde{d}) \in p$ .

Using this, define  $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b$   $(b \models q)$ 

シック 単則 ふかく ホット きゃく

Results and Questions

# Invariant Types

#### $\label{eq:canonical extension and product} Canonical extension and product$

### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is invariant iff it is A-invariant for some small  $A \subset \mathfrak{U}$ . Example  $(T = \mathsf{DLO}, A \text{ small})$   $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$   $p_{A^+}(x) \otimes p_{A^+}(y) \vdash x < y$  $p_{A^+}(x) \coloneqq (p \mid \mathfrak{U}B) \stackrel{\text{def}}{\longleftrightarrow}$  for  $\tilde{d} \in \mathfrak{U}$  such that  $d \equiv_A \tilde{d}$ , we have  $\varphi(x; \tilde{d}) \in p$ .

Using this, define  $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b$   $(b \vDash q)$ 

しょう 日間 エルマ・エット 二日マ

Results and Questions

# Invariant Types

#### $\label{eq:canonical extension and product} Canonical extension and product$

### Definition (A small, B arbitrary)

p is *A*-invariant iff whether  $p(x) \vdash \varphi(x; d)$  or not depends only on  $\operatorname{tp}(d/A)$ .

E.g. if p is A-definable or finitely satisfiable in A. Say  $p \in S(\mathfrak{U})$  is invariant iff it is A-invariant for some small  $A \subset \mathfrak{U}$ . Example  $(T = \mathsf{DLO}, A \mathsf{small})$  $p_{A+}(x) := \{x < d \mid d > A\} \cup \{x > d \mid d \not> A\} \qquad p_{A+}(x) \otimes p_{A+}(y) \vdash x < y$  $\varphi(x;d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_A \tilde{d}, \text{ we have } \varphi(x;\tilde{d}) \in p.$ Using this, define  $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b$   $(b \models q)$ Fact

 $\otimes \text{ is associative.} \otimes \text{ commutative } \iff T \text{ stable (it's the usual } (a,b) \vDash p \otimes q \iff a \downarrow b).$ 

Definition (Domination preorder on  $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$ )  $p_x \ge_{\mathrm{D}} q_y$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xy}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \ge_{\mathrm{D}} q \ge_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ . Equidominance  $p \equiv_{\mathrm{D}} q$  means  $p \ge_{\mathrm{D}} q \ge_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ . Equidominance  $p \equiv_{\mathrm{D}} q$  means  $p \ge_{\mathrm{D}} q \ge_{\mathrm{D}} p$ , witnessed by the same r and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}$ .

 $\text{For }T\text{ stable, it's the usual }p\geq_{\mathcal{D}}q\iff \exists a\vDash p,b\vDash q\;\forall d\;d\bigsqcup_{\mathfrak{U}}a\Longrightarrow d\bigsqcup_{\mathfrak{U}}b.$ 

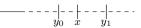
◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Definition (Domination preorder on  $S^{\text{inv}}_{<\omega}(\mathfrak{U})$ )  $p_x \geq_{\mathbf{D}} q_y$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xy}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ .  $Equidominance \ p \equiv_{\mathrm{D}} q \ \text{means} \ p \geq_{\mathrm{D}} q \ p, \ witnessed \ by \ the \ same \ r \ \text{and} \ \overline{\mathrm{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}.$ For T stable, it's the usual  $p \ge_D q \iff \exists a \vDash p, b \vDash q \; \forall d \; d \underset{\mathfrak{i}\mathfrak{l}}{\downarrow} a \Longrightarrow d \underset{\mathfrak{i}\mathfrak{l}}{\downarrow} b$ . Example (DLO, all types below are  $\emptyset$ -invariant)  $\operatorname{tp}(x > \mathfrak{U})$ 

しょう 日間 エルマ・エット 二日マ

-----

Definition (Domination preorder on  $S_{<\omega}^{\text{inv}}(\mathfrak{U})$ )  $p_x \geq_{\mathbf{D}} q_u$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xu}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ . Equidominance  $p \equiv_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , witnessed by the same r and  $\overline{\mathrm{Inv}}(\mathfrak{U}) \coloneqq S_{\mathrm{evo}}^{\mathrm{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}$ . For T stable, it's the usual  $p \ge_D q \iff \exists a \vDash p, b \vDash q \; \forall d \; d \underset{\mathfrak{i}\mathfrak{l}}{\downarrow} a \Longrightarrow d \underset{\mathfrak{i}\mathfrak{l}}{\downarrow} b$ . Example (DLO, all types below are  $\emptyset$ -invariant)  $\operatorname{tp}(x > \mathfrak{U}) \quad \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$ 



Definition (Domination preorder on  $S_{<\omega}^{\text{inv}}(\mathfrak{U})$ )  $p_x \geq_{\mathbf{D}} q_y$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xy}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ . Equidominance  $p \equiv_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , witnessed by the same r and  $\overline{\mathrm{Inv}}(\mathfrak{U}) \coloneqq S_{\mathrm{evo}}^{\mathrm{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}$ . For T stable, it's the usual  $p \ge_D q \iff \exists a \vDash p, b \vDash q \; \forall d \; d \; \bigcup_{ij} a \Longrightarrow d \; \bigcup_{ij} b$ . Example (DLO, all types below are  $\emptyset$ -invariant)  $\operatorname{tp}(x > \mathfrak{U}) \geq_{\mathbf{D}} \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$  ("glue x and  $y_0$ ", i.e.  $r \coloneqq \{y_0 = x\} \cup \ldots$ )

$$y_0 = x$$
  $y_1$ 

Definition (Domination preorder on  $S_{<\omega}^{\text{inv}}(\mathfrak{U})$ )  $p_x \geq_{\mathbf{D}} q_y$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xy}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ .  $Equidominance \ p \equiv_{\mathrm{D}} q \ \text{means} \ p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p, \ witnessed \ by \ the \ same \ r \ \mathrm{and} \ \overline{\mathrm{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}.$ For T stable, it's the usual  $p \ge_D q \iff \exists a \vDash p, b \vDash q \; \forall d \; d \; \bigcup_{ij} a \Longrightarrow d \; \bigcup_{ij} b$ . Example (DLO, all types below are  $\emptyset$ -invariant)  $\operatorname{tp}(x > \mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$  ("glue x and  $y_0$ ", i.e.  $r \coloneqq \{y_0 = x\} \cup \ldots$ )

#### Example (Random Graph)

 $p \geq_{\mathrm{D}} q \iff p \supseteq q$  after renaming/duplicating variables and ignoring realised ones.

Definition (Domination preorder on  $S_{<\omega}^{\text{inv}}(\mathfrak{U})$ )  $p_x \geq_{\mathbf{D}} q_u$  iff there are a small  $A \subset \mathfrak{U}$  and  $r \in S_{xu}(A)$  such that: p, q are A-invariant,  $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$ , and  $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence  $p \sim_{\mathrm{D}} q$  means  $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$ , and  $\operatorname{Inv}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$ .  $Equidominance \ p \equiv_{\mathrm{D}} q \ \text{means} \ p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p, \ witnessed \ by \ the \ same \ r \ \mathrm{and} \ \overline{\mathrm{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}) / \equiv_{\mathrm{D}}.$ For T stable, it's the usual  $p \ge_{\mathcal{D}} q \iff \exists a \vDash p, b \vDash q \; \forall d \; d \; \bigcup_{\mathcal{U}} a \Longrightarrow d \; \bigcup_{\mathcal{U}} b$ . Example (DLO, all types below are  $\emptyset$ -invariant)  $\operatorname{tp}(x > \mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$  ("glue x and  $y_0$ ", i.e.  $r \coloneqq \{y_0 = x\} \cup \ldots$ )

 $\frac{1}{y_0 = x} \frac{y_1}{y_1}$ 

Example (Random Graph, or a set with no structure (degenerate domination))  $p \ge_{\mathrm{D}} q \iff p \supseteq q$  after renaming/duplicating variables and ignoring realised ones.

Domination ○●○ Results and Questions

# Is $\otimes$ a Congruence with respect to $\sim_D?$ Or: is $(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes)$ well-defined?

#### Lemma

If  $p_0$  is invariant and  $p_0 \cup r \vdash p_1$ , then  $(p_1 \text{ is invariant and})$   $(p_0 \mid B) \cup r \vdash (p_1 \mid B)$ . In particular, if  $p_0 \geq_D p_1$ , then  $p_0 \otimes q \geq_D p_1 \otimes q$ .

#### Question

Does  $q_0 \ge_D q_1$  imply  $p \otimes q_0 \ge_D p \otimes q_1$ ?

Domination ○●○ Results and Questions

# Is $\otimes$ a Congruence with respect to $\sim_D?$ Or: is $(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes)$ well-defined?

#### Lemma

If  $p_0$  is invariant and  $p_0 \cup r \vdash p_1$ , then  $(p_1 \text{ is invariant and})$   $(p_0 \mid B) \cup r \vdash (p_1 \mid B)$ . In particular, if  $p_0 \geq_D p_1$ , then  $p_0 \otimes q \geq_D p_1 \otimes q$ .

#### Question

Does  $q_0 \ge_D q_1$  imply  $p \otimes q_0 \ge_D p \otimes q_1$ ? SPOILER: No.

Domination ○●○ Results and Questions

# Is $\otimes$ a Congruence with respect to $\sim_D?$ Or: is $(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes)$ well-defined?

#### Lemma

If  $p_0$  is invariant and  $p_0 \cup r \vdash p_1$ , then  $(p_1 \text{ is invariant and})$   $(p_0 \mid B) \cup r \vdash (p_1 \mid B)$ . In particular, if  $p_0 \geq_D p_1$ , then  $p_0 \otimes q \geq_D p_1 \otimes q$ .

#### Question

Does  $q_0 \ge_D q_1$  imply  $p \otimes q_0 \ge_D p \otimes q_1$ ?

The answer is affirmative if T is for instance stable, binary, or if  $\geq_{\mathrm{D}}$  can always be witnessed by definable functions. These are all instances of a <sub>(fairly ugly)</sub> general condition called *stationary domination* (more on this <u>here</u>).

Domination ○●○ Results and Questions

# Is $\otimes$ a Congruence with respect to $\sim_D?$ Or: is $(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes)$ well-defined?

#### Lemma

If  $p_0$  is invariant and  $p_0 \cup r \vdash p_1$ , then  $(p_1 \text{ is invariant and})$   $(p_0 \mid B) \cup r \vdash (p_1 \mid B)$ . In particular, if  $p_0 \geq_D p_1$ , then  $p_0 \otimes q \geq_D p_1 \otimes q$ .

#### Question

Does  $q_0 \geq_{\mathrm{D}} q_1$  imply  $p \otimes q_0 \geq_{\mathrm{D}} p \otimes q_1$ ?

The answer is affirmative if T is for instance stable, binary, or if  $\geq_{\mathrm{D}}$  can always be witnessed by definable functions. These are all instances of a <sub>(fairly ugly)</sub> general condition called *stationary domination* (more on this here).

#### Fact

If for T the answer to the question above is "yes", then  $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}})$  is an ordered monoid. The neutral element (and minimum) is the (unique) class of realised types, and nothing else is invertible  $(p \otimes q \text{ realised} \Longrightarrow p, q \text{ both realised!})$ .

Domination

Results and Questions

## Examples

(In all of these stationary domination holds and  $\widetilde{\mathrm{Inv}}(\mathfrak{U})=\overline{\mathrm{Inv}}(\mathfrak{U}))$ 

 $T \text{ strongly minimal (see here)} \\ (\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathbb{N}, +, \leq).$ 

(for T stable,  $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$  is unidimensional, e.g. countable and  $\aleph_1$ -categorical, or  $\operatorname{Th}(\mathbb{Z}, +)$ )



Results and Questions

## Examples

(In all of these stationary domination holds and  $\widetilde{\mathrm{Inv}}(\mathfrak{U})=\overline{\mathrm{Inv}}(\mathfrak{U}))$ 

 $T \text{ strongly minimal (see here)} \\ (\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathbb{N}, +, \leq).$ 

(for T stable,  $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$  is unidimensional, e.g. countable and  $\aleph_1$ -categorical, or  $\mathrm{Th}(\mathbb{Z}, +)$ )

#### T superstable (*thin* is enough)

By classical results  $\operatorname{Inv}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$ , for some  $\lambda = \lambda(\mathfrak{U})$ .

Domination ○○● Results and Questions

# Examples

(In all of these stationary domination holds and  $\widetilde{\mathrm{Inv}}(\mathfrak{U})=\overline{\mathrm{Inv}}(\mathfrak{U}))$ 

 $T \text{ strongly minimal (see here)} \\ (\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathbb{N}, +, \leq).$ 

(for T stable,  $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$  is unidimensional, e.g. countable and  $\aleph_1$ -categorical, or  $\mathrm{Th}(\mathbb{Z}, +)$ )

#### T superstable (thin is enough)

By classical results  $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$ , for some  $\lambda = \lambda(\mathfrak{U})$ .

 $\begin{array}{l} \mathsf{DLO} \ (\texttt{see here}) \\ (\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes,\leq_D) \cong (\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant} \ \mathrm{cuts}\}),\cup,\subseteq) \ {}_{\mathrm{Invariant}} \ \mathrm{cut} = \mathrm{small} \ \mathrm{cofinality} \ \mathrm{on} \ \mathrm{exactly} \ \mathrm{one} \ \mathrm{side}. \end{array}$ 

Domination ○○● Results and Questions

# Examples

(In all of these stationary domination holds and  $\widetilde{\mathrm{Inv}}(\mathfrak{U})=\overline{\mathrm{Inv}}(\mathfrak{U}))$ 

 $T \text{ strongly minimal (see here)} \\ (\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathbb{N}, +, \leq).$ 

(for T stable,  $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$  is unidimensional, e.g. countable and  $\aleph_1$ -categorical, or  $\mathrm{Th}(\mathbb{Z}, +)$ )

#### T superstable (*thin* is enough)

By classical results  $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$ , for some  $\lambda = \lambda(\mathfrak{U})$ .

DLO (see here)  $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant\ cuts}\}), \cup, \subseteq)$  Invariant cut = small cofinality on exactly one side.

Random Graph (see [here])  $\sim_{\mathrm{D}}$  is degenerate,  $(\widetilde{\mathrm{Inv}}(\mathfrak{U}), \otimes)$  resembles  $(S^{\mathrm{inv}}_{<\omega}(\mathfrak{U}), \otimes)$ , e.g. it is noncommutative.

Domination

Results and Questions  $\bullet \circ \circ$ 

## A Counterexample

(with SOP and  $IP_2$ )

Idea:

#### DLO

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Domination 000 Results and Questions  $\bullet \circ \circ$ 

## A Counterexample

(with SOP and  $IP_2$ )

Idea: 2-coloured DLO

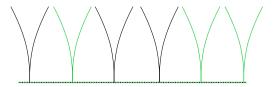


Domination 000 Results and Questions  $\bullet \circ \circ$ 

#### A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO

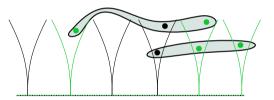


Results and Questions

# A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on triples of fibers:

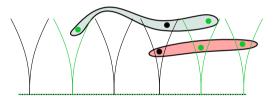


Results and Questions

# A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ 

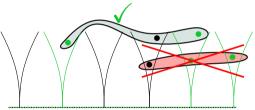


Results and Questions

## A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)

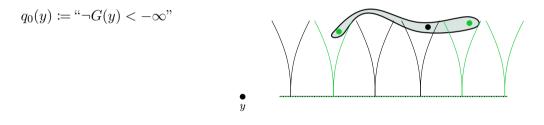


Results and Questions

## A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)

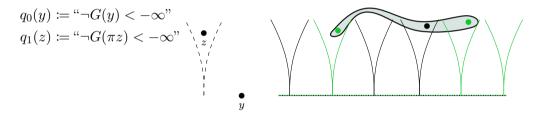


Results and Questions

### A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)

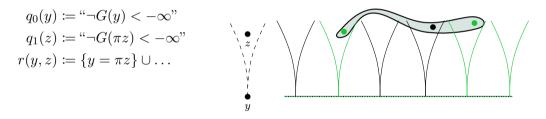


Results and Questions

## A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)



 $q_0 \cup r \vdash q_1$ : no hyperedges to decide.

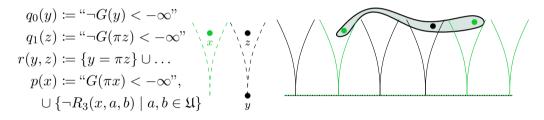
◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Results and Questions

## A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)



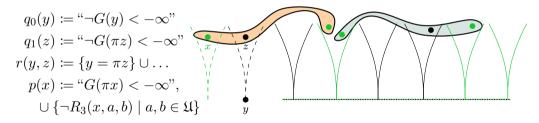
 $q_0 \cup r \vdash q_1$ : no hyperedges to decide.

Results and Questions

## A Counterexample

(with SOP and  $IP_2$ )

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)



 $q_0 \cup r \vdash q_1$ : no hyperedges to decide. But does  $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$ ?

(日) (日) (日) (日) (日) (日) (日)

Results and Questions

## A Counterexample

(with SOP and IP<sub>2</sub>)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)  $q_0(y) \coloneqq "\neg G(y) < -\infty"$   $q_1(z) \coloneqq "\neg G(\pi z) < -\infty"$   $r(y, z) \coloneqq \{y = \pi z\} \cup \dots$   $p(x) \coloneqq "G(\pi x) < -\infty",$  $\cup \{\neg R_3(x, a, b) \mid a, b \in \mathfrak{U}\}$ 

 $q_0 \cup r \vdash q_1$ : no hyperedges to decide. But does  $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$ ? No: even with x = t no small type can decide all hyperedges involving x and z!

Results and Questions

## A Counterexample

(with SOP and IP<sub>2</sub>)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers:  $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$  (for some permutation of x, z, w)  $q_0(y) \coloneqq "\neg G(y) < -\infty"$   $q_1(z) \coloneqq "\neg G(\pi z) < -\infty"$   $r(y, z) \coloneqq \{y = \pi z\} \cup \dots$   $p(x) \coloneqq "G(\pi x) < -\infty",$  $\cup \{\neg R_3(x, a, b) \mid a, b \in \mathfrak{U}\}$ 

 $q_0 \cup r \vdash q_1$ : no hyperedges to decide. But does  $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$ ? No: even with x = t no small type can decide all hyperedges involving x and z! There is a supersimple version (here). Also works for a number of (variations) of  $\sim_D$ .

< □ ト < □ ト < □ ト < □ ト < □ ト < □ ト < □ □ < の < ○</p>

## Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO).

# Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If  $p \geq_{\mathrm{D}} q$  and p has any of the following properties, then so does q:

- Definability
- Finite satisfiability
- Generic stability
- Weak orthogonality to a fixed type



# Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If  $p \geq_{\mathbf{D}} q$  and p has any of the following properties, then so does q:

- Definability (over *some* small set, not necessarily the same as q)
- Finite satisfiability (in *some* small set, not necessarily the same as q)
- Generic stability (over *some* small set, not necessarily the same as q)
- Weak orthogonality to a fixed type

Generic stability is particularly interesting:

- It is possible to have  $\widetilde{Inv}(\mathfrak{U}) \neq \widetilde{Inv}(\mathfrak{U}^{eq})$  (more g.s. types, e.g.  $\mathsf{DLO}$ +dense eq. rel.).
- Using [Tan], strongly regular g.s. types are  $\leq_D$ -minimal (among the nonrealised ones).
- $(\widetilde{\operatorname{Inv}}^{gs}(\mathfrak{U}), \otimes, \leq_D)$  makes sense in any theory (can be trivial).

Results and Questions  $\circ \circ \bullet$ 

# Questions/Work in Progress

### Questions

1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\widetilde{\mathrm{Inv}}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?



Results and Questions  $\circ \circ \bullet$ 

< □ > < 同 > < E > < E > E = 9000

# Questions/Work in Progress

### Questions

- 1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\operatorname{Inv}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?
- 2. If so, is  $Inv(\mathfrak{U})$  commutative? (The answer is no for  $Inv(\mathfrak{U})$  (See here))

# Questions/Work in Progress

### Questions

- 1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\widetilde{\mathrm{Inv}}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?
- 2. If so, is  $Inv(\mathfrak{U})$  commutative? (The answer is no for  $Inv(\mathfrak{U})$  (See here))
- 3. Dependence of  $\widetilde{Inv}(\mathfrak{U})$  on  $\mathfrak{U}$  in the stable non-thin and NIP unstable cases?
  - IP case is clear: cardinality grows.
  - Stable thin case is clear: multidimensionality. More on this

# Questions/Work in Progress

### Questions

- 1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\widetilde{\mathrm{Inv}}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?
- 2. If so, is  $Inv(\mathfrak{U})$  commutative? (The answer is no for  $Inv(\mathfrak{U})$  (See here))
- 3. Dependence of  $\widetilde{Inv}(\mathfrak{U})$  on  $\mathfrak{U}$  in the stable non-thin and NIP unstable cases?
  - IP case is clear: cardinality grows.
  - Stable thin case is clear: multidimensionality. (More on this)
- 4. Can  $\widetilde{Inv}(\mathfrak{U})$  be finite? (*T* must be NIP unstable)

# Questions/Work in Progress

### Questions

- 1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\widetilde{\mathrm{Inv}}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?
- 2. If so, is  $Inv(\mathfrak{U})$  commutative? (The answer is no for  $Inv(\mathfrak{U})$  (See here))
- 3. Dependence of  $\widetilde{Inv}(\mathfrak{U})$  on  $\mathfrak{U}$  in the stable non-thin and NIP unstable cases?
  - IP case is clear: cardinality grows.
  - Stable thin case is clear: multidimensionality. More on this
- 4. Can  $\widetilde{Inv}(\mathfrak{U})$  be finite? (*T* must be NIP unstable)
- 5. What does the smallest  $\otimes$ -congruence generated by  $\sim_{\mathrm{D}}$  look like?

< □ > < 個 > < 注 > < 注 > < 注 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Questions/Work in Progress

### Questions

- 1. Known counterexamples use  $\mathsf{IP}_2$  heavily. Is  $\widetilde{\mathrm{Inv}}(\mathfrak{U})$  well-defined under  $\mathsf{NIP}$ ?
- 2. If so, is  $Inv(\mathfrak{U})$  commutative? (The answer is no for  $Inv(\mathfrak{U})$  (See here))
- 3. Dependence of  $\widetilde{Inv}(\mathfrak{U})$  on  $\mathfrak{U}$  in the stable non-thin and NIP unstable cases?
  - IP case is clear: cardinality grows.
  - Stable thin case is clear: multidimensionality. More on this
- 4. Can  $\widetilde{\text{Inv}}(\mathfrak{U})$  be finite? (*T* must be NIP unstable)
- 5. What does the smallest  $\otimes$ -congruence generated by  $\sim_D$  look like?

# Thanks for listening!

https://arxiv.org/abs/1810.13279

# Bibliography

(this is not a proper bibliography, it's just a list of the sources mentioned in these slides)

#### [HHM] D. HASKELL, E. HRUSHOVSKI and D. MACPHERSON,

Stable Domination and Independence in Algebraically Closed Valued Fields, Lecture Notes in Logic 30, Cambridge University Press 2007.

[Men] R. Mennuni,

Product of Invariant Types Modulo Domination-Equivalence, preprint, available at https://arxiv.org/abs/1810.13279.

#### [Pil] A. Pillay,

Geometric Stability Theory, Oxford Logic Guides 32, Oxford University Press 1996.

#### [Poi] B. Poizat,

A Course in Model Theory, Universitext, Springer 2000.

#### [Tan] P. TANOVIĆ,

Generically stable regular types, The Journal of Symbolic Logic, 80:308–321 (2015).

#### [Wag] F.O. WAGNER,

Simple Theories,

## More examples: Branches

#### Example

Let T be the theory in the language  $\{P_{\sigma} \mid \sigma \in 2^{<\omega}\}$  asserting that every point belongs to every  $P_{\eta \mid n}$  for exactly one  $\eta \in 2^{\omega}$ . Then  $\operatorname{Inv}(\mathfrak{U}) \cong \bigoplus_{2^{\aleph_0}} \mathbb{N}$ . Basically,  $\operatorname{Inv}(\mathfrak{U})$  here is counting how many new points are in a "branch".

# More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes). A set of generators for  $\widetilde{Inv}(\mathfrak{U})$  looks like this:

- a single  $\sim_D$ -class  $\llbracket 0 \rrbracket$  for realised types
- if  $p_a(x) \coloneqq \{E(x,a)\} \cup \{x \notin \mathfrak{U}\}$ , then  $\llbracket p_a \rrbracket = \llbracket p_b \rrbracket$  if and only if  $\vDash E(a,b)$ ; corresponds to new points in an existing equivalence class
- a single  $\sim_{\mathbf{D}}$ -class  $\llbracket p_g \rrbracket$ , where  $p_g \coloneqq \{\neg E(x, a) \mid a \in \mathfrak{U}\}$ ; corresponds to new equivalence classes.

The product adds new points/new classes. So, if  $\mathfrak{U}$  has  $\kappa$  equivalence classes,

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\mathbb{N}\oplus\bigoplus_{\kappa}\mathbb{N}$$

# More Examples: Cross-cutting Equivalence Relations

 $T_n := n$  generic equivalence relations  $E_i$ ; intersection of classes of different  $E_i$  always infinite. Here  $(\widetilde{Inv}(\mathfrak{U}), \otimes)$  is generated by:

- a single  $\sim_D$ -class  $\llbracket 0 \rrbracket$  for realised types
- if  $p_a(x) \coloneqq \{E_i(x, a) \mid i < n\} \cup \{x \notin \mathfrak{U}\}$ , then  $\llbracket p_a \rrbracket = \llbracket p_b \rrbracket$  if and only if  $\models \bigwedge_{i < n} E_i(a, b)$ ; corresponds to new points in  $E_i$ -relation with a for all i
- For each i < n, a class  $\llbracket p_i \rrbracket$  saying x is in a new  $E_i$  class, but in existing  $E_j$ -classes for  $j \neq i$  (does not matter which)

 $\operatorname{So}$ 

$$\widetilde{\mathrm{Inv}}(\mathfrak{U})\cong\prod_{i< n}\mathbb{N}\oplus \bigoplus_\kappa\mathbb{N}$$

Why  $\prod$  instead of  $\bigoplus$ ? If we allow, say,  $\aleph_0$  equivalence relations, then

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\prod_{i<\aleph_0}^{\operatorname{bdd}}\mathbb{N}\oplus\bigoplus_{\kappa}\mathbb{N}$$



# Other Notions

One can define a finer equivalence relation:

Definition

 $p \equiv_{\mathbf{D}} q$  is defined as  $p \sim_{\mathbf{D}} q$ , but by asking the same r to work in both directions:  $p \cup r \vdash q$  and  $q \cup r \vdash p$ .

Another notion classically studied is (see e.g. [Poi]):

## Definition

 $p \geq_{\rm RK} q$  iff every model realising p realises q.

This behaves best in totally transcendental theories (because of prime models). It corresponds to  $p(x) \cup \{\varphi(x, y)\} \vdash q(y)$ .

But even there, modulo  $\sim_{\rm RK}$  it is *not* true that every type decomposes as a product of  $\geq_{\rm RK}$ -minimal types (but in non-multidimensional totally transcendental theories every type decomposes as a product of strongly regular types).

A classical example where  $\geq_{\rm D}$  differs from  $\geq_{\rm RK}$ : generic equivalence relation with a bijection s such that  $\forall x \ E(x, s(x))$ .

# Hrushovski's Counterexample

### Example (Hrushovski)

In DLO plus a dense-codense predicate P,  $\overline{Inv}(\mathfrak{U})$  is not commutative.

### Proof idea.

Let  $p(x) \coloneqq \{P(x)\} \cup \{x > \mathfrak{U}\}$  and  $q(y) \coloneqq \{\neg P(x)\} \cup \{y > \mathfrak{U}\}$ . Then p, q do not commute, even modulo  $\equiv_{\mathbf{D}}$  (but they do modulo  $\sim_{\mathbf{D}}$ ).

The predicate P forbids to "glue" variables. One will be "left behind": e.g. if

 $r \vdash x_0 < y_0 < y_1 < x_1$ , knowing that  $y_1 > \mathfrak{U}$  does not imply  $x_0 > \mathfrak{U}$ .

In this case, for each cut C there are generators  $\llbracket p_{C,P} \rrbracket$  and  $\llbracket p_{C,\neg P} \rrbracket$ , with relations

- $\llbracket p_{C,P} \rrbracket \otimes \llbracket p_{C,P} \rrbracket = \llbracket p_{C,\neg P} \rrbracket \otimes \llbracket p_{C,P} \rrbracket = \llbracket p_{C,P} \rrbracket$
- (same relations swapping P and  $\neg P$ )

• 
$$[\![p_{C_0,-}]\!] \otimes [\![p_{C_1,-}]\!] = [\![p_{C_1,-}]\!] \otimes [\![p_{C_0,-}]\!]$$
 whenever  $C_0 \neq C_1$ .

# Stable Case

In a stable theory,  $\leq_D$ ,  $\sim_D$  and  $\equiv_D$  can be expressed in terms of forking: Definition (See e.g. [Pil])  $a \geq_E b$  iff, for all c,

$$a \underset{E}{\downarrow} c \Longrightarrow b \underset{E}{\downarrow} c$$

 $\begin{array}{l} p \triangleright_E q \ (p \ dominates \ q \ over \ E) \ \text{iff there are} \ a \vDash p \ \text{and} \ b \vDash q \ \text{such that} \ a \triangleright_E b \\ p \bowtie_E q \ (p \ \text{and} \ q \ \text{are} \ domination \ equivalent) \ \text{iff} \ p \triangleright_E q \triangleright_E p, \ \text{i.e. there are} \\ \underbrace{a}_{\vDash p} \stackrel{\triangleright_E}{\longrightarrow} \underbrace{b}_{\vDash q} \stackrel{\triangleright_E}{\longleftarrow} \underbrace{c}_{\vDash p} \\ p \doteq_E q \ (p \ \text{and} \ q \ \text{are} \ equidominant \ \text{over} \ E) \ \text{iff there are} \ a \vDash p \ \text{and} \ b \vDash q \ \text{such that} \\ a \triangleright_E b \triangleright_E a \end{array}$ 

These are well-behaved with non-forking extensions: we can drop  $_E$ .

# Comparison

### Proposition (T stable)

The previous definitions of  $\leq_D = \triangleleft$ ,  $\sim_D = \bowtie$  and  $\equiv_D = \doteq$ .

#### Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before,  $\sim_{\rm D}$  coincides with  $\equiv_{\rm D}$ .

Exception: in DLO with a predicate,  $(\overline{Inv}(\mathfrak{U}), \otimes)$  is not commutative, while  $(\widetilde{Inv}(\mathfrak{U}), \otimes)$  is (in fact, it is the same as in DLO).

### Fact (See [Wag, Example 5.2.9])

Even in the stable case,  $\sim_{\mathrm{D}}$  and  $\equiv_{\mathrm{D}}$  are generally different.

# Classical Results

In the thin case (generalises superstable), this is classical (e.g. [Pil]):

Theorem (T thin)  $\widetilde{Inv}(\mathfrak{U})$  is a direct sum of copies of  $\mathbb{N}$ . If T is moreover superstable,  $(\widetilde{Inv}(\mathfrak{U}), \otimes)$  is generated by  $\{\llbracket p \rrbracket \mid p \text{ regular}\}$ .

Superstability (even just thinness) implies that  $\equiv_{\rm D}$  and  $\sim_{\rm D}$  coincide.

The behaviour of  $\geq_{\mathrm{D}}$  in general seems related to the existence of some kind of prime models (in the stable case, "prime a-models" are the way to go). This seems to hint that, maybe, o-minimal theories are a good context to investigate. Also, some suitable generalisation of the Omitting Types Theorem would help.

# (Non-multi)Dimensionality

At least in the superstable case, independence of  $\widetilde{Inv}(\mathfrak{U})$  on  $\mathfrak{U}$  already had a name:

### Definition

T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over)  $\emptyset$ . If  $\mathfrak{U}_0 \prec^+ \mathfrak{U}_1$  one has a map  $\mathfrak{e} \colon \widetilde{\mathrm{Inv}}(\mathfrak{U}_0) \to \widetilde{\mathrm{Inv}}(\mathfrak{U}_1)$ .

Proposition (T thin)

 $\mathfrak{e}$  surjective  $\iff T$  dimensional.

### Question

Is this true under stability? It boils down to the image of  $\mathfrak{e}$  being downward closed. I suspect this should follow from classical results.  $\blacksquare$  Back

# Generically Stable Part

### Proposition

 $q \leq_{\mathrm{D}} p$  definable/finitely satisfiable/generically stable  $\Longrightarrow$  so is q.

As generically stable types commute with everything, in any theory the monoid generated by their classes is well-defined. (Warning: p generically stable  $\neq p \otimes p$  generically stable)

#### Hope

At least in special cases, get decompositions similar to  $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\widetilde{\operatorname{Inv}}(k)} \times \widetilde{\operatorname{Inv}}(\Gamma)$ . Probably one should really work in  $T^{eq}$ :

### Example

In  $T = \mathsf{DLO} + \text{equivalence relation with (no finite classes and infinitely many)}$  dense classes,  $Inv(\mathfrak{U})$  grows when passing to  $T^{eq}$ , which has more generically stable types.

### Question

How can the generically stable part look like?

g.s. part

# Interaction with Weak Orthogonality

### Definition

p(x) is weakly orthogonal to q(y) iff  $p \cup q$  is complete.

### Remark

Weakly orthogonal types commute.

## Proposition

Weak orthogonality strongly negates domination:  $q \perp^{w} p_0 \geq_{D} p_1 \Longrightarrow q \perp^{w} p_1$ . In particular if  $q \perp^{w} p \geq_{D} q$  then q is realised.

### Question

Under which conditions if  $p \not\perp^w q$  then they dominate a common nonzero class? Known:

- Superstable (or *thin*) is enough. (See here)
- Fails in the Random Graph.

 $f\in {\rm Aut}(\mathfrak{U})$  acts on  $p\in S(\mathfrak{U})$  by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$ 

< □ > < 同 > < E > < E > E = 9000

Consider this action restricted to  $\operatorname{Aut}(\mathfrak{U}/A)$ .

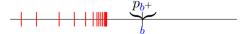
 $f\in {\rm Aut}(\mathfrak{U})$  acts on  $p\in S(\mathfrak{U})$  by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$ 

Consider this action restricted to  $\operatorname{Aut}(\mathfrak{U}/A)$ .

#### Example

$$T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\}$$



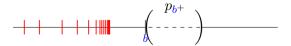
 $f\in {\rm Aut}(\mathfrak{U})$  acts on  $p\in S(\mathfrak{U})$  by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$ 

Consider this action restricted to  $\operatorname{Aut}(\mathfrak{U}/A)$ .

#### Example

$$T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\}$$



<ロト < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < < 国 > < < 国 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

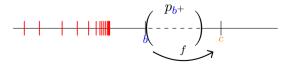
 $f\in {\rm Aut}(\mathfrak{U})$  acts on  $p\in S(\mathfrak{U})$  by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$ 

Consider this action restricted to  $\operatorname{Aut}(\mathfrak{U}/A)$ .

### Example

 $T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\} \text{ and let } f \in \operatorname{Aut}(\mathfrak{U}/A) \text{ be such that } f(b) = c.$ 



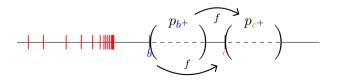
 $f\in {\rm Aut}(\mathfrak{U})$  acts on  $p\in S(\mathfrak{U})$  by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$ 

Consider this action restricted to  $\operatorname{Aut}(\mathfrak{U}/A)$ .

### Example

$$\begin{split} T &= \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\} \text{ and let } \\ f &\in \operatorname{Aut}(\mathfrak{U}/A) \text{ be such that } f(b) = c. \text{ Then } f \cdot p_{b^+} = p_{c^+}. \end{split}$$





# Some Sufficient Conditions

#### Proposition

 $q_0 \ge_{\mathrm{D}} q_1 \Longrightarrow p \otimes q_0 \ge_{\mathrm{D}} p \otimes q_1$  is implied by any of the following:

- $q_1$  algebraic over  $q_0$ : every  $c \vDash q_1$  is algebraic over some  $b \vDash q_0$ . E.g.  $q_1 = f_*q_0$  for some definable function f. Reason:  $\{c \mid (b,c) \vDash r\}$  does not grow with  $\mathfrak{U}$ .
- T is binary:  $\bigcup \operatorname{tp}(a_i a_j) \vdash \operatorname{tp}(a_1, \ldots, a_n)$ : few questions about  $a \vDash p$  and  $c \vDash q_1$ .
- Or even weakly binary:  $tp(a/\mathfrak{U}) \cup tp(b/\mathfrak{U}) \cup tp(ab/M) \vDash tp(ab/\mathfrak{U})$ , e.g. theories that become binary after naming constants, like a circular order.

• T is stable.

# A General Sufficient Condition

Any condition in the Proposition implies that if there is some  $r \in S_{yz}(M)$  witnessing  $q_0(y) \ge_{\mathrm{D}} q_1(z)$ , then there is one such that, in addition, if

- $b, c \in \mathfrak{U}_1 \stackrel{+}{\succ} \mathfrak{U}$  are such that  $(b, c) \vDash q_0 \cup r$ ,
- $p \in S^{\text{inv}}(\mathfrak{U}, M)$  and  $a \models p(x) \mid \mathfrak{U}_1$ ,

• 
$$r[p] \coloneqq \operatorname{tp}_{xyz}(abc/M) \cup \{x = w\}$$

then  $p \otimes q_0 \cup r[p] \vdash p \otimes q_1$ . We call this stationary domination.

### **Open Problems**

- Understand if this holds under NIP.
- Understand if this is equivalent to good definition of  $\widetilde{Inv}(\mathfrak{U})$ .

### Proposition

 $\begin{array}{l} q_0 \geq_{\mathbf{D}} q_1 \Longrightarrow p \otimes q_0 \geq_{\mathbf{D}} p \otimes q_1 \\ \text{holds if} \end{array}$ 

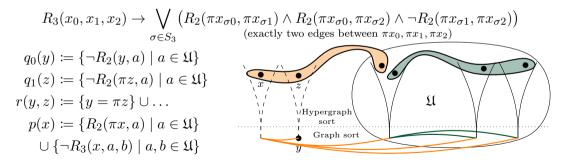
- $q_1$  is algebraic over  $q_0$ , or
- T is weakly binary, or
- T is stable.



# Another Counterexample

Ternary, supersimple,  $\omega$ -categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph  $R_2$  yields a supersimple counterexample of SU-rank 2; forking is  $a \underset{C}{\downarrow} b \iff (a \cap b \subseteq C) \land (\pi a \cap \pi b \subseteq \pi C)$ .



 $q_0 \cup r \vdash q_1$ : no hyperedges to decide. Same problem:  $p \otimes q_0(x, y) \not\geq_D p \otimes q_1(t, z)$ .

# Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by stability

### Example

# If T is strongly minimal, $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$

 $(\text{for }T\text{ stable, }\widetilde{\text{Inv}}(\mathfrak{U})\cong\mathbb{N}\Leftrightarrow T\text{ is unidimensional, e.g. countable and }\aleph_1\text{-categorical, or }\text{Th}(\mathbb{Z},+))$ 

4日 + 4日 + 4日 + 4日 + 4日 - 900

# Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by stability

#### Example

If T is strongly minimal,  $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$ 

 $(\text{for }T\text{ stable, }\widetilde{\mathrm{Inv}}(\mathfrak{U})\cong\mathbb{N}\Leftrightarrow T\text{ is unidimensional, e.g. countable and }\aleph_1\text{-categorical, or }\mathrm{Th}(\mathbb{Z},+))$ 

In this case,  $\operatorname{Inv}(\mathfrak{U})$  is basically "counting the dimension". E.g.: in ACF<sub>0</sub> we have  $p(x_1, \ldots, x_n) \sim_{\mathrm{D}} q(y_1, \ldots, y_m) \iff \operatorname{tr} \operatorname{deg}(x/\mathfrak{U}) = \operatorname{tr} \operatorname{deg}(y/\mathfrak{U})$ . Glue transcendence bases; recover the rest with one formula.

# Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by stability

### Example

If T is strongly minimal,  $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$ 

(for T stable,  $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$  is unidimensional, e.g. countable and  $\aleph_1$ -categorical, or  $Th(\mathbb{Z}, +)$ )

In this case,  $\operatorname{Inv}(\mathfrak{U})$  is basically "counting the dimension". E.g.: in  $\mathsf{ACF}_0$  we have  $p(x_1, \ldots, x_n) \sim_{\mathrm{D}} q(y_1, \ldots, y_m) \iff \operatorname{tr} \operatorname{deg}(x/\mathfrak{U}) = \operatorname{tr} \operatorname{deg}(y/\mathfrak{U})$ . Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if  $(a, b) \models p \otimes q$ , then  $\dim(a/\mathfrak{U}b) = \dim(a/\mathfrak{U})$ , and in strongly minimal theories

$$\dim(ab/\mathfrak{U}) = \dim(b/\mathfrak{U}) + \dim(a/\mathfrak{U}b)$$

ADVARY ANY ANY NOV

More generally, in superstable theories (or even thin theories), by classical results  $\widehat{Inv}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$ , for some  $\lambda$ .

I ■ Back

## Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

- $\bullet\,$  Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- (Inv( $\mathfrak{U}$ ),  $\otimes$ ) is commutative: e.g.  $p(x_0) \otimes p(y_0) \sim_{\mathbf{D}} p(y_1) \otimes p(x_1)$  by gluing:  $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$

# Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

viο

- $(\widetilde{\text{Inv}}(\mathfrak{U}), \otimes)$  is commutative: e.g.  $p(x_0) \otimes p(y_0) \sim_{\mathbf{D}} p(y_1) \otimes p(x_1)$  by gluing:  $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if  $p(x) = \operatorname{tp}(x > \mathfrak{U})$ , then  $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$  (seen before: glue x and  $y_0$ ):

## Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

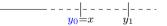
- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- (Inv( $\mathfrak{U}$ ),  $\otimes$ ) is commutative: e.g.  $p(x_0) \otimes p(y_0) \sim_{\mathbf{D}} p(y_1) \otimes p(x_1)$  by gluing:  $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if  $p(x) = \operatorname{tp}(x > \mathfrak{U})$ , then  $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$  (seen before: glue x and  $y_0$ ):



## Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- (Inv( $\mathfrak{U}$ ),  $\otimes$ ) is commutative: e.g.  $p(x_0) \otimes p(y_0) \sim_{\mathbf{D}} p(y_1) \otimes p(x_1)$  by gluing:  $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if  $p(x) = \operatorname{tp}(x > \mathfrak{U})$ , then  $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$  (seen before: glue x and  $y_0$ ):



# Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$  is commutative: e.g.  $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$  by gluing:  $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if  $p(x) = \operatorname{tp}(x > \mathfrak{U})$ , then  $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$  (seen before: glue x and  $y_0$ ):

$$\begin{array}{ccc} & & & \\ & & & \\ y_0 = x & y_1 \end{array}$$

 $Inv(\mathfrak{U})$  is the free idempotent commutative monoid generated by the invariant cuts:

$$(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes,\leq_{\mathrm{D}})\cong(\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant\ cuts}\}),\cup,\subseteq)$$



# Random Graph

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

In the Random Graph,  $\sim_{\mathbf{D}}$  is degenerate and  $(\operatorname{Inv}(\mathfrak{U}), \otimes)$  resembles closely  $(S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}), \otimes)$ . For instance, it is not commutative:

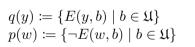
# Random Graph

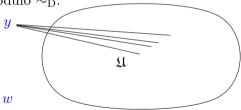
 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

In the Random Graph,  $\sim_{\mathbf{D}}$  is degenerate and  $(\operatorname{Inv}(\mathfrak{U}), \otimes)$  resembles closely  $(S_{\leq \omega}^{\operatorname{inv}}(\mathfrak{U}), \otimes)$ . For instance, it is not commutative:

## Example (All types Ø-invariant)

These types do not commute, even modulo  $\sim_{\rm D}$ :





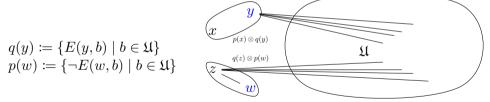
# Random Graph

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$  well-defined by binarity

In the Random Graph,  $\sim_{\mathbf{D}}$  is degenerate and  $(\operatorname{Inv}(\mathfrak{U}), \otimes)$  resembles closely  $(S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}), \otimes)$ . For instance, it is not commutative:

# Example (All types Ø-invariant)

These types do not commute, even modulo  $\sim_{\rm D}$ :



#### Proof Idea.

As  $p_x \otimes q_y \vdash \neg E(x, y)$  and  $q_z \otimes p_w \vdash E(z, w)$ , gluing cannot work. But in the random graph domination is degenerate and there is not much more one can do.

▲ Back