Domination and Products in Unstable Theories

Rosario Mennuni

University of Leeds
PhD project supervised by H.D. Macpherson and V. Mantova

Preprint about this available at https://arxiv.org/abs/1810.13279
Groups and NIP
Leeds, 22nd January 2019

Overview

Motivation and Main Result
T complete, κ large enough, \mathfrak{U} a κ-monster. Small $=$ of size $<\kappa$.

Overview

Motivation and Main Result
T complete, κ large enough, \mathfrak{U} a κ-monster. Small $=$ of size $<\kappa$. In [HHM] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes):=\left(S^{\operatorname{inv}}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$, and the following AKE-type result is proven: Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) . \quad k:=$ residue field, $\Gamma:=$ value group

Overview

Motivation and Main Result
T complete，κ large enough， \mathfrak{U} a κ－monster．Small $=$ of size $<\kappa$ ．In［HHM］to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes):=\left(S^{\operatorname{inv}}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$ ，and the following AKE－type result is proven：

Theorem（Haskell，Hrushovski，Macpherson）
In ACVF，$\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) . \quad k:=$ residue field，$\Gamma:=$ value group
Theorem（M．）
There is a theory where $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is not well－defined．

Overview

Motivation and Main Result
T complete，κ large enough， \mathfrak{U} a κ－monster．Small $=$ of size $<\kappa$ ．In［HHM］to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes):=\left(S^{\operatorname{inv}}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$ ，and the following AKE－type result is proven：

Theorem（Haskell，Hrushovski，Macpherson）
In ACVF，$\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) . \quad k:=$ residue field，$\Gamma:=$ value group
Theorem（M．）
There is a theory where $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is not well－defined．
In this talk：
－What is $\widetilde{\operatorname{Inv}(\mathfrak{U}) \text { ．}}$
－What does such a theory look like．
－Properties of \sim_{D} ．
－Open questions，mostly in the NIP unstable case．

Overview

Motivation and Main Result
T complete, κ large enough, \mathfrak{U} a κ-monster. Small $=$ of size $<\kappa$. In [HHM] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes):=\left(S^{\operatorname{inv}}(\mathfrak{U}), \otimes\right) / \sim_{\mathrm{D}}$, and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
$\operatorname{In} \operatorname{ACVF}, \widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\operatorname{Inv}}(k) \times \widetilde{\operatorname{Inv}}(\Gamma) . \quad k:=$ residue field, $\Gamma:=$ value group (to be precise, they use $\overline{\operatorname{Inv}(\mathfrak{l}) \text {) }}$
Theorem (M.)

In this talk:

- What is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$.
- What does such a theory look like.
- Properties of \sim_{D}.
- Open questions, mostly in the NIP unstable case.

Invariant Types

Canonical extension and product

Definition (A small)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Invariant Types

Canonical extension and product

Definition (A small)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Types

Canonical extension and product

Definition (A small)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

$\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow}$ for $\tilde{d} \in \mathfrak{U}$ such that $d \equiv_{A} \tilde{d}$, we have $\varphi(x ; \tilde{d}) \in p$.

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\}$

$\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow}$ for $\tilde{d} \in \mathfrak{U}$ such that $d \equiv_{A} \tilde{d}$, we have $\varphi(x ; \tilde{d}) \in p$.
Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y)$

$\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow}$ for $\tilde{d} \in \mathfrak{U}$ such that $d \equiv{ }_{A} \tilde{d}$, we have $\varphi(x ; \tilde{d}) \in p$.
Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y)$

$\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow}$ for $\tilde{d} \in \mathfrak{U}$ such that $d \equiv{ }_{A} \tilde{d}$, we have $\varphi(x ; \tilde{d}) \in p$.
Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y) \vdash x<y$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d}, \text { we have } \varphi(x ; \tilde{d}) \in p .
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$

Invariant Types

Canonical extension and product

Definition (A small, B arbitrary)

p is A-invariant iff whether $p(x) \vdash \varphi(x ; d)$ or not depends only on $\operatorname{tp}(d / A)$.
E.g. if p is A-definable or finitely satisfiable in A. Say $p \in S(\mathfrak{U})$ is invariant iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T=$ DLO, A small)
$p_{A^{+}}(x):=\{x<d \mid d>A\} \cup\{x>d \mid d \ngtr A\} \quad p_{A^{+}}(x) \otimes p_{A^{+}}(y) \vdash x<y$

$$
\varphi(x ; d) \in(p \mid \mathfrak{U} B) \stackrel{\text { def }}{\Longleftrightarrow} \text { for } \tilde{d} \in \mathfrak{U} \text { such that } d \equiv_{A} \tilde{d} \text {, we have } \varphi(x ; \tilde{d}) \in p
$$

Using this, define $\varphi(x, y ; d) \in p(x) \otimes q(y) \stackrel{\text { def }}{\Longleftrightarrow} \varphi(x ; b, d) \in p \mid \mathfrak{U} b \quad(b \vDash q)$
Fact
\otimes is associative. \otimes commutative $\Longleftrightarrow T$ stable (it's the usual $(a, b) \vDash p \otimes q \Longleftrightarrow a \underset{\mathfrak{U}}{\downarrow} b$).

Domination

Definition (Domination preorder on $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$. Equidominance $p \equiv_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, witnessed by the same r and $\overline{\operatorname{Inv}}(\mathfrak{l l}):=S_{<\omega}^{\operatorname{inn}}(\mathfrak{L}) / \equiv_{\mathrm{D}}$.

Domination

Definition (Domination preorder on $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$. Equidominance $p \equiv{ }_{\mathrm{D}} q$ means $p \geq{ }_{\mathrm{D}} q \geq \mathrm{D} p$, witnessed by the same r and $\overline{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}(\mathfrak{U}) / \equiv \mathrm{D} \cdot$
For T stable, it's the usual $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\downarrow} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.
Example (DLO, all types below are Ø-invariant)
$\operatorname{tp}(x>\mathfrak{U})$

Domination

Definition (Domination preorder on $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$. Equidominance $p \equiv{ }_{\mathrm{D}} q$ means $p \geq \mathrm{D} q \geq \mathrm{D} p$, witnessed by the same r and $\overline{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}(\mathfrak{U}) / \equiv \mathrm{D} \cdot$
For T stable, it's the usual $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\downarrow} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.
Example (DLO, all types below are \emptyset-invariant)

$$
\operatorname{tp}(x>\mathfrak{U}) \quad \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)
$$

Domination

Definition (Domination preorder on $S_{<\omega}^{\text {inv }}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$.

For T stable, it's the usual $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\underset{\mathrm{~L}}{ }} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

Domination

Definition (Domination preorder on $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$. Equidominance $p \equiv{ }_{\mathrm{D}} q$ means $p \geq{ }_{\mathrm{D}} q \geq \mathrm{D} p$, witnessed by the same r and $\overline{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}(\mathfrak{U}) / \equiv \mathrm{D} \cdot$
For T stable, it's the usual $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\underset{\mathrm{~L}}{ }} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

$$
\square-\underset{y_{0}}{=}-\underset{x}{---\cdots-\cdots}
$$

Example (Random Graph)

$p \geq_{\mathrm{D}} q \Longleftrightarrow p \supseteq q$ after renaming/duplicating variables and ignoring realised ones.

Domination

Definition (Domination preorder on $S_{<\omega}^{\operatorname{inv}}(\mathfrak{U})$)

$p_{x} \geq_{\mathrm{D}} q_{y}$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{x y}(A)$ such that:
p, q are A-invariant, $r \supseteq(p \upharpoonright A) \cup(q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$
Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$, and $\widetilde{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathrm{D}}$. Equidominance $p \equiv{ }_{\mathrm{D}} q$ means $p \geq{ }_{\mathrm{D}} q \geq \mathrm{D} p$, witnessed by the same r and $\overline{\operatorname{Inv}}(\mathfrak{U}):=S_{<\omega}(\mathfrak{U}) / \equiv \mathrm{D} \cdot$
For T stable, it's the usual $p \geq_{\mathrm{D}} q \Longleftrightarrow \exists a \vDash p, b \vDash q \forall d d \underset{\mathfrak{U}}{\underset{\mathrm{~L}}{ }} a \Longrightarrow d \underset{\mathfrak{U}}{\downarrow} b$.
Example (DLO, all types below are \emptyset-invariant)
$\operatorname{tp}(x>\mathfrak{U}) \geq_{\mathrm{D}} \operatorname{tp}\left(y_{1}>y_{0}>\mathfrak{U}\right)$ ("glue x and y_{0} ", i.e. $r:=\left\{y_{0}=x\right\} \cup \ldots$)

$$
\square-----\cdots-\cdots
$$

Example (Random Graph, or a set with no structure (degenerate domination)) $p \geq_{\mathrm{D}} q \Longleftrightarrow p \supseteq q$ after renaming/duplicating variables and ignoring realised ones.

Is \otimes a Congruence with respect to \sim_{D} ?

Or: is $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined?
Lemma
If p_{0} is invariant and $p_{0} \cup r \vdash p_{1}$, then $\left(p_{1}\right.$ is invariant and) $\left(p_{0} \mid B\right) \cup r \vdash\left(p_{1} \mid B\right)$.
In particular, if $p_{0} \geq_{\mathrm{D}} p_{1}$, then $p_{0} \otimes q \geq_{\mathrm{D}} p_{1} \otimes q$.
Question
Does $q_{0} \geq_{\mathrm{D}} q_{1}$ imply $p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$?

Is \otimes a Congruence with respect to \sim_{D} ?

Or: is $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined?
Lemma
If p_{0} is invariant and $p_{0} \cup r \vdash p_{1}$, then $\left(p_{1}\right.$ is invariant and) $\left(p_{0} \mid B\right) \cup r \vdash\left(p_{1} \mid B\right)$.
In particular, if $p_{0} \geq_{\mathrm{D}} p_{1}$, then $p_{0} \otimes q \geq_{\mathrm{D}} p_{1} \otimes q$.
Question
Does $q_{0} \geq_{\mathrm{D}} q_{1}$ imply $p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$? S P O I L E R: No.

Is \otimes a Congruence with respect to \sim_{D} ?

Or: is $(\widetilde{\operatorname{Inv}}(\mathfrak{L}), \otimes)$ well-defined?
Lemma
If p_{0} is invariant and $p_{0} \cup r \vdash p_{1}$, then (p_{1} is invariant and) $\left(p_{0} \mid B\right) \cup r \vdash\left(p_{1} \mid B\right)$.
In particular, if $p_{0} \geq_{\mathrm{D}} p_{1}$, then $p_{0} \otimes q \geq_{\mathrm{D}} p_{1} \otimes q$.
Question
Does $q_{0} \geq_{\mathrm{D}} q_{1}$ imply $p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$?
The answer is affirmative if T is for instance stable, binary, or if \geq_{D} can always be witnessed by definable functions. These are all instances of a (fairly ugly) general condition called stationary domination (more on this here).

Is \otimes a Congruence with respect to \sim_{D} ?

Or: is $(\widetilde{\operatorname{Inv}}(\mathfrak{L}), \otimes)$ well-defined?

Lemma

If p_{0} is invariant and $p_{0} \cup r \vdash p_{1}$, then (p_{1} is invariant and) $\left(p_{0} \mid B\right) \cup r \vdash\left(p_{1} \mid B\right)$. In particular, if $p_{0} \geq_{\mathrm{D}} p_{1}$, then $p_{0} \otimes q \geq_{\mathrm{D}} p_{1} \otimes q$.

Question

Does $q_{0} \geq_{\mathrm{D}} q_{1}$ imply $p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$?
The answer is affirmative if T is for instance stable, binary, or if \geq_{D} can always be witnessed by definable functions. These are all instances of a (fairly ugly) general condition called stationary domination (more on this here).

Fact

If for T the answer to the question above is "yes", then $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes_{\mathrm{D}}\right)$ is an ordered monoid. The neutral element (and minimum) is the (unique) class of realised types, and nothing else is invertible ($p \otimes q$ realised $\Longrightarrow p, q$ both realised!).

Examples

T strongly minimal (see here)
 $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.

(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)

Examples

(In all of these stationary domination holds and $\widetilde{\operatorname{Inv}}(\mathfrak{U})=\overline{\operatorname{Inv}}(\mathfrak{U})$)
T strongly minimal (see here)
$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)
T superstable (thin is enough)
By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some $\lambda=\lambda(\mathfrak{U})$.

Examples

(In all of these stationary domination holds and $\widetilde{\operatorname{Inv}}(\mathfrak{U})=\overline{\operatorname{Inv}}(\mathfrak{U})$)
T strongly minimal (see here)
$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)
T superstable (thin is enough)
By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some $\lambda=\lambda(\mathfrak{U})$.
DLO (see here)
$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\right.$ invariant cuts $\left.\}), \cup \subseteq\right)$ Invariant cut = small cofinality on exactly one side.

Examples

(In all of these stationary domination holds and $\widetilde{\operatorname{Inv}}(\mathfrak{U})=\overline{\operatorname{Inv}}(\mathfrak{U})$)

T strongly minimal (see hare)

$\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $T h(\mathbb{Z},+)$)
T superstable (thin is enough)
By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some $\lambda=\lambda(\mathfrak{U})$.

DLO (see hate)

$\left(\widetilde{\operatorname{Inv}}(\mathfrak{L}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\right.$ invariant cuts $\left.\}), \cup, \subseteq\right)$ Invariant cut $=$ small cofnality on exactly one side.
Random Graph (see hare)
$\sim_{\text {D }}$ is degenerate, $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$, e.g. it is noncommutative.

A Counterexample
(with SOP and IP_{2})
Idea:
DLO

A Counterexample

(with SOP and IP_{2})
Idea:
2-coloured DLO

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on triples of fibers:

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

A Counterexample

（with SOP and IP_{2} ）
Idea：fiber over a 2 －coloured DLO；put a generic tripartite 3－hypergraph on some triples of fibers：$R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$（for some permutation of $\left.x, z, w\right)$

$$
q_{0}(y):=" \neg G(y)<-\infty "
$$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty "
\end{aligned}
$$

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
q_{0}(y) & :=" \neg G(y)<-\infty " \\
q_{1}(z) & :=" \neg G(\pi z)<-\infty " \\
r(y, z) & :=\{y=\pi z\} \cup \ldots
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide.

A Counterexample

(with SOP and IP_{2})
Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty " \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=" G(\pi x)<-\infty ", \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\} \\
& y
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide.

A Counterexample

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty " \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=" G(\pi x)<-\infty ", \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\} \\
& y
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$?

A Counterexample

```
(with SOP and IP 2)
```

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty " \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=" G(\pi x)<-\infty ", \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}$: no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$? No: even with $x=t$ no small type can decide all hyperedges involving x and z !

A Counterexample

```
(with SOP and IP 2
```

Idea: fiber over a 2 -coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_{3}(x, z, w) \rightarrow(G(\pi x)<\neg G(\pi z)<G(\pi w))$ (for some permutation of $\left.x, z, w\right)$

$$
\begin{aligned}
& q_{0}(y):=" \neg G(y)<-\infty " \\
& q_{1}(z):=" \neg G(\pi z)<-\infty " \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=" G(\pi x)<-\infty ", \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}$: no hyperedges to decide. But does $p \otimes q_{0}(x, y) \geq_{\mathrm{D}} p \otimes q_{1}(t, z)$? No: even with $x=t$ no small type can decide all hyperedges involving x and z ! There is a supersimple version here. Also works for a number of variations of \sim_{D}.

Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO).

Properties Preserved by Domination

Domination equivalence is quite coarse；for instance it does not preserve Morley rank（generic equivalence relation），nor dp－rank（DLO）．Anyway：
Theorem（M．）
If $p \geq_{\mathrm{D}} q$ and p has any of the following properties，then so does q ：
－Definability
－Finite satisfiability
－Generic stability
－Weak orthogonality to a fixed type

Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO). Anyway:
Theorem (M.)
If $p \geq_{\mathrm{D}} q$ and p has any of the following properties, then so does q :

- Definability (over some small set, not necessarily the same as q)
- Finite satisfiability (in some small set, not necessarily the same as q)
- Generic stability (over some small set, not necessarily the same as q)
- Weak orthogonality to a fixed type

Generic stability is particularly interesting:

- It is possible to have $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \neq \widetilde{\operatorname{Inv}}\left(\mathfrak{U}^{\text {eq }}\right)$ (more g.s. types, e.g. DLO + dense eq. rel.).
- Using [Tan], strongly regular g.s. types are \leq_{D}-minimal (among the nonrealised ones).
- $\left(\widetilde{\operatorname{Inv}}^{\mathrm{gs}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right)$ makes sense in any theory (can be trivial).

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?
2. If so, is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ commutative? (The answer is no for $\overline{\operatorname{Inv}}(\mathfrak{U})$ See here)

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?
2. If so, is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ commutative? (The answer is no for $\overline{\operatorname{Inv}}(\mathfrak{U})$ See here)
3. Dependence of $\operatorname{Inv}(\mathfrak{U})$ on \mathfrak{U} in the stable non-thin and NIP unstable cases?

- IP case is clear: cardinality grows.
- Stable thin case is clear: multidimensionality. More on this

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?
2. If so, is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ commutative? (The answer is no for $\overline{\operatorname{Inv}}(\mathfrak{U})$ See here)

- IP case is clear: cardinality grows.
- Stable thin case is clear: multidimensionality. More on this

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?
2. If so, is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ commutative? (The answer is no for $\overline{\operatorname{Inv}}(\mathfrak{U})$ See here)
3. Dependence of $\operatorname{Inv}(\mathfrak{U})$ on \mathfrak{U} in the stable non-thin and NIP unstable cases?

- IP case is clear: cardinality grows.
- Stable thin case is clear: multidimensionality. More on this

4. Can $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ be finite? (T must be NIP unstable)
5. What does the smallest \otimes-congruence generated by \sim_{D} look like?

Questions/Work in Progress

Questions

1. Known counterexamples use IP_{2} heavily. Is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ well-defined under NIP?
2. If so, is $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ commutative? (The answer is no for $\overline{\operatorname{Inv}}(\mathfrak{U})$ See here)
3. Dependence of $\operatorname{Inv}(\mathfrak{U})$ on \mathfrak{U} in the stable non-thin and NIP unstable cases?

- IP case is clear: cardinality grows.
- Stable thin case is clear: multidimensionality. More on this

4. Can $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ be finite? (T must be NIP unstable)
5. What does the smallest \otimes-congruence generated by \sim_{D} look like?

Thanks for listening!

Bibliography

(this is not a proper bibliography, it's just a list of the sources mentioned in these slides)
[HHM] D. Haskell, E. Hrushovski and D. Macpherson,
Stable Domination and Independence in Algebraically Closed Valued Fields, Lecture Notes in Logic 30, Cambridge University Press 2007.
[Men] R. Mennuni,
Product of Invariant Types Modulo Domination-Equivalence, preprint, available at https://arxiv.org/abs/1810.13279.
[Pil] A. Pillay,
Geometric Stability Theory,
Oxford Logic Guides 32, Oxford University Press 1996.
[Poi] B. Poizat,
A Course in Model Theory,
Universitext, Springer 2000.
[Tan] P. Tanović,
Generically stable regular types,
The Journal of Symbolic Logic, 80:308-321 (2015).
[Wag] F.O. Wagner,
Simple Theories,
Mathematics and Its Applications 503, Kluwer Academic Publishers 2000.

More examples: Branches

Example

Let T be the theory in the language $\left\{P_{\sigma} \mid \sigma \in 2^{<\omega}\right\}$ asserting that every point belongs to every $P_{\eta\lceil n}$ for exactly one $\eta \in 2^{\omega}$. Then $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{2^{\aleph_{0}}} \mathbb{N}$. Basically, $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ here is counting how many new points are in a "branch".

More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for $\overline{\operatorname{Inv}}(\mathfrak{U})$ looks like this:

- a single \sim_{D}-class $\llbracket 0 \rrbracket$ for realised types
- if $p_{a}(x):=\{E(x, a)\} \cup\{x \notin \mathfrak{U}\}$, then $\llbracket p_{a} \rrbracket=\llbracket p_{b} \rrbracket$ if and only if $\vDash E(a, b)$; corresponds to new points in an existing equivalence class
- a single \sim_{D}-class $\llbracket p_{g} \rrbracket$, where $p_{g}:=\{\neg E(x, a) \mid a \in \mathfrak{U}\}$; corresponds to new equivalence classes.
The product adds new points/new classes. So, if \mathfrak{U} has κ equivalence classes,

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

More Examples：Cross－cutting Equivalence Relations

$T_{n}:=n$ generic equivalence relations E_{i} ；intersection of classes of different E_{i} always infinite．Here $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ is generated by：
－a single \sim_{D}－class $\llbracket 0 \rrbracket$ for realised types
－if $p_{a}(x):=\left\{E_{i}(x, a) \mid i<n\right\} \cup\{x \notin \mathfrak{U}\}$ ，then $\llbracket p_{a} \rrbracket=\llbracket p_{b} \rrbracket$ if and only if $\vDash \bigwedge_{i<n} E_{i}(a, b)$ ；corresponds to new points in E_{i}－relation with a for all i
－For each $i<n$ ，a class $\llbracket p_{i} \rrbracket$ saying x is in a new E_{i} class，but in existing E_{j}－classes for $j \neq i$（does not matter which）
So

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \prod_{i<n} \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

Why Π instead of \bigoplus ？If we allow，say，\aleph_{0} equivalence relations，then

$$
\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \prod_{i<\aleph_{0}}^{\text {bdd }} \mathbb{N} \oplus \bigoplus_{\kappa} \mathbb{N}
$$

Other Notions

One can define a finer equivalence relation:

Definition

$p \equiv_{\mathrm{D}} q$ is defined as $p \sim_{\mathrm{D}} q$, but by asking the same r to work in both directions:
$p \cup r \vdash q$ and $q \cup r \vdash p$.
Another notion classically studied is (see e.g. [Poi]):

Definition

$p \geq_{\mathrm{RK}} q$ iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It corresponds to $p(x) \cup\{\varphi(x, y)\} \vdash q(y)$.
But even there, modulo $\sim_{R K}$ it is not true that every type decomposes as a product of \geq_{RK}-minimal types (but in non-multidimensional totally transcendental theories every type decomposes as a product of strongly regular types).
A classical example where \geq_{D} differs from \geq_{RK} : generic equivalence relation with a bijection s such that $\forall x E(x, s(x))$.

Hrushovski's Counterexample

Example (Hrushovski)

In DLO plus a dense-codense predicate $P, \overline{\operatorname{Inv}}(\mathfrak{U})$ is not commutative.

Proof idea.

Let $p(x):=\{P(x)\} \cup\{x>\mathfrak{U}\}$ and $q(y):=\{\neg P(x)\} \cup\{y>\mathfrak{U}\}$. Then p, q do not commute, even modulo \equiv_{D} (but they do modulo \sim_{D}).
The predicate P forbids to "glue" variables. One will be "left behind": e.g. if $r \vdash x_{0}<y_{0}<y_{1}<x_{1}$, knowing that $y_{1}>\mathfrak{U}$ does not imply $x_{0}>\mathfrak{U}$.
In this case, for each cut C there are generators $\llbracket p_{C, P} \rrbracket$ and $\llbracket p_{C, \neg P} \rrbracket$, with relations

- $\llbracket p_{C, P} \rrbracket \otimes \llbracket p_{C, P} \rrbracket=\llbracket p_{C, \neg P} \rrbracket \otimes \llbracket p_{C, P} \rrbracket=\llbracket p_{C, P} \rrbracket$
- (same relations swapping P and $\neg P$)
- $\llbracket p_{C_{0},-} \rrbracket \otimes \llbracket p_{C_{1},-} \rrbracket=\llbracket p_{C_{1},-} \rrbracket \otimes \llbracket p_{C_{0},-} \rrbracket$ whenever $C_{0} \neq C_{1}$.

Stable Case

In a stable theory, \leq_{D}, \sim_{D} and \equiv_{D} can be expressed in terms of forking:
Definition (See e.g. [Pil])
$a \triangleright_{E} b$ iff, for all c,

$$
a \underset{E}{\downarrow} c \Longrightarrow b \underset{E}{\downarrow} c
$$

$p \triangleright_{E} q(p$ dominates q over $E)$ iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_{E} b$ $p \bowtie_{E} q$ (p and q are domination equivalent) iff $p \triangleright_{E} q \triangleright_{E} p$, i.e. there are

$p \doteq_{E} q(p$ and q are equidominant over $E)$ iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_{E} b \triangleright_{E} a$
These are well-behaved with non-forking extensions: we can drop ${ }_{E}$.

Comparison

Proposition (T stable)

The previous definitions of $\leq_{D}=\triangleleft, \sim_{D}=\bowtie$ and $\equiv_{D}=\doteq$.

Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before, \sim_{D} coincides with \equiv_{D}.
Exception: in DLO with a predicate, $(\overline{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is not commutative, while $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is (in fact, it is the same as in DLO).
Fact (See [Wag, Example 5.2.9])
Even in the stable case, \sim_{D} and \equiv_{D} are generally different.

Classical Results

In the thin case (generalises superstable), this is classical (e.g. [Pil]):
Theorem (T thin)

If T is moreover superstable, $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ is generated by $\{\llbracket p \rrbracket \mid p$ regular $\}$.

Superstability (even just thinness) implies that \equiv_{D} and \sim_{D} coincide.
The behaviour of \geq_{D} in general seems related to the existence of some kind of prime models (in the stable case, "prime a-models" are the way to go). This seems to hint that, maybe, o-minimal theories are a good context to investigate. Also, some suitable generalisation of the Omitting Types Theorem would help.

(Non-multi)Dimensionality

At least in the superstable case, independence of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ on \mathfrak{U} already had a name:

Definition

T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) \emptyset.
If $\mathfrak{U}_{0} \prec^{+} \mathfrak{U}_{1}$ one has a map $\mathfrak{e}: \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{0}\right) \rightarrow \widetilde{\operatorname{Inv}}\left(\mathfrak{U}_{1}\right)$.
Proposition (T thin)
\mathfrak{e} surjective $\Longleftrightarrow T$ dimensional.

Question

Is this true under stability? It boils down to the image of \mathfrak{e} being downward closed. I suspect this should follow from classical results. ©Back

Generically Stable Part

Proposition

$q \leq_{\mathrm{D}} p$ definable/finitely satisfiable/generically stable \Longrightarrow so is q.
As generically stable types commute with everything, in any theory the monoid generated by their classes is well-defined. (Warning: p generically stable $\nRightarrow p \otimes p$ generically stable)

Hope

At least in special cases, get decompositions similar to $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\widetilde{\operatorname{Inv}}(k)} \times \widetilde{\operatorname{Inv}}(\Gamma)$.
Probably one should really work in $T^{\text {eq }}$:

Example

In $T=$ DLO+equivalence relation with (no finite classes and infinitely many) dense classes,

Question
How can the generically stable part look like?

Interaction with Weak Orthogonality

Definition

$p(x)$ is weakly orthogonal to $q(y)$ iff $p \cup q$ is complete.

Remark

Weakly orthogonal types commute.

Proposition

Weak orthogonality strongly negates domination: $q \perp^{\mathrm{w}} p_{0} \geq_{\mathrm{D}} p_{1} \Longrightarrow q \perp^{\mathrm{w}} p_{1}$. In particular if $q \perp^{\mathrm{w}} p \geq_{\mathrm{D}} q$ then q is realised.

Question

Under which conditions if $p \not \chi^{\mathrm{w}} q$ then they dominate a common nonzero class? Known:

- Superstable (or thin) is enough.

```
See here
```

- Fails in the Random Graph.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.
Example
$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.
Example
$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$ and let $f \in \operatorname{Aut}(\mathfrak{U} / A)$ be such that $f(b)=c$.

Action on Type Space

$f \in \operatorname{Aut}(\mathfrak{U})$ acts on $p \in S(\mathfrak{U})$ by changing parameters in formulas:

$$
f \cdot p:=\{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}
$$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U} / A)$.

Example

$T=$ DLO, consider $p_{b^{+}}(x):=\{x<d \mid d>b\} \cup\{x>d \mid d \leq b\}$ and let $f \in \operatorname{Aut}(\mathfrak{U} / A)$ be such that $f(b)=c$. Then $f \cdot p_{b^{+}}=p_{c^{+}}$.

Some Sufficient Conditions

Proposition

$q_{0} \geq_{\mathrm{D}} q_{1} \Longrightarrow p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1}$ is implied by any of the following:

- q_{1} algebraic over q_{0} : every $c \vDash q_{1}$ is algebraic over some $b \vDash q_{0}$. E.g. $q_{1}=f_{*} q_{0}$ for some definable function f. Reason: $\{c \mid(b, c) \vDash r\}$ does not grow with \mathfrak{U}.
- T is binary: $\bigcup \operatorname{tp}\left(a_{i} a_{j}\right) \vdash \operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$: few questions about $a \vDash p$ and $c \vDash q_{1}$.
- Or even weakly binary: $\operatorname{tp}(a / \mathfrak{U}) \cup \operatorname{tp}(b / \mathfrak{U}) \cup \operatorname{tp}(a b / M) \vDash \operatorname{tp}(a b / \mathfrak{U})$, e.g. theories that become binary after naming constants, like a circular order.
- T is stable.

A General Sufficient Condition

Any condition in the Proposition implies that if there is some $r \in S_{y z}(M)$ witnessing $q_{0}(y) \geq_{\mathrm{D}}$ $q_{1}(z)$, then there is one such that, in addition, if

- $b, c \in \mathfrak{U}_{1}{ }^{+} \succ \mathfrak{U}$ are such that $(b, c) \vDash q_{0} \cup r$,
- $p \in S^{\mathrm{inv}}(\mathfrak{U}, M)$ and $a \vDash p(x) \mid \mathfrak{U}_{1}$,
- $r[p]:=\operatorname{tp}_{x y z}(a b c / M) \cup\{x=w\}$.

$$
\begin{aligned}
& \text { Proposition } \\
& \begin{array}{l}
q_{0} \geq \mathrm{D} q_{1} \Longrightarrow p \otimes q_{0} \geq_{\mathrm{D}} p \otimes q_{1} \\
\text { holds if }
\end{array}
\end{aligned}
$$

- q_{1} is algebraic over q_{0}, or
- T is weakly binary, or
- T is stable.
then $p \otimes q_{0} \cup r[p] \vdash p \otimes q_{1}$. We call this stationary domination.

Open Problems

- Understand if this holds under NIP.
- Understand if this is equivalent to good definition of $\widetilde{\operatorname{Inv}}(\mathfrak{U})$.

Another Counterexample

Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure
Replacing the densely coloured DLO with a random graph R_{2} yields a supersimple counterexample of SU-rank 2; forking is $a \underset{C}{\downarrow} b \Longleftrightarrow(a \cap b \subseteq C) \wedge(\pi a \cap \pi b \subseteq \pi C)$.

$$
\begin{aligned}
& R_{3}\left(x_{0}, x_{1}, x_{2}\right) \rightarrow \bigvee_{\sigma \in S_{3}}\left(R_{2}\left(\pi x_{\sigma 0}, \pi x_{\sigma 1}\right) \wedge R_{2}\left(\pi x_{\sigma 0}, \pi x_{\sigma 2}\right) \wedge \neg R_{2}\left(\pi x_{\sigma 1}, \pi x_{\sigma 2}\right)\right) \\
&\text { (exactly two edges between } \left.\pi x_{0}, \pi x_{1}, \pi x_{2}\right) \\
& q_{0}(y):=\left\{\neg R_{2}(y, a) \mid a \in \mathfrak{U}\right\} \\
& q_{1}(z):=\left\{\neg R_{2}(\pi z, a) \mid a \in \mathfrak{U}\right\} \\
& r(y, z):=\{y=\pi z\} \cup \ldots \\
& p(x):=\left\{R_{2}(\pi x, a) \mid a \in \mathfrak{U}\right\} \\
& \cup\left\{\neg R_{3}(x, a, b) \mid a, b \in \mathfrak{U}\right\}
\end{aligned}
$$

$q_{0} \cup r \vdash q_{1}:$ no hyperedges to decide. Same problem: $p \otimes q_{0}(x, y) \not ¥_{\mathrm{D}} p \otimes q_{1}(t, z)$.

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)
In this case, $\operatorname{Inv}(\mathfrak{U})$ is basically "counting the dimension". E.g.: in ACF_{0} we have $p\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathrm{D}} q\left(y_{1}, \ldots, y_{m}\right) \Longleftrightarrow \operatorname{tr} \operatorname{deg}(x / \mathfrak{U})=\operatorname{tr} \operatorname{deg}(y / \mathfrak{U})$. Glue transcendence bases; recover the rest with one formula.

Strongly Minimal Theories

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by stability

Example

If T is strongly minimal, $\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong(\mathbb{N},+, \leq)$.
(for T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_{1}-categorical, or $\operatorname{Th}(\mathbb{Z},+)$)
In this case, $\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is basically "counting the dimension". E.g.: in ACF_{0} we have $p\left(x_{1}, \ldots, x_{n}\right) \sim_{\mathrm{D}} q\left(y_{1}, \ldots, y_{m}\right) \Longleftrightarrow \operatorname{tr} \operatorname{deg}(x / \mathfrak{U})=\operatorname{tr} \operatorname{deg}(y / \mathfrak{U})$.
Glue transcendence bases; recover the rest with one formula.
Taking products corresponds to adding dimensions: if $(a, b) \vDash p \otimes q$, then $\operatorname{dim}(a / \mathfrak{U} b)=\operatorname{dim}(a / \mathfrak{U})$, and in strongly minimal theories

$$
\operatorname{dim}(a b / \mathfrak{U})=\operatorname{dim}(b / \mathfrak{U})+\operatorname{dim}(a / \mathfrak{U} b)
$$

More generally, in superstable theories (or even thin theories), by classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i<\lambda}(\mathbb{N},+, \leq)$, for some λ.

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

Dense Linear Orders

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):

Dense Linear Orders

$(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p\left(x_{0}\right) \otimes p\left(y_{0}\right) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(x_{1}\right)$ by gluing: $r:=\left\{x_{0}=y_{1} \wedge y_{0}=x_{1}\right\} \cup \ldots$.
- Every element is idempotent: e.g. if $p(x)=\operatorname{tp}(x>\mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p\left(y_{1}\right) \otimes p\left(y_{0}\right)$ (seen before: glue x and y_{0}):
$\widetilde{\operatorname{Inv}}(\mathfrak{U})$ is the free idempotent commutative monoid generated by the invariant cuts:

$$
\left(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}\right) \cong\left(\mathscr{P}_{\text {fin }}(\{\text { invariant cuts }\}), \cup, \subseteq\right)
$$

Random Graph

$(\operatorname{Inv}(\mathfrak{U}), \otimes)$ well-defined by binarity
In the Random Graph, \sim_{D} is degenerate and $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:

Random Graph

$(\operatorname{Inv}(\mathfrak{U}), \otimes)$ well-defined by binarity
In the Random Graph, \sim_{D} is degenerate and $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:

Example (All types \emptyset-invariant)

These types do not commute, even modulo \sim_{D} :

$$
\begin{aligned}
& q(y):=\{E(y, b) \mid b \in \mathfrak{U}\} \\
& p(w):=\{\neg E(w, b) \mid b \in \mathfrak{U}\}
\end{aligned}
$$

Random Graph

$(\operatorname{Inv}(\mathfrak{U}), \otimes)$ well-defined by binarity
In the Random Graph, \sim_{D} is degenerate and $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes)$ resembles closely $\left(S_{<\omega}^{\mathrm{inv}}(\mathfrak{U}), \otimes\right)$. For instance, it is not commutative:

Example (All types \emptyset-invariant)

These types do not commute, even modulo \sim_{D} :

$$
\begin{aligned}
& q(y):=\{E(y, b) \mid b \in \mathfrak{U}\} \\
& p(w):=\{\neg E(w, b) \mid b \in \mathfrak{U}\}
\end{aligned}
$$

Proof Idea.

As $p_{x} \otimes q_{y} \vdash \neg E(x, y)$ and $q_{z} \otimes p_{w} \vdash E(z, w)$, gluing cannot work. But in the random graph domination is degenerate and there is not much more one can do.

