Strong exponential closure for $\left(\mathbb{C}, e^{x}\right)$

Giuseppina Terzo
Università degli Studi della Campania "Luigi Vanvitelli"

Leeds 21-23 January 2019
*joint work with Paola D'Aquino and Antongiulio Fornasiero

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) where R is a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a morphism of the additive group of R into the multiplicative group of units of R satisfying

- $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
- $E(0)=1$.
(1) (K, E) where K is any ring and $E(x)=1$ for all $x \in K$.
(2) $(\mathbb{R}, \exp) ;(\mathbb{C}, \exp)$;

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) where R is a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a morphism of the additive group of R into the multiplicative group of units of R satisfying

(1) ($K, E)$ where K is any ring and $E(x)=1$ for all $x \in K$.
(2) $(\mathbb{R}, \exp) ;(\mathbb{C}, \exp) ;$

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) where R is a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a morphism of the additive group of R into the multiplicative group of units of R satisfying

- $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
- $E(0)=1$.
(1) ($K, E)$ where K is any ring and $E(x)=1$ for all $x \in K$.
(2) $(\mathbb{R}, \exp) ;(\mathbb{C}, \exp)$;

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) where R is a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a morphism of the additive group of R into the multiplicative group of units of R satisfying

- $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
- $E(0)=1$.
(1) (K, E) where K is any ring and $E(x)=1$ for all $x \in K$.
(2) (\mathbb{R}, \exp); (\mathbb{C}, \exp);

Motivations

The model theoretic analysis of the exponential function over a field started with a problem left open by Tarski in the 30's, about the decidability of the reals with exponentiation. Only in the mid 90 's Macintyre and Wilkie gave a positive answer to this question assuming Schanuel's Conjecture. Complex exponentiation involves much deeper issues, and it is much harder to approach, as it inherits the Godel incompleteness and undecidability phenomena via the definition of the set of periods. Despite this negative results there are still many interesting and natural model-theoretic aspects to analyze.

Comparing ($\mathbb{R}, \exp)$ and (\mathbb{C}, \exp)

```
Th(\mathbb{R},\operatorname{exp}) decidable
modulo (SC)
Th(\mathbb{C},\operatorname{exp})\mathrm{ undecidable}
Z}={x:\forally(E(y)=1->E(xy)=1)
```

$T h(\mathbb{R}, \exp)$
model-complete

Th($\mathbb{C}, \exp)$
not model-complete

Comparing $(\mathbb{R}$, exp $)$ and $(\mathbb{C}$, exp $)$

$T h(\mathbb{R}, \exp)$ decidable modulo (SC)
(Macintyre-Wilkie '96)
$T h(\mathbb{C}, \exp)$ undecidable $\mathbb{Z}=\{x: \forall y(E(y)=1 \rightarrow E(x y)=1)\}$
$T h(\mathbb{R}, \exp)$
Th (\mathbb{C}, \exp)
model-complete

Comparing (\mathbb{R}, \exp) and (\mathbb{C}, \exp)

$\operatorname{Th}(\mathbb{R}, \exp)$ decidable modulo (SC)
(Macintyre-Wilkie '96)
$T h(\mathbb{R}, \exp)$ model-complete (Wilkie '96)
$\operatorname{Th}(\mathbb{C}, \exp)$ undecidable $\mathbb{Z}=\{x: \forall y(E(y)=1 \rightarrow E(x y)=1)\}$
$T h(\mathbb{C}, \exp)$
not model-complete
(Macintyre, Marker)

Comparing (\mathbb{R}, \exp) and (\mathbb{C}, \exp)

$\operatorname{Th}(\mathbb{R}, \exp)$ decidable modulo (SC)
(Macintyre-Wilkie '96)
$T h(\mathbb{R}, \exp)$
model-complete
(Wilkie '96)
$T h(\mathbb{R}, \exp)$ o-minimal good description of definable sets (Wilkie '96)
$\operatorname{Th}(\mathbb{C}, \exp)$ undecidable $\mathbb{Z}=\{x: \forall y(E(y)=1 \rightarrow E(x y)=1)\}$

$$
\operatorname{Th}(\mathbb{C}, \exp)
$$

not model-complete
(Macintyre, Marker)

- Is $T h(\mathbb{C}, \exp)$ quasi-minimal?
- What are the automorphisms of (\mathbb{C}, \exp) ?
- Is \mathbb{R} definable in (\mathbb{C}, \exp) ?

The complex exponential field

```
Macintyre }199
v\in\mathbb{D}\mathrm{ iff }\existst,u,v((v-u)t=1\wedge \mp@subsup{e}{}{v}=\mp@subsup{e}{}{u}=1\wedge(vx=u))
```

Laczkovich 2002
For any $x \in \mathbb{O}$
$x \in \mathbb{Z}$ iff $\exists z\left(e^{z}=2 \wedge e^{z x} \in \mathbb{Q}\right)$
$\operatorname{Th}_{\exists}\left(\mathbb{C}, e^{x}\right)$ is undecidable.

The complex exponential field

Macintyre 1996
$x \in \mathbb{Q}$ iff $\exists t, u, v\left((v-u) t=1 \wedge e^{v}=e^{u}=1 \wedge(v x=u)\right)$

Laczkovich 2002

$\operatorname{Th}_{\exists}\left(\mathbb{C}, e^{x}\right)$ is undecidable.

The complex exponential field

Macintyre 1996

$x \in \mathbb{Q}$ iff $\exists t, u, v\left((v-u) t=1 \wedge e^{v}=e^{u}=1 \wedge(v x=u)\right)$
Laczkovich 2002
For any $x \in \mathbb{Q}$
$x \in \mathbb{Z}$ iff $\exists z\left(e^{z}=2 \wedge e^{z x} \in \mathbb{Q}\right)$
$\operatorname{Th}_{\exists}\left(\mathbb{C}, e^{x}\right)$ is undecidable.

The complex exponential field

Macintyre 1996

$x \in \mathbb{Q}$ iff $\exists t, u, v\left((v-u) t=1 \wedge e^{v}=e^{u}=1 \wedge(v x=u)\right)$

Laczkovich 2002
For any $x \in \mathbb{Q}$
$x \in \mathbb{Z}$ iff $\exists z\left(e^{z}=2 \wedge e^{z x} \in \mathbb{Q}\right)$
$\mathrm{Th}_{\exists}\left(\mathbb{C}, e^{x}\right)$ is undecidable.

Zilber's programme

As regards definability the above ideas show that definability in the complex exponential field is as complicated as definability in the ring \mathbb{Z}. For this reason, work stopped early on the logic of complex exponentiation, and was only taken up again after a wonderful discovery of Zilber early this century.

Pseudo exponential field or Zilber field

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Pseudo exponential field or Zilber field

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Pseudo exponential field or Zilber field

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$ - Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{O} :
- Axioms giving criteria for solvability of systems of exponential equations.

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Zilber's programme: Looks for a canonical algebraically closed field of characteristic 0 with exponentiation.
(K, E) is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Normal and free

Definition

We say $V \subset G_{n}(k)$ is normal if $\operatorname{dim}[M] V \geq k$ for any $k \times n$ integer matrix of rank k.

Depinition

We say that $V \subseteq G_{n}(K)$ is free if there are no $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ and $a, b \in K$ where $b \neq 0$ such that V is contained in
$\left\{(\bar{x}, \bar{y}): m_{1} x_{1}+\ldots+m_{n} x_{n}=a\right\}$ or $\left\{(\bar{x}, \bar{y}): y_{1}^{m_{1}} \ldots y_{n}^{m_{n}}=b\right\}$.

Normal and free

Definition

We say $V \subseteq G_{n}(K)$ is normal if $\operatorname{dim}[M] V \geq k$ for any $k \times n$ integer matrix of rank k.

Definition
We say that $V \subseteq G_{n}(K)$ is free if there are no $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ and
$a, b \in K$ where $b \neq 0$ such that V is contained in
$\left\{(\bar{x}, \bar{y}): m_{1} x_{1}+\ldots+m_{n} x_{n}=a\right\}$ or $\left\{(\bar{x}, \bar{y}): y_{1}^{m_{1}} \cdot \ldots y_{n}^{m_{n}}=b\right\}$.

Normal and free

Definition

We say $V \subseteq G_{n}(K)$ is normal if $\operatorname{dim}[M] V \geq k$ for any $k \times n$ integer matrix of rank k.

Definition

We say that $V \subseteq G_{n}(K)$ is free if there are no $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ and $a, b \in K$ where $b \neq 0$ such that V is contained in

Normal and free

Definition

We say $V \subseteq G_{n}(K)$ is normal if $\operatorname{dim}[M] V \geq k$ for any $k \times n$ integer matrix of rank k.

Definition

We say that $V \subseteq G_{n}(K)$ is free if there are no $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ and $a, b \in K$ where $b \neq 0$ such that V is contained in $\left\{(\bar{x}, \bar{y}): m_{1} x_{1}+\ldots+m_{n} x_{n}=a\right\}$ or $\left\{(\bar{x}, \bar{y}): y_{1}^{m_{1}} \cdot \ldots \cdot y_{n}^{m_{n}}=b\right\}$.

- (Strong Exponential Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ there is $(\bar{z}, E(\bar{z})) \in V$ a generic point in V over A;
Equivalentely, there are infinitely algebraically independent such points in V .
- (Countable Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ and defined over the definable closure of $A,\{(\bar{z}, E(\bar{z})) \in V$: generic over $A\}$ is countable.

Remark:

Zilber finds an axiomatization of the class of pseudo exponential fields $L_{\omega_{1} \omega}(Q)$

- Q is the "quantifier exist uncountably many";
- $L_{\omega_{1} \omega}$ allows countable \wedge and \vee.

axioms

- (Strong Exponential Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ there is $(\bar{z}, E(\bar{z})) \in V$ a generic point in V over A;
Equivalentely, there are infinitely algebraically independent such points in V .

Remark:

Zilber finds an axiomatization of the class of pseudo exponential fields $L_{\omega_{1} \omega}(Q)$

- Q is the "quantifier exist uncountably many"
- $L_{\omega_{1} \omega}$ allows countable \wedge and \vee

axioms

- (Strong Exponential Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ there is $(\bar{z}, E(\bar{z})) \in V$ a generic point in V over A;
Equivalentely, there are infinitely algebraically independent such points in V .
- (Countable Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ and defined over the definable closure of $A,\{(\bar{z}, E(\bar{z})) \in V$: generic over $A\}$ is countable.

Remark:
Zilber finds an axiomatization of the class of pseudo exponential fields $L_{\omega_{1} \omega}(Q)$

- Q is the "quantifier exist uncountably many"
- $L_{\omega_{1} \omega}$ allows countable \wedge and
- (Strong Exponential Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ there is $(\bar{z}, E(\bar{z})) \in V$ a generic point in V over A;
Equivalentely, there are infinitely algebraically independent such points in V .
- (Countable Closure) For all finite $A \subseteq K$ if $V \subseteq G_{n}(K)$ is irreducible, free and normal with $\operatorname{dim} V=n$ and defined over the definable closure of $A,\{(\bar{z}, E(\bar{z})) \in V$: generic over $A\}$ is countable.

Remark:

Zilber finds an axiomatization of the class of pseudo exponential fields $L_{\omega_{1} \omega}(Q)$

- Q is the "quantifier exist uncountably many";
- $L_{\omega_{1} \omega}$ allows countable \wedge and \vee.

Quasiminimality

Theorem (Zilber)

- The class of pseudo exponential fields is quasiminimal (Bays-Kirby);
- The class of pseudo exponential fields has automorphism different from identity and conjugation.

Categoricity result

> Theorem (Zilber)
> The class of pseudo exponential fields has a unique model in every uncountable cardinality. (Bays-Kirby)

Zilber's Conjecture: The unique model of cardinality $2^{\aleph_{0}}$ is $\left(\mathbb{C}, e^{x}\right)$.

Categoricity result

Theorem (Zilber)

The class of pseudo exponential fields has a unique model in every uncountable cardinality. (Bays-Kirby)

Categoricity result

Theorem (Zilber)

The class of pseudo exponential fields has a unique model in every uncountable cardinality. (Bays-Kirby)

Zilber's Conjecture: The unique model of cardinality $2^{\aleph_{0}}$ is $\left(\mathbb{C}, e^{x}\right)$.

Answer

A positive answer would imply

- Is ID definable in (\mathbb{C}, aup) NIO
- Is (C, exp) quasi-minimal? YES
- Are there automorphisms of (\mathbb{C}, \exp) different from identity and conjugation? YES

Theorem (Bays and Kirby)

If (\mathbb{C}, \exp) is exponentially algebraically closed then it is quasiminimal

Theorem (Boxall '18)

Let X a subset of \mathbb{C} define by $\exists \bar{y}(P(x, \bar{y})=0)$, where P is a term formed from language $\{+, \times, \exp \}$ together with parameters from \mathbb{C}. Then either X or $\mathbb{C} \backslash X$ is countable.

Answer

A positive answer would imply

- Is \mathbb{R} definable in (\mathbb{C}, \exp) NO
- Is (C, exp) quasi-minimal? YES
- Are there automorphisms of $(\mathbb{C}$, exp $)$ different from identity and conjugation? YES

```
Theorem (Bays and Kirby)
If (\mathbb{C},\operatorname{exp}) is exponentially algebraically closed then it is
quasiminimal
```


Theorem (Boxall '18)

Let X a subset of \mathbb{C} defined by $\exists y(P(x, y)=0)$, where P is a term formed from language $\{+, \times, \exp \}$ together with parameters from \mathbb{C}. Then either X or $\mathbb{C} \backslash X$ is countable.

Answer

A positive answer would imply

- Is \mathbb{R} definable in (\mathbb{C}, \exp) NO
- Is (\mathbb{C}, \exp) quasi-minimal? YES
- Are there automorphisms of (\mathbb{C}, \exp) different from identity and conjugation? YES

```
Throrem (Bays and Kirby)
If (\mathbb{C},\operatorname{exp})\mathrm{ is exponentially algebraically closed then it is}
quasiminimal
```

Theorem (Boxall '18)
Let X a subset of \mathbb{C} defines by $\exists y(P(x, y)=0)$, where P is a term
formed from language $\{+, \times, \exp \}$ together with parameters from
\mathbb{C}. Then either X or $\mathbb{C} \backslash X$ is countable.

Answer

A positive answer would imply

- Is \mathbb{R} definable in (\mathbb{C}, \exp) NO
- Is (\mathbb{C}, \exp) quasi-minimal? YES
- Are there automorphisms of $(\mathbb{C}$, exp) different from identity and conjugation? YES

Theorem (Bays and Kirby)
 If (\mathbb{C}, \exp) is exponentially algebraically closed then it is quasiminimal

Theorem (Boxall '18)

Let X a subset of \mathbb{C} defined by $\exists y(P(x, \bar{y})=0)$, where P is a term formed from language $\{+, \times, \exp \}$ together with parameters from \mathbb{C}. Then either X or $\mathbb{C} \backslash X$ is countable.

Answer

A positive answer would imply

- Is \mathbb{R} definable in (\mathbb{C}, \exp) NO
- Is (\mathbb{C}, \exp) quasi-minimal? YES
- Are there automorphisms of $(\mathbb{C}$, exp) different from identity and conjugation? YES

Theorem (Bays and Kirby)

If (\mathbb{C}, \exp) is exponentially algebraically closed then it is quasiminimal

Answer

A positive answer would imply

- Is \mathbb{R} definable in (\mathbb{C}, \exp) NO
- Is (\mathbb{C}, \exp) quasi-minimal? YES
- Are there automorphisms of $(\mathbb{C}$, exp) different from identity and conjugation? YES

Theorem (Bays and Kirby)

If (\mathbb{C}, \exp) is exponentially algebraically closed then it is quasiminimal

Theorem (Boxall '18)

Let X a subset of \mathbb{C} defined by $\exists \bar{y}(P(x, \bar{y})=0)$, where P is a term formed from language $\{+, \times$, exp $\}$ together with parameters from \mathbb{C}. Then either X or $\mathbb{C} \backslash X$ is countable.

Do Zilber's axioms hold in \mathbb{C} ?

Theorem (Zilber)

($\mathbb{C} . e^{x}$) satisfies the countable closure property.

Do Zilber's axioms hold in \mathbb{C} ?

Theorem (Zilber)

($\mathbb{C} . e^{x}$) satisfies the countable closure property.

Do Zilber's axioms hold in \mathbb{C} ?

Theorem (Zilber)

$\left(\mathbb{C}, e^{x}\right)$ satisfies the countable closure property.

Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

- $\lambda=1$ transcendence of e; [Hermite (1873)]
- $\lambda=2 \pi i$ transcendence π; [Lindemann (1882)]
- $\lambda_{1}=\pi, \lambda_{2}=\pi i$, algebraically independent π, e^{π} [Nesterenko (1996)]
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are algebraic numbers linearly independent over \mathbb{Q}, then $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are algebraically independent over \mathbb{Q} [Lindemann-Weierstrass (1885)]

Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

```
- }\lambda=1\mathrm{ transcendence of e; [Hermite (1873)]
- }\lambda=2\pii\mathrm{ transcendence }\pi\mathrm{ ; [Lindemann (1882)]
- }\mp@subsup{\lambda}{1}{}=\pi,\mp@subsup{\lambda}{2}{}=\pii,\mathrm{ algebraically indenendent }\pi,\mp@subsup{e}{}{\pi}\mathrm{ [N esterenko
    (1996)]
- If }\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{},\ldots,\mp@subsup{\lambda}{n}{}\mathrm{ are algebraic numbers linearly independent
over \mathbb{Q},\mathrm{ then }\mp@subsup{e}{}{\mp@subsup{\lambda}{1}{}},\ldots,\mp@subsup{e}{}{\mp@subsup{\lambda}{n}{}}\mathrm{ are algebraically independent over }\mathbb{Q}
    [ Lindemann-Weierstrass (1885)]
```


Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

- $\lambda=1$ transcendence of e; [Hermite (1873)]
- $\lambda=2 \pi i$ transcendence π; [Lindemann (1882)]
- $\lambda_{1}=\pi, \lambda_{2}=\pi i$, algebraically independent π, e^{π} [Nesterenko (1996)]
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are algebraic numbers linearly independent over \mathbb{Q}, then $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are algebraically independent over \mathbb{Q} [Lindemann-Weierstrass (1885)]

Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

- $\lambda=1$ transcendence of e; [Hermite (1873)]
- $\lambda=2 \pi i$ transcendence π; [Lindemann (1882)]
- $\lambda_{1}=\pi, \lambda_{2}=\pi i$, algebraically independent π, e^{π} [Nesterenko
(1996)]
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are algebraic numbers linearly independent
over \mathbb{Q}, then $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are algebraically independent over \mathbb{Q}
[Lindemann-Weierstrass (1885)]

Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

- $\lambda=1$ transcendence of e; [Hermite (1873)]
- $\lambda=2 \pi i$ transcendence π; [Lindemann (1882)]
- $\lambda_{1}=\pi, \lambda_{2}=\pi i$, algebraically independent π, e^{π} [Nesterenko (1996)]

Schanuel's conjecture

Schanuel's Conjecture is currently considered out of reach, except for some very special cases.

- $\lambda=1$ transcendence of e; [Hermite (1873)]
- $\lambda=2 \pi i$ transcendence π; [Lindemann (1882)]
- $\lambda_{1}=\pi, \lambda_{2}=\pi i$, algebraically independent π, e^{π} [Nesterenko (1996)]
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are algebraic numbers linearly independent over \mathbb{Q}, then $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$ are algebraically independent over \mathbb{Q} [Lindemann-Weierstrass (1885)]

Strong exponential closure

Remark

Assuming Schanuel's Conjecture the axiom of strong exponential closure for $\left(\mathbb{C}, e^{x}\right)$ is the only impediment to prove Zilber's Conjecture.

Simplest case

Given $n(x, y) \in \mathbb{C}[X, Y]$ irreducible where both x and y appear, is there a generic solution $p\left(z, e^{z}\right)=0$?

Strong exponential closure

> Remark
> Assuming Schanuel's Conjecture the axiom of strong exponential closure for $\left(\mathbb{C}, e^{x}\right)$ is the only impediment to prove Zilber's Conjecture.

Simplest case

Given $p(x, y) \in \mathbb{C}[X, Y]$ irreducible where both x and y appear, is there a generic solution $p\left(z, e^{z}\right)=0$?

Strong exponential closure

Remark

Assuming Schanuel's Conjecture the axiom of strong exponential closure for $\left(\mathbb{C}, e^{x}\right)$ is the only impediment to prove Zilber's Conjecture.

Simplest case

Given $p(x, y) \in \mathbb{C}[X, Y]$ irreducible where both x and y appear, is there a generic solution $p\left(z, e^{z}\right)=0$?

Infinite solutions

Theorem (Marker)

If $p(x, y) \in \mathbb{C}[x, y]$ is irreducible and depends on x and y then $f(z)=p\left(z, e^{z}\right)$ has infinitely many zeros.

Proof

Follows from Hadamard Factorization theorem with Henson and Rubel's result (proved independently by Van den Dries) which said that the map from exponential terms to entire function is injective.

Infinite solutions

Theorem (Marker)

If $p(x, y) \in \mathbb{C}[x, y]$ is irreducible and depends on x and y then $f(z)=p\left(z, e^{z}\right)$ has infinitely many zeros.

Proof

Follows from Hadamard Factorization theorem with Henson and Rubel's result (proved independently by Van den Dries) which said that the map from exponential terms to entire function is injective

Infinite solutions

Theorem (Marker)

If $p(x, y) \in \mathbb{C}[x, y]$ is irreducible and depends on x and y then $f(z)=p\left(z, e^{z}\right)$ has infinitely many zeros.

Proof

Follows from Hadamard Factorization theorem with Henson and Rubel's result (proved independently by Van den Dries) which said that the map from exponential terms to entire function is injective.

Simple case

Theorem (Marker)

(SC). If $\left(z, e^{z}\right)$ and $\left(w, e^{w}\right)$ are solutions of $p(x, y) \in \mathbb{Q}^{a / g}[x, y]$ then z, w are algebraically independent over \mathbb{Q}.

Theorem (Mantova and Zannier)
(SC). The same holds when $p(x, y) \in \mathbb{C}[x, y]$
Some ideas due also to Gunayadin and Martin-Pizarro.

Simple case

Theorem (Marker)

(SC). If $\left(z, e^{z}\right)$ and $\left(w, e^{w}\right)$ are solutions of $p(x, y) \in \mathbb{Q}^{a / g}[x, y]$ then z, w are algebraically independent over \mathbb{Q}.

Theorem (Mantova and Zannier)
(SC). The same holds when $p(x, y) \in \mathbb{C}[x, y]$
Some ideas due also to Gunayadin and Martin-Pizarro.

Simple case

Theorem (Marker)

(SC). If $\left(z, e^{z}\right)$ and $\left(w, e^{w}\right)$ are solutions of $p(x, y) \in \mathbb{Q}^{a l g}[x, y]$ then z, w are algebraically independent over \mathbb{Q}.

Thborbm (Mantova and Zannier)

(SC). The same holds when $p(x, y) \in \mathbb{C}[x, y]$
Some ideas due also to Gunayadin and Martin-Pizarro.

Simple case

Theorem (Marker)

(SC). If $\left(z, e^{z}\right)$ and $\left(w, e^{w}\right)$ are solutions of $p(x, y) \in \mathbb{Q}^{a l g}[x, y]$ then z, w are algebraically independent over \mathbb{Q}.

Theorem (Mantova and Zannier)
(SC). The same holds when $p(x, y) \in \mathbb{C}[x, y]$
Some ideas due also to Gunayadin and Martin-Pizarro.

Simple case

Theorem (Marker)

(SC). If $\left(z, e^{z}\right)$ and $\left(w, e^{w}\right)$ are solutions of $p(x, y) \in \mathbb{Q}^{a l g}[x, y]$ then z, w are algebraically independent over \mathbb{Q}.

Theorem (Mantova and Zannier)

(SC). The same holds when $p(x, y) \in \mathbb{C}[x, y]$
Some ideas due also to Gunayadin and Martin-Pizarro.

Generic solutions

Let f be the analytic function $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{\cdots \cdots}}}\right)$ over \mathbb{C}.

Depinition
A solution a of f is generic over L (for L a finitely generated extension of \mathbb{Q} containing the coefficients of p) if

$$
\text { t.d. } \left.L\left(a, e^{a}, e^{e^{a}}, \ldots, e^{e^{e^{\cdots}}}\right)\right)=n,
$$

where n is the number of iterations of exponentiation which appear in the polynomial p.

Generic solutions

Let f be the analytic function $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{\ldots . e^{z}}}}\right)$ over \mathbb{C}.

Derinition
A solution a of f is generic over L (for L a finitely generated
extension of \mathbb{Q} containing the coefficients of p) if
where n is the number of iterations of exponentiation which appear
in the polynomial p.

Generic solutions

Let f be the analytic function $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{\ldots . e^{z}}}}\right)$ over \mathbb{C}.

Definition

A solution a of f is generic over L (for L a finitely generated extension of \mathbb{Q} containing the coefficients of p) if

$$
\text { t.d.L } \left.\left(a, e^{a}, e^{e^{a}}, \ldots, e^{e^{e^{\ldots . e^{a}}}}\right)\right)=n,
$$

where n is the number of iterations of exponentiation which appear in the polynomial p.

Conjecture 17'

Conjecture 1. Assuming Schanuel's Conjecture. Let $p\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Q}^{\text {alg }}\left[x, y_{1}, \ldots, y_{n}\right]$ a nonzero irreducible polynomial depending on x and the last variable y_{n}. Then

$$
\left.p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{\ldots . e^{z}}}}\right)\right)=0
$$

has a generic solution.

Remark

Strong Exponential Closure in \mathbb{C} implies a positive answer.

Past results: three iterations

Theorem (DFT)

(SC) Let $p\left(x, y_{1}, y_{2}, y_{3}\right) \in \mathbb{Q}^{a / g}\left[x, y_{1}, y_{2}, y_{3}\right]$ be a nonzero irreducible polynomial depending on x and y_{3}. Then, there exists a generic solution of

$$
p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)=0
$$

Past results: three iterations

Theorem (DFT)

(SC) Let $p\left(x, y_{1}, y_{2}, y_{3}\right) \in \mathbb{Q}^{\text {alg }}\left[x, y_{1}, y_{2}, y_{3}\right]$ be a nonzero irreducible polynomial depending on x and y_{3}. Then, there exists a generic solution of

$$
p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)=0
$$

Three iterations

We consider when $f(z)=p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)$. The corresponding system in six variables $\left(z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right)$ is:

$$
V=\left\{\begin{array}{l}
p\left(z_{1}, z_{2}, z_{3}, w_{3}\right)=0 \tag{1}\\
w_{1}=z_{2} \\
w_{2}=z_{3} .
\end{array}\right.
$$

thought of as an algebraic set V in $G_{2}(\mathbb{C})$.

Thborem (DFT)

(SC) If $p(x, y, z, w) \in \mathbb{Q}^{\text {alg }}[x, y, z, w]$ then the variety defined by V has a generic point.

Three iterations

We consider when $f(z)=p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)$. The corresponding
system in six variables $\left(z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right)$ is:

$$
V=\left\{\begin{array}{l}
p\left(z_{1}, z_{2}, z_{3}, w_{3}\right)=0 \tag{1}\\
w_{1}=z_{2} \\
w_{2}=z_{3}
\end{array}\right.
$$

thought of as an algebraic set V in $G_{2}(\mathbb{C})$.

Thborbm (DFT)

(SC) If $p(x, y, z, w) \in \mathbb{Q}^{a l g}[x, y, z, w]$ then the variety defined by V has a generic point.

We consider when $f(z)=p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)$. The corresponding system in six variables $\left(z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right)$ is:

thought of as an algebraic set V in $G_{2}(\mathbb{C})$.

Thborbm (DFT)
(SC) If $p(x, y, z, w) \in \mathbb{Q}^{\text {alg }}[x, y, z, w]$ then the variety defined by V has a generic point

We consider when $f(z)=p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)$. The corresponding system in six variables $\left(z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right)$ is:

$$
V=\left\{\begin{array}{l}
p\left(z_{1}, z_{2}, z_{3}, w_{3}\right)=0 \tag{1}\\
w_{1}=z_{2} \\
w_{2}=z_{3}
\end{array}\right.
$$

thought of as an algebraic set V in $G_{2}(\mathbb{C})$.

Three iterations

We consider when $f(z)=p\left(z, e^{z}, e^{e^{z}}, e^{e^{e^{z}}}\right)$. The corresponding system in six variables $\left(z_{1}, z_{2}, z_{3}, w_{1}, w_{2}, w_{3}\right)$ is:

$$
V=\left\{\begin{array}{l}
p\left(z_{1}, z_{2}, z_{3}, w_{3}\right)=0 \tag{1}\\
w_{1}=z_{2} \\
w_{2}=z_{3}
\end{array}\right.
$$

thought of as an algebraic set V in $G_{2}(\mathbb{C})$.

Theorem (DFT)

(SC) If $p(x, y, z, w) \in \mathbb{Q}^{a l g}[x, y, z, w]$ then the variety defined by V has a generic point.

Proof

(1) We prove that there exists a solution of p. In fact there are infinitely many.
(2) The solution is a generic solution.

Proof

(1) We prove that there exists a solution of p. In fact there are infinitely many.
(2) The solution is a generic solution.

Proof

(1) We prove that there exists a solution of p. In fact there are infinitely many.
(2) The solution is a generic solution.

Solutions of exponential polynomials over \mathbb{C}

Theorem (Katzberg)

A non constant nolynomial $F(z) \in \mathbb{C}[z]^{E}$ has always infinitely many zeros unless it is of the form

$$
F(z)=\left(z-\alpha_{1}\right)^{n_{1}} \cdot \ldots \cdot\left(z-\alpha_{n}\right)^{n_{n}} e^{g(z)}
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}, n_{1}, \ldots, n_{n} \in \mathbb{N}$, and $g(z) \in \mathbb{C}[z]^{E}$.

Solutions of exponential polynomials over \mathbb{C}

Theorem (Katzberg)

A non constant polynomial $F(z) \in \mathbb{C}[z]^{E}$ has always infinitely many zeros unless it is of the form

$$
F(z)=\left(z-\alpha_{1}\right)^{n_{1}} \cdot \ldots \cdot\left(z-\alpha_{n}\right)^{n_{n}} e^{g(z)}
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}, n_{1}, \ldots, n_{n} \in \mathbb{N}$, and $g(z) \in \mathbb{C}[z]^{E}$.

Solutions of exponential functions

Theorem (D'Aquino, Fornasiero, T.)

Let $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{\cdots}}\right)$, where $p\left(x, y_{1} \ldots, y_{k}\right)$ is an irreducible polynomial over $\mathbb{C}\left[x, y_{1} \ldots, y_{k}\right]$. Then the function f has infinitely many solutions in \mathbb{C} unless
$p\left(x, y_{1} \ldots, y_{k}\right)=g(x) \cdot y_{1}^{n_{i_{1}}} \cdot \ldots \cdot y_{k}^{n_{i_{k}}}$, where $g(x) \in \mathbb{C}[x]$.

Proof

It is an immediate consequence of Katzberg's result
No restrictions on the coefficients of $p\left(x, y_{1} \ldots, y_{k}\right)$ and it is unconditionally (no Schanuel's Conjecture).

Solutions of exponential functions

Theorem (D'Aquino, Fornasiero, T.)

Let $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{e^{z}}}}\right)$, where $p\left(x, y_{1} \ldots, y_{k}\right)$ is an irreducible polynomial over $\mathbb{C}\left[x, y_{1} \ldots, y_{k}\right]$. Then the function f has infinitely many solutions in \mathbb{C} unless $p\left(x, y_{1} \ldots, y_{k}\right)=g(x) \cdot y_{1}^{n_{i_{1}}} \cdot \ldots \cdot y_{k}^{n_{i_{k}}}$, where $g(x) \in \mathbb{C}[x]$.

Proof

It is an immediate consequence of Katzberg's result
No restrictions on the coefficients of $p\left(x, y_{1} \ldots, y_{k}\right)$ and it is unconditionally (no Schanuel's Conjecture)

Solutions of exponential functions

Theorem (D'Aquino, Fornasiero, T.)

Let $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e . . e^{z}}}\right)$, where $p\left(x, y_{1} \ldots, y_{k}\right)$ is an irreducible polynomial over $\mathbb{C}\left[x, y_{1} \ldots, y_{k}\right]$. Then the function f has infinitely many solutions in \mathbb{C} unless $p\left(x, y_{1} \ldots, y_{k}\right)=g(x) \cdot y_{1}^{n_{i_{1}}} \cdot \ldots \cdot y_{k}^{n_{i_{k}}}$, where $g(x) \in \mathbb{C}[x]$.

Proof

It is an immediate consequence of Katzberg's result
No restrictions on the coefficients of $p\left(x, y_{1} \ldots, y_{k}\right)$ and it is unconditionally (no Schanuel's Conjecture)

Theorem (D'Aquino, Fornasiero, T.)

Let $f(z)=p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e^{e^{e^{2}}}}}\right)$, where $p\left(x, y_{1} \ldots, y_{k}\right)$ is an irreducible polynomial over $\mathbb{C}\left[x, y_{1} \ldots, y_{k}\right]$. Then the function f has infinitely many solutions in \mathbb{C} unless $p\left(x, y_{1} \ldots, y_{k}\right)=g(x) \cdot y_{1}^{n_{i_{1}}} \cdot \ldots \cdot y_{k}^{n_{i_{k}}}$, where $g(x) \in \mathbb{C}[x]$.

Proof

It is an immediate consequence of Katzberg's result
No restrictions on the coefficients of $p\left(x, y_{1} \ldots, y_{k}\right)$ and it is unconditionally (no Schanuel's Conjecture).

Masser's result

Theorem (Masser)

Let $P_{1}(\bar{x}), \ldots, P_{n}(\bar{x}) \in \mathbb{C}[\bar{x}]$, where $\bar{x}=x_{1}, \ldots, x_{n}$. Then there exist $z_{1}, \ldots, z_{n} \in \mathbb{C}$ such that

$$
\left\{\begin{array}{l}
e^{z_{1}}=P_{1}\left(z_{1}, \ldots, z_{n}\right) \tag{2}\\
e^{z_{2}}=P_{2}\left(z_{1}, \ldots, z_{n}\right) \\
\vdots \\
e^{z_{n}}=P_{n}\left(z_{1}, \ldots, z_{n}\right)
\end{array}\right.
$$

We have to show that the function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined as
$F\left(x_{1}, \ldots, x_{n}\right)=\left(e^{x_{1}}-P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, e^{x_{n}}-P_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$
has a zero in \mathbb{C}^{n}.

Masser's result

Theorem (Masser)

Let $P_{1}(\bar{x}), \ldots, P_{n}(\bar{x}) \in \mathbb{C}[\bar{x}]$, where $\bar{x}=x_{1}, \ldots, x_{n}$. Then there exist $z_{1}, \ldots, z_{n} \in \mathbb{C}$ such that

$$
\left\{\begin{array}{l}
e^{z_{1}}=P_{1}\left(z_{1}, \ldots, z_{n}\right) \tag{2}\\
e^{z_{2}}=P_{2}\left(z_{1}, \ldots, z_{n}\right) \\
\vdots \\
e^{z_{n}}=P_{n}\left(z_{1}, \ldots, z_{n}\right)
\end{array}\right.
$$

We have to show that the function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined as $F\left(x_{1}, \ldots, x_{n}\right)=\left(e^{x_{1}}-P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, e^{x_{n}}-P_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ has a zero in \mathbb{C}^{n}.

Masser's result

Theorem (Masser)

Let $P_{1}(\bar{x}), \ldots, P_{n}(\bar{x}) \in \mathbb{C}[\bar{x}]$, where $\bar{x}=x_{1}, \ldots, x_{n}$. Then there exist $z_{1}, \ldots, z_{n} \in \mathbb{C}$ such that

$$
\left\{\begin{array}{l}
e^{z_{1}}=P_{1}\left(z_{1}, \ldots, z_{n}\right) \tag{2}\\
e^{z_{2}}=P_{2}\left(z_{1}, \ldots, z_{n}\right) \\
\vdots \\
e^{z_{n}}=P_{n}\left(z_{1}, \ldots, z_{n}\right)
\end{array}\right.
$$

We have to show that the function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined as $F\left(x_{1}, \ldots, x_{n}\right)=\left(e^{x_{1}}-P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, e^{x_{n}}-P_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ has a zero in \mathbb{C}^{n}.

Proof

Lemma (Kantorovich)

Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with
$F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ be an entire function, and p_{0} be such that $J\left(p_{0}\right)$, the Jacobian of F at p_{0} is non singular. Let $\eta=\left|J\left(p_{0}\right)^{-1} F\left(p_{0}\right)\right|$ and U the closed ball of center p_{0} and radius 2η. Let $M>0$ be such that $|H(F)|^{2} \leq M^{2}$ (where $H(F)$ denotes the Hessian of F). If $2 M \eta\left|J\left(p_{0}\right)^{-1}\right|<1$ then there is a zero of F in U.

Proof

Lemma (Kantorovich)

Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with $F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ be an entire function, and p_{0} be such that $J\left(p_{0}\right)$, the Jacobian of F at p_{0} is non singular. Let $\eta=\left|J\left(p_{0}\right)^{-1} F\left(p_{0}\right)\right|$ and U the closed ball of center p_{0} and radius 2η. Let $M>0$ be such that $|H(F)|^{2} \leq M^{2}$ (where $H(F)$ denotes the Hessian of F). If $2 M \eta\left|J\left(p_{0}\right)^{-1}\right|<1$ then there is a zero of F in U.

Generalization of Masser's result

A cone is an open subset $U \subseteq \mathbb{C}^{n}$ s. t. for every $1 \leq t \in \mathbb{R}$, if $\bar{x} \in U$ then $t \bar{x} \in U$.

Definition

An algebraic function is an analytic function $f: U \rightarrow \mathbb{C}$ s.t. there exists a nonzero polynomial $p(\bar{x}, u) \in \mathbb{C}[\bar{x}, u]$ with $p(\bar{x}, f(\bar{x}))=0$ on all $\bar{x} \in U$. If, moreover, the polynomial p is monic in u, we say that f is integral algebraic.

Generalizzation of Masser's result

Theorem (Masser-DFT)

Let $f_{1}, \ldots, f_{n}: U \rightarrow \mathbb{C}$ be nonzero algebraic functions, defined on some cone U. Assume that $U \cap\left(2 \pi i \mathbb{Z}^{*}\right)^{n}$ is Zariski dense in \mathbb{C}^{n}. Then

$$
\left\{\begin{array}{l}
e^{z_{1}}=f_{1}\left(z_{1}, \ldots, z_{n}\right) \tag{3}\\
e^{z_{2}}=f_{2}\left(z_{1}, \ldots, z_{n}\right) \\
\vdots \\
e^{z_{n}}=f_{n}\left(z_{1}, \ldots, z_{n}\right)
\end{array}\right.
$$

has a solution $\bar{a} \in U$.

Strong exponential closure

Theorem (Main Theorem DFT '18)

(SC) Let $V \subset \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ an irreducible variety over $\mathbb{Q}^{\text {alg }}$ with $\operatorname{dim} V=n$. If $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant, then there exists a generic point of V of the form $\left(\bar{a}, e^{\bar{a}}\right)$.

Romark

The result implies many cases of Zilber's Conjecture

Strong exponential closure

Theorem (Main Theorem DFT '18)

(SC) Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ an irreducible variety over $\mathbb{Q}^{\text {alg }}$ with $\operatorname{dim} V=n$. If $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant, then there exists a generic point of V of the form $\left(\bar{a}, e^{\bar{a}}\right)$.

Remark

The result implies many cases of Zilber's Conjecture

Strong exponential closure

Theorem (Main Theorem DFT '18)

(SC) Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ an irreducible variety over $\mathbb{Q}^{\text {alg }}$ with $\operatorname{dim} V=n$. If $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant, then there exists a generic point of V of the form ($\left.\bar{a}, e^{\bar{a}}\right)$.

Remark

The result implies many cases of Zilber's Conjecture

Positive answer to the conjecture

Remark

Let $p\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Q}^{\text {alg }}\left[x, y_{1}, \ldots, y_{n}\right]$ a nonzero irreducible polynomial depending on x and the last variable y_{n}. Let $p\left(z, e^{z}, e^{e^{z}}, \ldots, e^{e^{e e^{e^{e}}}}\right)=0$, the corrisponding system in $2 n$ variables is:

$$
V=\left\{\begin{array}{l}
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0 \tag{4}\\
x_{i+1}=y_{i}
\end{array}\right.
$$

for all $i=2, \ldots, n$.
V is a variety of $\operatorname{dim} V=n$.

Positive answer to the conjecture

Main theorem implies Conjecture 1

Generic solutions

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$, over the algebraic closure of \mathbb{Q}.
Demintmon
A point $\left(a, e^{a}\right) \in V$ is generic in V if

$$
t . d \cdot \mathbb{Q}\left(a, e^{a}\right)=\operatorname{dim} V .
$$

Generic solutions

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$, over the algebraic closure of \mathbb{Q}.

Derinition

A point $\left(a, e^{a}\right) \in V$ is generic in V if

Generic solutions

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$, over the algebraic closure of \mathbb{Q}.
Definition
A point $\left(a, e^{a}\right) \in V$ is generic in V if

$$
t . d \cdot \mathbb{Q}\left(a, e^{a}\right)=\operatorname{dim} V
$$

(1) There exists a solution (unconditionally)
(2) The solution is a generic solution
(1) There exists a solution (unconditionally)
(2) The solution is a generic solution
(1) There exists a solution (unconditionally)
(2) The solution is a generic solution

Existence of solutions

Theorem (Masser Brownawell-DFT)

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be an irreducible algebraic variety such that the projection onto the first coordinates $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{n}. Then the set $\left\{\bar{a} \in \mathbb{C}^{n}:\left(\bar{a}, e^{\bar{a}}\right) \in V\right\}$ is Zariski dense in \mathbb{C}^{n}.

Remark (1)

The result it is unconditionally (it doesn't use Schanuel's Conjecture)

Remark (2)

By Bays-Kirby result quasiminimality is true for ($C^{\text {, }} e^{x}$) for some cases

Existence of solutions

Theorem (Masser Brownawell-DFT)

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be an irreducible algebraic variety such that the projection onto the first coordinates $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{n}. Then the set $\left\{\bar{a} \in \mathbb{C}^{n}:\left(\bar{a}, e^{\bar{a}}\right) \in V\right\}$ is Zariski dense in \mathbb{C}^{n}.

Remark (1)
 The result it is unconditionally (it doesn't use Schanuel's Conjecture)

Remark (2)

By Bays-Kirby result quasiminimality is true for (\mathbb{C}, e^{x}) for some

Existence of solutions

Theorem (Masser Brownawell-DFT)

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be an irreducible algebraic variety such that the projection onto the first coordinates $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{n}. Then the set $\left\{\bar{a} \in \mathbb{C}^{n}:\left(\bar{a}, e^{\bar{a}}\right) \in V\right\}$ is Zariski dense in \mathbb{C}^{n}.

Remark (1)

The result it is unconditionally (it doesn't use Schanuel's Conjecture)

Remark (2)

By Bays-Kirby result quasiminimality is true for $\left(\mathbb{C}, e^{x}\right)$ for some cases

Existence of solutions

Theorem (Masser Brownawell-DFT)

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be an irreducible algebraic variety such that the projection onto the first coordinates $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{n}. Then the set $\left\{\bar{a} \in \mathbb{C}^{n}:\left(\bar{a}, e^{\bar{a}}\right) \in V\right\}$ is Zariski dense in \mathbb{C}^{n}.

Remark (1)

The result it is unconditionally (it doesn't use Schanuel's Conjecture)

Remark (2)

By Bays-Kirby result quasiminimality is true for $\left(\mathbb{C}, e^{x}\right)$ for some cases

Proof of genericity

Ingredients:

(1) Schanuel's conjecture
(2) Masser's system

Proof of genericity

Ingredients:
(1) Schanuel's conjecture
(2) Masser's system

Proof of genericity

Ingredients:
(1) Schanuel's conjecture
(2) Masser's system

Proof of genericity

Ingredients:
(1) Schanuel's conjecture
(2) Masser's system

Proof of genericity

Let be $\left(\bar{a}, e^{\bar{a}}\right) \in V$ and suppose that the point is not generic, i.e. t.d. $\mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n$.

Without loss of generality we can assume

$$
\left|V_{\bar{a}}\right|<\infty \text { and }\left|V^{e^{\bar{a}}}\right|<\infty
$$

By Schanuel's Conjecture

$$
\text { l.d. }(\bar{a}) \leq t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n .
$$

So, there exists $M \in \mathbb{Z}^{n} \times \mathbb{Z}^{n-m}$ such that $M \cdot \bar{a}=0$.
Anplying exnonentiation we have the relation $e^{\bar{a}^{M}}-1$. The above relations define:

$$
L_{M}=\{\bar{x}: M \cdot \bar{x}=0\} \text { and } T_{M}=\left\{\bar{y}: \bar{y}^{M}=1\right\} .
$$

Proof of genericity

Let be $\left(\bar{a}, e^{\bar{a}}\right) \in V$ and suppose that the point is not generic, i.e. $t . d . \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n$.
Without loss of generality we can assume

$$
\left|V_{\bar{a}}\right|<\infty \text { and }\left|V^{e^{\bar{a}}}\right|<\infty
$$

By Schanuel's Conjecture

$$
\text { l.d. }(\bar{a}) \leq t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n .
$$

So, there exists $M \in \mathbb{Z}^{n} \times \mathbb{Z}^{n-m}$ such that $M \cdot \bar{a}=0$.
Applying exnonentiation we have the relation $e^{\bar{a}^{M}}-1$ The above relations define:

$$
L_{M}=\{\bar{x}: M \cdot \bar{x}=0\} \text { and } T_{M}=\left\{\bar{y}: \bar{y}^{M}=1\right\} .
$$

Proof of genericity

Let be $\left(\bar{a}, e^{\bar{a}}\right) \in V$ and suppose that the point is not generic, i.e. $t . d . \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n$.
Without loss of generality we can assume

$$
\left|V_{\bar{a}}\right|<\infty \text { and }\left|V^{e^{\bar{a}}}\right|<\infty
$$

By Schanuel's Conjecture

$$
\text { l.d. }(\bar{a}) \leq t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=m<n .
$$

So, there exists $M \in \mathbb{Z}^{n} \times \mathbb{Z}^{n-m}$ such that $M \cdot \bar{a}=0$.
Applying exponentiation we have the relation $e^{\overline{\mathrm{a}}^{M}}=1$. The above relations define:

$$
L_{M}=\{\bar{x}: M \cdot \bar{x}=0\} \text { and } T_{M}=\left\{\bar{y}: \bar{y}^{M}=1\right\}
$$

We obtain that

$$
m=\operatorname{dim} L_{M}=\operatorname{dim} T_{M},
$$

SO

$$
m=t . d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=\operatorname{dim} L_{M}=\operatorname{dim} T_{M}
$$

Moreover, $\left|V_{\bar{a}}\right|<\infty$ and $\left|V^{e^{\bar{a}}}\right|<\infty$ imply $e^{\bar{a}}$ is algebraic over $\mathbb{Q}(\bar{a})$, and \bar{a} is algebraic over $\mathbb{Q}\left(e^{\bar{a}}\right)$, which means

$$
m=t \cdot d \cdot \mathbb{Q}(\bar{a})=t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=t \cdot d \cdot \mathbb{Q}\left(e^{\bar{a}}\right) .
$$

We obtain that

$$
m=\operatorname{dim} L_{M}=\operatorname{dim} T_{M}
$$

so

$$
m=t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=\operatorname{dim} L_{M}=\operatorname{dim} T_{M} .
$$

Moreover, $\left|V_{\bar{a}}\right|<\infty$ and $\left|V^{e^{\bar{a}}}\right|<\infty$ imply $e^{\bar{a}}$ is algebraic over $\mathbb{Q}(\bar{a})$, and \bar{a} is algebraic over $\mathbb{Q}\left(e^{\bar{a}}\right)$, which means

$$
m=t \cdot d \cdot \mathbb{Q}(\bar{a})=t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=t \cdot d \cdot \mathbb{Q}\left(e^{\bar{a}}\right) .
$$

We obtain that

$$
m=\operatorname{dim} L_{M}=\operatorname{dim} T_{M}
$$

so

$$
m=t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=\operatorname{dim} L_{M}=\operatorname{dim} T_{M}
$$

Moreover, $\left|V_{\bar{a}}\right|<\infty$ and $\left|V^{e^{\bar{a}}}\right|<\infty$ imply $e^{\bar{a}}$ is algebraic over $\mathbb{Q}(\bar{a})$, and \bar{a} is algebraic over $\mathbb{Q}\left(e^{\bar{a}}\right)$, which means

$$
m=t \cdot d \cdot \mathbb{Q}(\bar{a})=t \cdot d \cdot \mathbb{Q}\left(\bar{a}, e^{\bar{a}}\right)=t \cdot d \cdot \mathbb{Q}\left(e^{\bar{a}}\right) .
$$

Proof of genericity

In other words \bar{a} is generic in L_{M} and $e^{\bar{a}}$ is generic in T_{M}. We consider

$$
W_{N}=\left\{(\bar{x}, \bar{y}) \in V: \bar{x} \in L_{N} \wedge\left|V_{\bar{x}}\right|<\infty \wedge\left|V^{\bar{y}}\right|<\infty\right\},
$$

where $N \in \mathbb{C}^{n} \times \mathbb{C}^{n-m}$. If $N=M$ then $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$.
$\left(W_{N I}\right)_{N I}$ is a definable family.
We observe that

$$
\operatorname{dim} W_{M}=\operatorname{dim} \pi_{1}\left(W_{M}\right) \leq \operatorname{dim} L_{M} .
$$

Moreover $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$ so, $\operatorname{dim} W_{M} \geq \operatorname{dim} L_{M}$. We have

$$
\operatorname{dim} W_{M}=\operatorname{dim} L_{M}
$$

Proof of genericity

In other words \bar{a} is generic in L_{M} and $e^{\bar{a}}$ is generic in T_{M}. We consider

$$
W_{N}=\left\{(\bar{x}, \bar{y}) \in V: \bar{x} \in L_{N} \wedge\left|V_{\bar{x}}\right|<\infty \wedge\left|V^{\bar{y}}\right|<\infty\right\},
$$

where $N \in \mathbb{C}^{n} \times \mathbb{C}^{n-m}$. If $N=M$ then $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$.
$\left(W_{N I}\right)_{N 1}$ is a definable family.
We observe that

$$
\operatorname{dim} W_{M}=\operatorname{dim} \pi_{1}\left(W_{M}\right) \leq \operatorname{dim} L_{M} .
$$

Moreover $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$ so, $\operatorname{dim} W_{M} \geq \operatorname{dim} L_{M}$. We have
$\operatorname{dim} W_{M}=\operatorname{dim} L_{M}$.

Proof of genericity

In other words \bar{a} is generic in L_{M} and $e^{\bar{a}}$ is generic in T_{M}. We consider

$$
W_{N}=\left\{(\bar{x}, \bar{y}) \in V: \bar{x} \in L_{N} \wedge\left|V_{\bar{x}}\right|<\infty \wedge\left|V^{\bar{y}}\right|<\infty\right\},
$$

where $N \in \mathbb{C}^{n} \times \mathbb{C}^{n-m}$. If $N=M$ then $\left(a, e^{a}\right) \in W_{M}$.
$\left(W_{N}\right)_{N}$ is a definable family.
We observe that

$$
\operatorname{dim} W_{M}=\operatorname{dim} \pi_{1}\left(W_{M}\right) \leq \operatorname{dim} L_{M} .
$$

Moreover $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$ so, $\operatorname{dim} W_{M} \geq \operatorname{dim} L_{M}$. We have
$\operatorname{dim} W_{M}=\operatorname{dim} L_{M}$.

Proof of genericity

In other words \bar{a} is generic in L_{M} and $e^{\bar{a}}$ is generic in T_{M}.
We consider

$$
W_{N}=\left\{(\bar{x}, \bar{y}) \in V: \bar{x} \in L_{N} \wedge\left|V_{\bar{x}}\right|<\infty \wedge\left|V^{\bar{y}}\right|<\infty\right\}
$$

where $N \in \mathbb{C}^{n} \times \mathbb{C}^{n-m}$. If $N=M$ then $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$.
$\left(W_{N}\right)_{N}$ is a definable family.
We observe that

$$
\operatorname{dim} W_{M}=\operatorname{dim} \pi_{1}\left(W_{M}\right) \leq \operatorname{dim} L_{M}
$$

Moreover $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}$ so, $\operatorname{dim} W_{M} \geq \operatorname{dim} L_{M}$. We have

$$
\operatorname{dim} W_{M}=\operatorname{dim} L_{M}
$$

Let be W_{M}^{\prime} the irreducible components of the Zariski closure of W_{M} containing the point $\left(\bar{a}, e^{\bar{a}}\right)$.

Since $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}^{\prime}$ is generic and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$ then $\pi_{2}\left(W_{M}^{\prime}\right) \subseteq T_{M}$, so its Zariski closure is contained in T_{M}.

Moreover, $e^{\bar{a}}$ is generic in T_{M} and $e^{\bar{a}} \subset \pi_{2}(I N / M)$, then we have

$$
T_{M}={\overline{\pi_{2}\left(W_{M}^{\prime}\right)}}^{Z a r}
$$

Let be W_{M}^{\prime} the irreducible components of the Zariski closure of W_{M} containing the point ($\left.\bar{a}, e^{\bar{a}}\right)$.

Since $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}^{\prime}$ is generic and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$ then $\pi_{2}\left(W_{M}^{\prime}\right) \subseteq T_{M}$, so its Zariski closure is contained in T_{M}.

Moreover, $c^{\bar{a}}$ is gencric in T_{M} and $c^{\bar{a}} \subset \pi_{2}(1 / / M)$, then we have

$$
T_{M}={\overline{\pi_{2}\left(W_{M}^{\prime}\right)}}^{Z a r}
$$

Let be W_{M}^{\prime} the irreducible components of the Zariski closure of W_{M} containing the point $\left(\bar{a}, e^{\bar{a}}\right)$.

Since $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}^{\prime}$ is generic and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$ then $\pi_{2}\left(W_{M}^{\prime}\right) \subseteq T_{M}$, so its Zariski closure is contained in T_{M}.

Moreover, $e^{\bar{a}}$ is generic in T_{M} and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$, then we have

Let be W_{M}^{\prime} the irreducible components of the Zariski closure of W_{M} containing the point $\left(\bar{a}, e^{\bar{a}}\right)$.

Since $\left(\bar{a}, e^{\bar{a}}\right) \in W_{M}^{\prime}$ is generic and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$ then $\pi_{2}\left(W_{M}^{\prime}\right) \subseteq T_{M}$, so its Zariski closure is contained in T_{M}.

Moreover, $e^{\bar{a}}$ is generic in T_{M} and $e^{\bar{a}} \in \pi_{2}\left(W_{M}^{\prime}\right)$, then we have

$$
T_{M}={\overline{\pi_{2}\left(W_{M}^{\prime}\right)}}^{Z a r}
$$

Proof of genericity

We consider

$$
S_{N}=\left\{{\overline{\pi_{2}\left(W_{N}^{\prime}\right)}}^{\text {Zar }}: W_{N}^{\prime} \text { irreducible component of } W_{N}\right\}
$$

Let be $\mathcal{U}=\left\{S_{N}: S_{N}\right.$ tori $\}$.
Sinee \mathbb{U} is a countable definable family in $\left(\mathbb{C}^{*}\right)^{n}$, and \mathbb{C} is ω_{1}-saturated then \mathcal{U} is either finite or co-countable, and since it is countable then \mathcal{U} is necessarily finite, i.e. $\mathcal{U}=\left\{H_{1}, \ldots, H_{l}\right\}$. So, $T_{M}=H_{i}$, for some $i=1, \ldots, l$.
We can avoid such tori adding finitely many inequalities in the Masser's system which guarantees that the solution is a generic point.

Proof of genericity

We consider

$$
S_{N}=\left\{{\overline{\pi_{2}\left(W_{N}^{\prime}\right)}}^{Z a r}: W_{N}^{\prime} \text { irreducible component of } W_{N}\right\}
$$

Let be $\mathcal{U}=\left\{S_{N}: S_{N}\right.$ tori $\}$.
Since \mathcal{U} is a countable definable family in $\left(\mathbb{C}^{*}\right)^{n}$, and \mathbb{C} is
ω_{1}-saturated then \mathcal{U} is either finite or co-countable, and since it is countable then \mathcal{U} is necessarily finite, i.e. $\mathcal{U}=\left\{H_{1}, \ldots, H_{l}\right\}$. So, $T_{M}=H_{i}$, for some $i=1, \ldots, l$.
We can avoid such tori adding finitely many inequalities in the Masser's system which guarantees that the solution is a generic point.

Proof of genericity

We consider

$$
S_{N}=\left\{{\overline{\pi_{2}\left(W_{N}^{\prime}\right)}}^{Z a r}: W_{N}^{\prime} \text { irreducible component of } W_{N}\right\}
$$

Let be $\mathcal{U}=\left\{S_{N}: S_{N}\right.$ tori $\}$.
Since \mathcal{U} is a countable definable family in $\left(\mathbb{C}^{*}\right)^{n}$, and \mathbb{C} is ω_{1}-saturated then \mathcal{U} is either finite or co-countable, and since it is countable then \mathcal{U} is necessarily finite, i.e. $\mathcal{U}=\left\{H_{1}, \ldots, H_{l}\right\}$. So, $T_{M}=H_{i}$, for some $i=1, \ldots, l$.

Proof of genericity

We consider

$$
S_{N}=\left\{{\overline{\pi_{2}\left(W_{N}^{\prime}\right)}}^{Z a r}: W_{N}^{\prime} \text { irreducible component of } W_{N}\right\}
$$

Let be $\mathcal{U}=\left\{S_{N}: S_{N}\right.$ tori $\}$.
Since \mathcal{U} is a countable definable family in $\left(\mathbb{C}^{*}\right)^{n}$, and \mathbb{C} is ω_{1}-saturated then \mathcal{U} is either finite or co-countable, and since it is countable then \mathcal{U} is necessarily finite, i.e. $\mathcal{U}=\left\{H_{1}, \ldots, H_{l}\right\}$. So, $T_{M}=H_{i}$, for some $i=1, \ldots, l$.
We can avoid such tori adding finitely many inequalities in the Masser's system which guarantees that the solution is a generic point.

Proof of genericity

We consider

$$
S_{N}=\left\{{\overline{\pi_{2}\left(W_{N}^{\prime}\right)}}^{Z a r}: W_{N}^{\prime} \text { irreducible component of } W_{N}\right\}
$$

Let be $\mathcal{U}=\left\{S_{N}: S_{N}\right.$ tori $\}$.
Since \mathcal{U} is a countable definable family in $\left(\mathbb{C}^{*}\right)^{n}$, and \mathbb{C} is ω_{1}-saturated then \mathcal{U} is either finite or co-countable, and since it is countable then \mathcal{U} is necessarily finite, i.e. $\mathcal{U}=\left\{H_{1}, \ldots, H_{l}\right\}$. So, $T_{M}=H_{i}$, for some $i=1, \ldots, l$.
We can avoid such tori adding finitely many inequalities in the Masser's system which guarantees that the solution is a generic point.

Next goals

(1) Weaken the hypothesis that $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant.
(2) Eliminate the hypothesis that V is defined over $\mathbb{Q}^{\text {alg }}$ (work going on with D'Aquino, Fornasiero and Gunaydin)

Next goals

(1) Weaken the hypothesis that $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant.
(2) Eliminate the hypothesis that V is defined over $\mathbb{Q}^{a l g}$ (work going on with D'Aquino, Fornasiero and Gunaydin)

Next goals

(1) Weaken the hypothesis that $\pi_{1}(V)$ and $\pi_{2}(V)$ are dominant.
(2) Eliminate the hypothesis that V is defined over $\mathbb{Q}^{\text {alg }}$ (work going on with D'Aquino, Fornasiero and Gunaydin)

