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Exponential rings

Definition: An exponential ring, or E -ring, is a pair (R,E ) where
R is a ring (commutative with 1) and

E : (R,+)→ (U(R), ·)

a morphism of the additive group of R into the multiplicative
group of units of R satisfying
• E (x + y) = E (x) · E (y) for all x , y ∈ R
• E (0) = 1.

1 (K ,E ) where K is any ring and E (x) = 1 for all x ∈ K .

2 (R, exp); (C, exp);
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Motivations

The model theoretic analysis of the exponential function over a
field started with a problem left open by Tarski in the 30’s, about
the decidability of the reals with exponentiation. Only in the mid
90’s Macintyre and Wilkie gave a positive answer to this question
assuming Schanuel’s Conjecture. Complex exponentiation involves
much deeper issues, and it is much harder to approach, as it
inherits the Godel incompleteness and undecidability phenomena
via the definition of the set of periods. Despite this negative
results there are still many interesting and natural model-theoretic
aspects to analyze.



Comparing (R, exp) and (C, exp)

Th(R, exp) decidable Th(C, exp) undecidable
modulo (SC) Z = {x : ∀y(E (y) = 1→ E (xy) = 1)}
(Macintyre-Wilkie ’96)

Th(R, exp) Th(C, exp)
model-complete not model-complete
(Wilkie ’96) (Macintyre, Marker)

Th(R, exp) o-minimal • Is Th(C, exp) quasi-minimal?
good description of • What are the automorphisms
definable sets of (C, exp)?
(Wilkie ’96) • Is R definable in (C, exp)?
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The complex exponential field

Macintyre 1996

x ∈ Q iff ∃t, u, v((v − u)t = 1 ∧ ev = eu = 1 ∧ (vx = u))

Laczkovich 2002

For any x ∈ Q
x ∈ Z iff ∃z(ez = 2 ∧ ezx ∈ Q)

Th∃(C, ex) is undecidable.
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Zilber’s programme

As regards definability the above ideas show that definability in the
complex exponential field is as complicated as definability in the
ring Z. For this reason, work stopped early on the logic of complex
exponentiation, and was only taken up again after a wonderful
discovery of Zilber early this century.



Pseudo exponential field or Zilber field

Zilber’s programme: Looks for a canonical algebraically closed
field of characteristic 0 with exponentiation.

(K ,E ) is a Zilber field if:

K is an algebraically closed field of characteristic 0;

E : (K ,+) −→ (K×, ·) is a surjective homomorphism and
there is ω ∈ K transcendental over Q such that ker E = Zω;

Schanuel’s Conjecture (SC) Let λ1, . . . , λn ∈ K be linearly
independent over Q. Then Q(λ1, . . . , λn,E (λ1), . . . ,E (λn))
has transcendence degree (t.d.) at least n over Q;

Axioms giving criteria for solvability of systems of exponential
equations.
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Normal and free

DEFINITION

We say V ⊆ Gn(K ) is normal if dim[M]V ≥ k for any k × n
integer matrix of rank k.

DEFINITION

We say that V ⊆ Gn(K ) is free if there are no m1, . . . ,mn ∈ Z and
a, b ∈ K where b 6= 0 such that V is contained in
{(x , y) : m1x1 + . . .+ mnxn = a} or {(x , y) : ym1

1 · . . . · ymn
n = b}.
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axioms

(Strong Exponential Closure) For all finite A ⊆ K if
V ⊆ Gn(K ) is irreducible, free and normal with dimV = n
there is (z ,E (z)) ∈ V a generic point in V over A;
Equivalentely, there are infinitely algebraically independent
such points in V.

(Countable Closure) For all finite A ⊆ K if V ⊆ Gn(K ) is
irreducible, free and normal with dimV = n and defined over
the definable closure of A, {(z ,E (z)) ∈ V : generic over A}
is countable.

Remark:

Zilber finds an axiomatization of the class of pseudo exponential
fields Lω1ω(Q)

Q is the ”quantifier exist uncountably many”;

Lω1ω allows countable ∧ and ∨.
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Quasiminimality

THEOREM (Zilber)

The class of pseudo exponential fields is quasiminimal
(Bays-Kirby);

The class of pseudo exponential fields has automorphism
different from identity and conjugation.



Categoricity result

THEOREM (Zilber)

The class of pseudo exponential fields has a unique model in every
uncountable cardinality. (Bays-Kirby)

Zilber’s Conjecture: The unique model of cardinality 2ℵ0 is (C, ex).
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Answer

A positive answer would imply

Is R definable in (C, exp) NO

Is (C, exp) quasi-minimal? YES

Are there automorphisms of (C, exp) different from identity
and conjugation? YES

THEOREM (Bays and Kirby)

If (C, exp) is exponentially algebraically closed then it is
quasiminimal

THEOREM (Boxall ’18)

Let X a subset of C defined by ∃y(P(x , y) = 0), where P is a term
formed from language {+,×, exp} together with parameters from
C. Then either X or C \ X is countable.
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Schanuel’s conjecture

Schanuel’s Conjecture is currently considered out of reach, except
for some very special cases.

λ = 1 transcendence of e; [Hermite (1873)]

λ = 2πi transcendence π; [Lindemann (1882)]

λ1 = π, λ2 = πi , algebraically independent π, eπ [Nesterenko
(1996)]

If λ1, λ2, . . . , λn are algebraic numbers linearly independent
over Q, then eλ1 , . . . , eλn are algebraically independent over Q
[ Lindemann-Weierstrass (1885)]
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Strong exponential closure

REMARK

Assuming Schanuel’s Conjecture the axiom of strong exponential
closure for (C, ex) is the only impediment to prove Zilber’s
Conjecture.

Simplest case

Given p(x , y) ∈ C[X ,Y ] irreducible where both x and y appear, is
there a generic solution p(z , ez) = 0?
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Infinite solutions

THEOREM (Marker)

If p(x , y) ∈ C[x , y ] is irreducible and depends on x and y then
f (z) = p(z , ez) has infinitely many zeros.

Proof

Follows from Hadamard Factorization theorem with Henson and
Rubel’s result (proved independently by Van den Dries) which said
that the map from exponential terms to entire function is injective.
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Simple case

THEOREM (Marker)

(SC). If (z , ez) and (w , ew ) are solutions of p(x , y) ∈ Qalg [x , y ]
then z ,w are algebraically independent over Q.

THEOREM (Mantova and Zannier)

(SC). The same holds when p(x , y) ∈ C[x , y ]

Some ideas due also to Gunayadin and Martin-Pizarro.
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Conjecture 17’

Conjecture 1. Assuming Schanuel’s Conjecture. Let
p(x , y1, . . . , yn) ∈ Qalg [x , y1, . . . , yn] a nonzero irreducible
polynomial depending on x and the last variable yn. Then

p(z , ez , ee
z
, . . . , ee

e...
ez

)) = 0

has a generic solution.

REMARK

Strong Exponential Closure in C implies a positive answer.
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Three iterations

We consider when f (z) = p(z , ez , ee
z
, ee
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). The corresponding
system in six variables (z1, z2, z3,w1,w2,w3) is:

V =


p(z1, z2, z3,w3) = 0
w1 = z2
w2 = z3.

(1)

thought of as an algebraic set V in G2(C).

THEOREM (DFT)

(SC) If p(x , y , z ,w) ∈ Qalg [x , y , z ,w ] then the variety defined by
V has a generic point.



Three iterations

We consider when f (z) = p(z , ez , ee
z
, ee

ez

). The corresponding
system in six variables (z1, z2, z3,w1,w2,w3) is:

V =


p(z1, z2, z3,w3) = 0
w1 = z2
w2 = z3.

(1)

thought of as an algebraic set V in G2(C).

THEOREM (DFT)

(SC) If p(x , y , z ,w) ∈ Qalg [x , y , z ,w ] then the variety defined by
V has a generic point.



Three iterations

We consider when f (z) = p(z , ez , ee
z
, ee

ez

). The corresponding
system in six variables (z1, z2, z3,w1,w2,w3) is:

V =


p(z1, z2, z3,w3) = 0
w1 = z2
w2 = z3.

(1)

thought of as an algebraic set V in G2(C).

THEOREM (DFT)

(SC) If p(x , y , z ,w) ∈ Qalg [x , y , z ,w ] then the variety defined by
V has a generic point.



Three iterations

We consider when f (z) = p(z , ez , ee
z
, ee

ez

). The corresponding
system in six variables (z1, z2, z3,w1,w2,w3) is:

V =


p(z1, z2, z3,w3) = 0
w1 = z2
w2 = z3.

(1)

thought of as an algebraic set V in G2(C).

THEOREM (DFT)

(SC) If p(x , y , z ,w) ∈ Qalg [x , y , z ,w ] then the variety defined by
V has a generic point.



Three iterations

We consider when f (z) = p(z , ez , ee
z
, ee

ez

). The corresponding
system in six variables (z1, z2, z3,w1,w2,w3) is:

V =


p(z1, z2, z3,w3) = 0
w1 = z2
w2 = z3.

(1)

thought of as an algebraic set V in G2(C).

THEOREM (DFT)

(SC) If p(x , y , z ,w) ∈ Qalg [x , y , z ,w ] then the variety defined by
V has a generic point.



Proof

1 We prove that there exists a solution of p. In fact there are
infinitely many.

2 The solution is a generic solution.
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Solutions of exponential polynomials over C

Theorem (Katzberg)

A non constant polynomial F (z) ∈ C[z ]E has always infinitely
many zeros unless it is of the form

F (z) = (z − α1)n1 · . . . · (z − αn)nneg(z),

where α1, . . . , αn ∈ C, n1, . . . , nn ∈ N, and g(z) ∈ C[z ]E .
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Solutions of exponential functions

THEOREM (D’Aquino, Fornasiero, T.)

Let f (z) = p(z , ez , ee
z
, . . . , ee

e...
ez

), where p(x , y1 . . . , yk) is an
irreducible polynomial over C[x , y1 . . . , yk ]. Then the function f
has infinitely many solutions in C unless
p(x , y1 . . . , yk) = g(x) · yni11 · . . . · y

nik
k , where g(x) ∈ C[x ].

Proof

It is an immediate consequence of Katzberg’s result

No restrictions on the coefficients of p(x , y1 . . . , yk) and it is
unconditionally (no Schanuel’s Conjecture).
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Masser’s result

THEOREM (Masser)

Let P1(x), . . . ,Pn(x) ∈ C[x ], where x = x1, . . . , xn. Then there
exist z1, . . . , zn ∈ C such that

ez1 = P1(z1, . . . , zn)
ez2 = P2(z1, . . . , zn)
...
ezn = Pn(z1, . . . , zn)

(2)

We have to show that the function F : Cn → Cn defined as
F (x1, . . . , xn) = (ex1 − P1(x1, . . . , xn), . . . , exn − Pn(x1, . . . , xn))
has a zero in Cn.
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Proof

LEMMA (Kantorovich)

Let F : Cn → Cn with
F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) be an entire
function, and p0 be such that J(p0), the Jacobian of F at p0 is
non singular. Let η = |J(p0)−1F (p0)| and U the closed ball of
center p0 and radius 2η. Let M > 0 be such that |H(F )|2 ≤ M2

(where H(F ) denotes the Hessian of F ). If 2Mη|J(p0)−1| < 1 then
there is a zero of F in U.



Proof

LEMMA (Kantorovich)

Let F : Cn → Cn with
F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) be an entire
function, and p0 be such that J(p0), the Jacobian of F at p0 is
non singular. Let η = |J(p0)−1F (p0)| and U the closed ball of
center p0 and radius 2η. Let M > 0 be such that |H(F )|2 ≤ M2

(where H(F ) denotes the Hessian of F ). If 2Mη|J(p0)−1| < 1 then
there is a zero of F in U.



Generalization of Masser’s result

A cone is an open subset U ⊆ Cn s. t. for every 1 ≤ t ∈ R, if
x ∈ U then tx ∈ U.

DEFINITION

An algebraic function is an analytic function f : U → C s.t. there
exists a nonzero polynomial p(x , u) ∈ C[x , u] with p(x , f (x)) = 0
on all x ∈ U. If, moreover, the polynomial p is monic in u, we say
that f is integral algebraic.



Generalizzation of Masser’s result

THEOREM (Masser-DFT)

Let f1, . . . , fn : U → C be nonzero algebraic functions, defined on
some cone U. Assume that U ∩ (2πiZ∗)n is Zariski dense in Cn.
Then 

ez1 = f1(z1, . . . , zn)
ez2 = f2(z1, . . . , zn)
...
ezn = fn(z1, . . . , zn)

(3)

has a solution a ∈ U.



Strong exponential closure

THEOREM (Main Theorem DFT ’18)

(SC) Let V ⊆ Cn × (C∗)n an irreducible variety over Qalg with
dimV = n. If π1(V ) and π2(V ) are dominant, then there exists a
generic point of V of the form (a, ea).

REMARK

The result implies many cases of Zilber’s Conjecture
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Positive answer to the conjecture

REMARK

Let p(x , y1, . . . , yn) ∈ Qalg [x , y1, . . . , yn] a nonzero irreducible
polynomial depending on x and the last variable yn. Let

p(z , ez , ee
z
, . . . , ee

e...
ez

) = 0, the corrisponding system in 2n
variables is:

V =

{
p(x1, . . . , xn, y1, . . . , yn) = 0
xi+1 = yi

(4)

for all i = 2, . . . , n.
V is a variety of dimV = n.



Positive answer to the conjecture

Main theorem implies Conjecture 1



Generic solutions

Let V ⊆ Cn × (C∗)n, over the algebraic closure of Q.

DEFINITION

A point (a, ea) ∈ V is generic in V if

t.d .Q(a, ea) = dimV .
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proof

1 There exists a solution (unconditionally)

2 The solution is a generic solution
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Existence of solutions

THEOREM (Masser Brownawell-DFT)

Let V ⊆ Cn × (C∗)n be an irreducible algebraic variety such that
the projection onto the first coordinates π1(V ) is Zariski dense in
Cn. Then the set {a ∈ Cn : (a, ea) ∈ V } is Zariski dense in Cn.

REMARK (1)

The result it is unconditionally (it doesn’t use Schanuel’s
Conjecture)

REMARK (2)

By Bays-Kirby result quasiminimality is true for (C, ex) for some
cases
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1 Schanuel’s conjecture

2 Masser’s system
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Proof of genericity

Let be (a, ea) ∈ V and suppose that the point is not generic, i.e.
t.d .Q(a, ea) = m < n.
Without loss of generality we can assume

|Va| <∞ and |V ea | <∞

By Schanuel’s Conjecture

l .d .(a) ≤ t.d .Q(a, ea) = m < n.

So, there exists M ∈ Zn × Zn−m such that M · a = 0.

Applying exponentiation we have the relation ea
M

= 1. The above
relations define:

LM = {x : M · x = 0} and TM = {y : yM = 1}.
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We obtain that

m = dim LM = dimTM ,

so

m = t.d .Q(a, ea) = dim LM = dimTM .

Moreover, |Va| <∞ and |V ea | <∞ imply ea is algebraic over
Q(a), and a is algebraic over Q(ea), which means

m = t.d .Q(a) = t.d .Q(a, ea) = t.d .Q(ea).
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Proof of genericity

In other words a is generic in LM and ea is generic in TM .
We consider

WN = {(x , y) ∈ V : x ∈ LN∧ | Vx |<∞∧ | V y |<∞},

where N ∈ Cn × Cn−m. If N = M then (a, ea) ∈WM .

(WN)N is a definable family.

We observe that

dimWM = dimπ1(WM) ≤ dim LM .

Moreover (a, ea) ∈WM so, dimWM ≥ dim LM . We have

dimWM = dim LM .
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Let be W ′
M the irreducible components of the Zariski closure of

WM containing the point (a, ea).

Since (a, ea) ∈W ′
M is generic and ea ∈ π2(W ′

M) then
π2(W ′

M) ⊆ TM , so its Zariski closure is contained in TM .

Moreover, ea is generic in TM and ea ∈ π2(W ′
M), then we have

TM = π2(W ′
M)

Zar
.
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Proof of genericity

We consider

SN = {π2(W ′
N)

Zar
: W ′

N irreducible component of WN}.

Let be U = {SN : SN tori }.

Since U is a countable definable family in (C∗)n, and C is
ω1-saturated then U is either finite or co-countable, and since it is
countable then U is necessarily finite, i.e. U = {H1, . . . ,Hl}. So,
TM = Hi , for some i = 1, . . . , l .
We can avoid such tori adding finitely many inequalities in the
Masser’s system which guarantees that the solution is a generic
point.
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