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1. Model-theoretic background: stability, forking, Morley rank

We work in a monster model C of a complete theory T in a language L. We will
assume T has (strong) elimination of imaginaries, that is, for any ∅-definable in T
equivalence relation E on a definable set X, there is a ∅-definable set Y and a ∅-definable
function f : X → Y such that |= ∀x, y(E(x, y)↔ f(x) = f(y)).

Let |̂ denote the relation of forking independence, that is, A |̂
C
B if tp(A/BC)

does not fork over C. If A ⊆ B, p ∈ S(A) and q ∈ S(B), then we say that q is a
non-forking extension of p (and write p ⊆nf q) when p ⊆ q and q does not fork over A.

A global type is a complete type over the monster model C.
A type p ∈ S(A) is called stationary if it has only one global non-forking extension,

which we denote by p̃.

Fact 1.1. If T is stable, then |̂ has the following properties:

(1) (Invariance) A |̂
C
B ⇐⇒ f(A) |̂

f(C)
f(B) for any f ∈ Aut(C).

(2) (Symmetry) A |̂
C
B ⇐⇒ B |̂

C
A

(3) (Monotonicity) If A′ ⊆ A and B′ ⊆ B then A |̂
C
B ⇒ A′ |̂

C
B′.

(4) (Finite character) A |̂
C
B iff A0 |̂ C B0 for all finite A0 ⊆ A and B0 ⊆ B.

(5) (Transitivity) If B1 ⊆ B2 ⊆ B3 then A |̂
B1
B3 iff A |̂

B1
B2 and A |̂

B2
B3.

(6) (Normality) A |̂
C
B ⇐⇒ A |̂

C
BC.

(7) (Stationarity) If A is algebraically closed, then any p ∈ S(A) is stationary (re-
member we are assuming elimination of imaginaries). In particular, if M is a
model then any p ∈ S(M) is stationary.

(8) (Extension) For any A,B,C there is A′ ≡C A with A′ |̂
C
BC.

(9) (Local character) There exists a cardinal λ such that for any a and B there is
C ⊆ B with |C| ≤ λ such that a |̂

C
B. In fact, one can take λ = |T |.
1
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Moreover, in any theory T , if there is a ternary relation |̂ ∗ satisfying the above properties,

then T is stable and |̂ ∗ = |̂ .

Definition 1.2. The Morley rank of a formula φ defining a set S, denoted RM(φ) or
RM(S), is an ordinal or −1 or ∞, defined by first recursively defining what it means for
a formula to have Morley rank at least α for some ordinal α:

• RM(S) ≥ 0 iff S 6= ∅.
• RM(S) ≥ α + 1 iff there are pairwise disjoint definable subsets (Xi)i<ω of S such

that RM(Xi) ≥ α for each i < ω.
• If λ is a limit ordinal then RM(S) ≥ λ iff RM(S) ≥ α for every α < λ.

Finally, RM(S) = α when RM(S) ≥ α and for no β > α one has RM(S) ≥ β. Also, we
set RM(S) = ∞ if RM(S) ≥ α for every α ∈ Ord. If RM(S) ∈ Ord, then the Morley
degree of S, denoted by DM(S), is the maximal number of definable sets of Morley rank
RM(S) into which S can be partitioned.

If π(x) is a (partial) type, we put RM(π(x)) := min{RM(φ(x)) : π(x) ` φ(x)} and
DM(π(x)) := min{DM(φ(x)) : π(x) ` φ(x),RM(φ(x)) = RM(φ(x))}.

A one-sorted structure M (or its theory Th(M)) is called strongly minimal if RM(x =
x) = DM(x = x) = 1 where x is a single variable of the only sort of M . Equivalently,
every definable subset of any model C |= Th(M) is either finite of co-finite.

Exercise 1.3. If T = DLO0 is the theory of dense linear orders without endpoints, then
for any a < b we have RM(a < x < b) =∞.

Fact 1.4. Suppose X1 and X2 are definable. Then:
(0) RM(X1) = 0 iff X1 is finite and nonempty.
(1) If X1 ⊆ X2, then RM(X1) ≤ RM(X2).
(2) RM(X1 ∪X2) = max(RM(X1),RM(X2)).
(3) If there is a definable bijection between X1 and X2, then RM(X1) = RM(X2).
(4) If X2 = f(X1) for some f ∈ Aut(C), then RM(X1) = RM(X2).

Proof. (0),(2),(3),(4):Exercise.
(1): It is enough to prove that for every ordinal α, if RM(X1) ≥ α then RM(X2) ≥ α.
We shall prove this by induction on α. For α = 0, if RM(X1) ≥ 0 then X1 6= ∅, so X2 6= ∅
and hence RM(X2) ≥ 0

For the inductive step, if RM(X1) ≥ α + 1 witnessed by pairwise disjoint definable
subsets Yi of X with RM(Yi) ≥ α, we get that the sets Yi are also contained in X2, hence
they witness that RM(X2) ≥ α + 1.

If λ is a limit ordinal and RM(X1) ≥ λ, then for any α < λ we have that RM(X1) ≥ α,
hence by the inductive assumption RM(X2) ≥ α as well. This shows that RM(X2) ≥
λ. �

Definition 1.5. Let X 6= ∅ be a ∅-definable set. We say that a partial type π(x) is
generic in X, if π(x) ` x ∈ X and RM(π(x)) = RM(X).

Corollary 1.6. Let X 6= ∅ be a set definable in T . Then any generic partial type π(x) `
x ∈ X over A extends to a complete generic type in X over A.

Proof. Let
p(x) := π(x) ∪ {¬φ(x) ∈ L(A) : RM(φ(x)) < RM(G)}.

If p(x) is inconsistent, then there are φ0(x), . . . , φn−1(x) with RM(φi(x)) < RM(X) for
each i < n such that π(x) `

∨
i<n φi(x). So there is some π(x) ` ψ(x) such that
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ψ(x) `
∨
i<n φi(x). Then RM(ψ(x)) ≥ RM(π(x)) = RM(X), but, by Fact 1.4(2),

RM(
∨
i<n φi(x)) = maxi<n RM(φi(x)) < RM(X). A contradiction to Fact 1.4(1).

Now any p′ ∈ S(A) extending p(x) is a generic type in X extending π(x).
�

From now on let us assume that the language L is countable.

Definition 1.7. A theory T is called ω-stable if for any countable M we have |S(M)| ≤ ω.

Fact 1.8. T is ω-stable iff RM(φ(x)) <∞ for any formula φ(x).

Fact 1.9. Suppose T is ω-stable.

• If p ∈ S(A) and q ∈ S(B) with p ⊆ q, then p ⊆nf q ⇐⇒ RM(p) = RM(q).
• A type p ∈ S(A) is stationary iff DM(p) = 1.

Example 1.10. • If F |= ACFp then RM(F ) = 1 = DM(F ) (i.e. F is strongly
minimal)
• If K |= DCF0, then RM(K) = ω, and the field of constants of K is strongly

minimal.

2. Stable groups

Usually when we say a ‘stable group’ we tacitly fix some stable theory T with strong
elimination of imaginaries in which G is definable, and work in the monster model C of
T .

Recall a theory T is stable iff it does not have order property (OP), that is, there do
not exist a formula φ(x; y) and parameters (ai, bi)i<ω such that |= φ(ai, bj) ⇐⇒ i < j.
Equivalently, there do not exist φ(x; y) and (ai, bi)i<ω such that |= φ(ai, bj) ⇐⇒ i ≤ j
(≤ in place of <).

Proposition 2.1. Let G be a stable semigroup with both left and right cancellation. Then
G is a group.

Proof. Let a ∈ G and consider the formula φ(x, y) = ∃zxz = y. As G |= φ(an, am) for any
n < m < ω and G does not have OP, it follows that there are some n ≥ m with φ(an, am).
Thus there is some c ∈ G with anc = am. Put e = an−mc (if n = m we mean e = c). So
ame = am.

Claim 1. e is a neutral element in G.

Proof. Take any c ∈ G. As ame = am, we also have amec = amc. By cancellation, ec = c,
so e is left-neutral. Similarly we can find right-neutral element e′, but then e = ee′ = e′,
so e is both left- and right-neutral. �

By the claim G |= φ(an, am) also for n = m, hence G |= φ(an, am) for any n ≤ m < ω.
Thus, again using that G does not have AP, we have G |= φ(an, am) for some n > m,
so there is some c ∈ G with anc = am = ame. By cancellation, an−mc = e, so a′ :=
an−m−1c is right-inverse to a. Similarly, we can find a left-inverse to a, call it a′′. Then
a′′ = a′′aa′ = a′, so a′ is inverse to a. �

Recall T is NIP if there is no formula φ(x; y) and parameters ai<ω, (bW )W⊆ω such that
|= φ(ai, bW ) ⇐⇒ i ∈ W .
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Lemma 2.2. (Baldwin-Saxl condition) Let G be a group with NIP. Then for any formula
φ(x; y) there is nφ < ω such that for any groups H1, . . . , Hn ≤ G definable by instances of
φ(x; y) the intersection H1 ∩ · · · ∩Hn is equal to the intersection at most nφ-many groups
among H1, . . . , Hn.

Proof. Suppose not, so for any n < ω we have H1, . . . , Hn whose intersection is not equal
to the intersection of any n − 1 of them. Thus for any i ∈ {1, 2, . . . , n} there is some
gi ∈

⋂
j 6=iHj \

⋂
j∈{1,...,n}Hj =

⋂
j 6=iHj \ Hi. For W ⊆ {i1, . . . , im} ⊆ {1, . . . , n} with

i1 < · · · < im put gW := gi1 . . . gim . Then gW ∈ Hi ⇐⇒ i /∈ W . As n was arbitrary, this
together with compactness gives that φ(x; y) has IP. �

Corollary 2.3. (Chain condition on intersections) Let G be a stable group and φ(x, y) a
formula. Then there is no strictly descending chain of subgroups of G

H0 ≥ H1 ≥ H2 . . .

each of which is an intersection of finitely many groups defined by an instance of φ(x, y).
Moreover, there is a uniform bound on the length of such finite chain.

Proof. By Lemma 2.2 all Hi’s are definable by instances of the formula ψ(x; y1, . . . , ynφ) :=∧
i∈{1,...,nφ} φ(x; yi). As G is stable, ψ does not have strict order property, i.e. its instances

cannot form an infinite chain under inclusion, and by compactness there is a bound on
the length of such a chain. �

3. ω-stable groups

We assume G is an ω-stable group.

Proposition 3.1. (Descending chain condition) There is no strictly descending chain
G ≥ H0 ≥ H1 ≥ . . . of definable subgroups of G.

Proof. Suppose there is such a chain. Then for any i we have that either RM(Hi+1) <
RM(Hi) or RM(Hi+1) = RM(Hi) and DM(Hi+1) < DM(Hi)). This means that (RM(Hi),DM(Hi))i<ω
is a strictly descending sequence of elements the well-ordered class (Ord×ω,<lex), where
<lex is the lexicographic order. This is a contradiction. (more explicitly, the non-increasing
sequence (RM(Hi))i<ω or ordinals must stabilise from some point on, so from that point
on D(Hi) is a decreasing sequence of natural numbers, a contradiction). �

Corollary 3.2. G has a smallest definable subgroup of finite index, called the connected
component of G and denoted G0.

Proof. If not, then we can inductively find a decreasing chain of definable subgroups of G
of finite index, contradicting Proposition 3.1. �

Exercise 3.3. G0 is normal in G and invariant under automorphisms of G.

Lemma 3.4. G has at most DM(G)-many global generic types.

Proof. If p1, . . . , pn are global generic types, then there are pairwise inconsistent formulas
φ1 ∈ p1, . . . , φn ∈ pn. Then φi(x) ∧ x ∈ G ∈ pi, so we get by genericity of pi that
RM(φi(x) ∧ x ∈ G) ≥ RM(G) for every i. This shows that DM(G) ≥ n. �

Note thatG acts naturally on the set S(C)∩[x ∈ G] of global types inG by: g·tp(a/G) =
tp(ga/G) (here a comes from a bigger monster model C′ � C). More generally, G acts on
the set of stationary types: for any stationary p ∈ S(A)∩ [x ∈ G], define g ·p := tp(g ·a/A)
for a |= p such that a |̂

A
g.
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Exercise 3.5. Prove that this is indeed a well-defined action.

Definition 3.6. Let p ∈ S(A)∩ [x ∈ G] be stationary. Then we define the stabiliser of p
in G as follows: StabG(p) := {g ∈ G : g · p = p}.
Exercise 3.7. If p is stationary type with the unique global non-forking extension p̃, then
StabG(p) = StabG(p̃).

Exercise 3.8. StabG(p) is a definable subgroup of G for any stationary type p ∈ S(A) ∩
[x ∈ G].

Exercise 3.9. RM(a/A, g) = RM(g · a/A, g) for any a, g ∈ G and any parameter set A.

By Exercise 3.9, if p is a stationary generic type then so is g · p. Thus G acts on the
set of generic stationary types in G.

Proposition 3.10. If p ∈ S(A)∩ [x ∈ G] is a generic stationary type, then StabG(p) has
finite index in G.

Proof. By Lemma 3.4, G has only finitely many generics over A (as each of them extends
to a different global generic). Thus G · p is finite, so [G : StabG(p)] is finite by the
Orbit-Stabiliser Theorem. �

Proposition 3.11. If G is connected, then it has only one global generic type.

Proof. Let tp(a/C) and tp(b/C) be global generic types in G (here a, b live in some bigger
monster model C′ � C). We may assume a |̂

C
b. Thus a · tp(b/C) = tp(a · b/C). As G

is connected, we get by Proposition 3.10 that StabG(p) = G, so a ∈ StabG(p) and hence
tp(a · b/C) = tp(b/C). Similarly, b−1 ∈ StabG(tp(a−1/C)), so tp(a−1/C) = tp(b−1a−1/C),
so applying −1 we get that tp(a/C) = tp(a · b/C) = tp(b/C). �

Note that, as the [G : G0] < ω, we can find representatives g1, . . . , gd of all cosets of G0

in G(C), hence every global type contains the formula x ∈ gi ·G0 for some i.

Corollary 3.12. In each coset of G0 in G there is exactly one global generic type of G.

Proof. As any coset of G0 has the same Morley rank as G, it has at least one generic type
of G. If p and q were distinct global generic types in a coset g ·G0, then g−1 ·p and g−1 ·G
would be distinct generic types in G0, a contradiction to Proposition 3.11, �

Corollary 3.13. DM(G) = [G : G0].

Recall that in a stable theory T , if a |̂
M
b where M |= T , then tp(a/MB) is finitely

satisfiable in M (i.e. any formula in tp(a/Mb)) has a realisation in M .

Proposition 3.14. For any global type p in G we have RM(p) ≥ RM(StabG(p)), and if
equality holds then StabG(p) is connected.

Proof. Let a |= p and b |= q where q is the global generic type in StabG(p)0, with a |̂
C
b.

Then

RM(StabG(p)) = RM(b/C) = RM(b/C, a) = RM(b · a/C, a) ≤ RM(b · a/C) = RM(p)

where the last equality holds as b · p = p.
Now if RM(b/C) = RM(p), then we must have RM(b·a/C, a) = RM(b·a/C) so b·a |̂

C
a,

so tp(a/C, b · a) is finitely satisfiable in C. So, as the formula (b · a)−1 · x−1 ∈ Stab0
G(p)

belongs to tp(a/C, b · a), it has a realisation c ∈ C. So b · a ∈ StabG(p)0 · c, hence, as
b · a |= p, we have (x ∈ StabG(p)0 · c) ∈ p. Now if StabG(p) is not connected, then there is
some d ∈ StabG(p) \StabG(p)0. But then, as d ·StabG(p)0 · c is disjoint from StabG(p)0 · c,
we get that d · p 6= p, a contradiction. �
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4. Zilber’s Indecomposability Theorem

Definition 4.1. We say a definable set A ⊆ G is indecomposable, if for any definable
group H ≤ G we have |A/H| > 1⇒ |A/H| ≥ ω.

Proposition 4.2. Any definable subset of G is a union of finitely many disjoint inde-
composable sets.

Proof. Follows essentially from the descending chain condition. �

Theorem 4.3. (Zilber’s Indecomposability Theorem) Suppose RM(G) < ω and (Ai)i∈I
is a family of indecomposable subsets of G with e ∈ Ai for every i ∈ I.The then group
H := 〈Ai, i ∈ I〉 is definable and connected. Moreover, H = (Ai1·)2 for some m ≤ RM(G)
and i1, . . . , im ∈ I.

Proof. We can choose i1, . . . , im ∈ I with m ≤ RM(G) such that for B := Ai1 . . . Aim we
have

RM(Ai ·B) = RM(B)

for every i ∈ I. Let p ∈ S(C)∩[x ∈ B] be such that RM(p) = RM(B), and H := StabG(p).

Claim 2. Ai ⊆ H for every i ∈ I.

Proof. If not, then, as e ∈ Ai, we have |Ai/H| > 1, hence |Ai/H| ≥ ω by indecomposabil-
ity of Ai, witnessed by some (aj)j<ω in Ai with a−1j aj′ /∈ H for j 6= j′. Hence a−1j aj′ ·p 6= p
so aj′ ·p 6= aj ·p for j 6= j′. But aj ·p ∈ S(C)∩[x ∈ Ai·B], so RM(Ai·B) > RM(p) = RM(B),
contradiction to the choice of B. �

By the claim we have B ⊆ H, hence p ` (x ∈ H), so RM(p) ≤ RM(H), hence, by
Proposition 3.14 we have RM(p) = RM(H) and H is connected. Hence RM(H \ B) <
RM(B), which easily implies that H = B2 (as any element of H is a product of two
generics in H over the parameters of B). �

Remark 4.4. • The assumption e ∈ Ai cannot be omitted: otherwise we could
obtain any group as 〈Ai, i ∈ I〉 taking Ai to be singletons.
• ZIT does not hold for ω-stable groups.
• We do not assume I to be small, in particular, it can be an infinite definable set.

Corollary 4.5. If A ⊆ G is indecomposable, then 〈A−1 · A〉 is definable and connected.

Proof. Apply ZIT to (a−1 · A)a∈A (note a−1 · A is indecomposable for every a). �

Exercise 4.6. Let S be a definable group acting definably on an ω-stable group G. If
A ⊆ G is S-invariant and such that |A/H| > 1 ⇒ |A/H| ≥ ω for every S-invariant
definable group H ≤ G, then A is indecomposable.

Proof. Let H ≤ G be definable and such that 1 < |A/H| < ω. As H is S-invariant, for any
s ∈ S we have |s ·A/H| = |s ·A/s ·H| = |A/H| < ω. By the descending chain condition⋂
s∈S s·H =

⋂
s∈S0

s·H for some finite S0 ⊆ S. Hence 1 < |A/
⋂
s∈S s·H| < |A/H||S0| < ω,

a contradiction to the assumption. �

Recall a group G is called simple when it has no non-trivial proper normal subgroup.

Definition 4.7. We say a group G is definably simple if it has no non-trivial proper
definable normal subgroup.
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Corollary 4.8. Let G be a group of finite Morley rank. If G is definably simple and
non-abelian, then G is simple.

Proof. We may assumeG is infinite (ifG is finite, every normal subgroup ofG is definable).
So, as G0 is definable and normal in G, we must have G0 = G (as we cannot have G0 = {e}
for infinite G). Let a ∈ G \ {e}. If aG is finite, then [G : C(a)] < ω, hence C(a) = G
by connectedness, so Z(G) 6= {e} and hence Z(G) = G as Z(G) is a definable normal
subgroup of G. A contradiction to the non-abelianity assumption.

If aG is infinite, then {e} ∪ aG is indecomposable by Exercise 4.6 applied to the conju-
gation action of G (so we only need to check the indecomposability of aG with respect to
H = G and H = {e}, which clearly holds). Thus by ZIT 〈aG〉 = 〈aG ∪ {e}〉 is definable;
as it is also normal, we must have 〈aG〉 = G. This clearly implies that G is normal. �

Corollary 4.9. Let G be a simple group of finite Morley rank. Then G is almost strongly
minimal, i.e. there exist strongly minimal sets S1, . . . , Sn with G ⊆ acl(S1 ∪ · · · ∪ Sn).

Proof. Let A ⊆ G be a strongly minimal definable subset. By 4.2 we may assume A is
indecomposable. Pick some a ∈ A and let B := a−1 ·A. Then for any g ∈ G we have that
Bg (:= g−1 ·B ·g) is indecomposable and e ∈ Bg, so by ZIT H := 〈

⋃
g∈GB

g〉 = Bg1 ·· · ··Bgn

for some g1, . . . , gn. As H is clearly normal in G, we must have that Bg1 · · · · · Bgn = G,
so G ⊆ acl(Bg1 , . . . , Bgn). As Bg1 , . . . , Bgn are strongly minimal, we are done. �

Fact 4.10. (Borovik) Let G be a group of finite Morley rank. Then RM in G satisfies for
any definable A ⊆ Gk, B ⊆ Gl:

• RM(X) ≥ n + 1 iff there are pairwise disjoint definable X0, X1, · · · ⊆ X with
RM(Xi) ≥ n for every i < ω (this is just by definition)
• (definability) For any formula φ(x, c) and any n < ω, the set {c ∈ C : RM(φ(x, c) =
n)} is definable.
• (additivity) If f : X → Y is a definable function and RM(f−1(y)) = n for every
y ∈ Y , then RM(X) = n+ RM(Y ).
• (elimination of ∃∞) If f : A → B is definable, then there is m such that fibers of
f of size > m are infinite.

Fact 4.11. If in a group G there is a rank with the above properties, then RM(G) < ω
and the rank coincides with Morley rank.

Corollary 4.12. If RM(G) < ω and H ≤ G is definable, then RM(G) = RM(H) +
RM(G/H).

5. Fields

5.1. Macintyre’s theorem. Let K be an infinite ω-stable field (we allow additional
structure on K, unless we call K a pure field). We aim to prove that K is algebraically
closed.

Lemma 5.1. DM(K) = 1, hence (K,+) and (K∗, ·) are connected groups.

Proof. Consider any a ∈ K∗. Then x 7→ a · x is a definable automorphisms of (K,+),
hence a · (K,+)0 = (K,+)0. This shows that (K,+)0 is an ideal of K, hence equals K,
so (K,+) is connected. So DM(K) = 1 by Proposition 3.13, hence also DM(K∗) = 1 and
hence (K∗, ·) is connected as well. �
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Lemma 5.2. For any n > 0 and a ∈ K the polynomial map xn − a is surjective on K,
and if char(K) = p > 0, then xp − x is surjective on K as well.

Hence K is perfect, Artin-Schreier closed and Kummer closed. Moreover, the same
holds for any finite extension of K.

Proof. Let a ∈ K∗ be a generic. As a and an are interalgebraic, we get RM(an) = RM(a),
so an is generic in K∗. Hence, as an ∈ (K∗)n = {xn : x ∈ K∗} and (K∗)n is a definable
subgroup of (K∗, ·), we must have that (K∗)n is a finite-index subgroup of K∗, thus, as
K∗ is connected, (K∗)n = K∗, so Kn = K.

Similarly, if char(K) = p > 0, we have that a and ap − a are interalgebraic, and, as
f(x) = xp − x is an additive homomorphism, we get that f(K) 3 ap − a is a subgroup of
finite index in (K,+), hence equals K.

The “moreover” clause follows as any finite extension of K is interpretable in K, and
hence has finite Morley rank as well (by Fact 4.10(3)). �

Exercise 5.3. Show that indeed any finite extension of K is interpretable in K.

Now we will use Galois theory to conclude that K is algebraically closed. We will use
the following fact.

Fact 5.4. • If char(F ) = p > 0 and L/F is a cyclic extension of degree p, then
L/F is an Artin-Schreier extension.
• If L/F is a cyclic extension of degree n, p does not divide n and F contains all
n-th roots of 1, then L/F is a Kummer extension

First, we claim that K contains all roots of unity. Suppose not, and n is minimal such
that K does not contain some primitive n-th root of unity a. Then K(a) is a normal
separable extension of K of degree strictly less than n. We can find L ⊆ K(a) with L/K
cyclic of some order m with m either equal or coprime to p. By minimality, K contains
all m-th roots of unity. Hence by Fact 5.4, K is either an Artin-Schreier or Kummer
extension of K, a contradiction.

Suppose K is not algebraically closed, so it has a normal extension L of a finite degree
n, which is also separable as K is perfect. Let H be a subgroup of Gal(L/K) of a prime
order q, and let F = LH be its field of invariants, so L is an extension of F of degree q.
If q 6= char(F ), then since L contains all roots of unity, L is a Kummer extension of F , a
contradiction. If q = char(F ), then L is an Artin-Schreier extension of F , a contradiction.

Remark 5.5. Superstable fields are also algebraically closed. Stable fields are not neces-
sarily algebraically closed, but are conjectured to be separably closed.

5.2. Fields of finite Morley rank. Recall we allow additional structure on fields.

Exercise 5.6. If K is a field of finite Morley rank, then K has no infinite proper definable
subring.

Corollary 5.7. Suppose RM(K) < ω and char(K) = 0.

(1) (K,+) has no nontrivial proper definable subgroups.
(2) All definable endomorhpisms of (K,+) are of the form x 7→ a · x for some a ∈ K.

Proof. (1) Suppose A ⊆ K is a nontrivial definable additive subgroup. Let R := {a ∈ K :
a · A ⊆ A}. Then Z ⊆ R and R is a definable subring of K, so R = K by Exercise 5.6,
so A E K so A = K.
(2) Let h be a definable endomorphism of (K,+). Let R := {a ∈ A : (∀x ∈ K)h(a · x) =
a · h(x)}. Again Z ⊆ R, so h is K-linear, hence of the form x 7→ a · x for a := h(1). �
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Remark 5.8. There exist fields of Morley rank 2 with an infinite definable proper mul-
tiplicative subgroup.

Corollary 5.9. If RM(K) < ω and char(K) = 0, then K is definably rigid, i.e. it has
no nontrivial definable automorphism.

Proof. If f were a nontrivial definable automorphism, then Fix(f) ⊇ Z would be a
nontrivial proper definable subgroup of (K,+) (in fact, Fix(f) is always a definable
subfield of K). �

Note that if char(K) = p > 0, then the Frobenius map and its powers are definable
automorphisms of K.

Proposition 5.10. Let K be an infinite field of finite Morley rank. Then there is no
nontrivial definable group of automorphisms of K.

Proof. Suppose S is such a group. By Corollary 5.9, we have char(K) = p > 0. any
s ∈ S \ {e} we have that Fix(s) := {a ∈ K : s · a = a} is finite, as otherwise it would
be proper infinite definable subfield of K, which does not exist by Exercise 5.6. Hence S
embeds into Aut(Falgp ). As Aut(Falgp ) is torsion-free, so is S. Let s ∈ S \{e}. Then s2

n 6= e

for any n < ω, and we have that Fix(s2
n
) is a proper subset of Fix(s2

n+1
). So we obtain

uniformly definable finite sets Fix(s2
n
) of arbitrarily large cardinality, contradicting Fact

4.10(3). �

6. Groups of finite Morley rank

Definition 6.1. Let G be a definable group acting definably on an abelian group A. We
say that A is minimal if for any definable subgroup B ≤ A, if G ·B ⊆ B, then either B
is finite or B = A.

Theorem 6.2. Suppose an infinite group M acts definably and faithfully on an abelian
group A in a structure of finite Morley rank. Suppose A is M-minimal. Then there is a
definable field K such that A is definably isomorphic to (K,+) and M embeds in (K∗, ·)
and acts on A = (K,+) by scalar multiplication.

Proof. Write M multiplicatively and A additively.
As StabM(A) = {e}, we have by DCC that StabM(a1, . . . , an) = {e} for some a1, . . . , an ∈

A. Hence the action of an m ∈ M is determined by (ma1, . . . ,man). As M is infinite, it
follows that there is i ≤ n with M ·ai infinite. Put a := ai. By Exercise 4.6 and minimality
M ·a∪{0} is indecomposable. Hence by ZIT 〈M ·a〉 = {m1 ·a+ · · ·+mk ·a : mi ∈M} for
some k < ω. 〈M · a〉 is M -invariant, so 〈M · a〉 = A. Let R be the endomorphisms ring of
A generated by M . As M is commutative so is R. As A is generated by a as an R-module,
it follows that an element of r ∈ R is determined by r(a) (if r(a) = r′(a) then for every
r′′ ∈ R we have r(r′′a) = r′′(ra) = r′′(r′a) = r′(r′′a)). Thus R = {m1+· · ·+mn : mi ∈M}
is an interpretable ring (exercise).

We claim that R has no divisors of 0. Let 0 6= r ∈ R. Note that ker(R) is an M -
invariant subgroup of M , hence it is finite (as otherwise ker(R) = A and r = 0). Thus
im(r) (which is also an M -invariant subgroup of A) is infinite, and hence, by minimality
of A, we have im(r) = A. This implies R has no divisors of 0. Hence, by stability, K := R
is a field. As K acts on A, A is a linear space over K, and dimK(A) = 1 as K · a = A
(even M · a = A). Clearly ((M, ·) ≤ (K∗, ·) acts on A by scalar multiplication. �
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Theorem 6.3. (Nesin) Let a connected group G act faithfully and definably on an abelian
group A in a structure of finite Morley rank. Suppose M /G is infinite and definable, and
B ≤ A is M-invariant and M-minimal, and A is generated by

⋃
g∈G g · B. Then there is

a definable field K and a definable structure of a finite-dimensional K-vector space on A
such that G acts linearly on A and M acts K-scalarly on A.

Proof. We claim first that the action of M0 on B is nontrivial: otherwise, for any g ∈ G
we have that M g = gM0g−1 acts trivially on gB, so it acts trivially on A, so M0 = {e}
by faithfulness, a contradiction as M is assumed to be infinite.

Thus M/FixM(B) is an infinite abelian group acting faithfully on B, so by the previous
theorem, if we let R be the ring of endomorphisms of B generated by M , then R acts
K-scalarly on B for some definable field K. Then K = R/annR(B), so annR(B) is a
maximal ideal of R, and so is gIg−1 = annR(gB) for any g ∈ G.

For any g1, . . . , gn ∈ G, we have that I1 = g1Ig
−1
1 , . . . , In = gnIg

−1
n are maximal ideals.

Hence, if they are pairwise distinct, then they are pairwise coprime, so g1B+ · · ·+ gnB is
a direct sum: if x1 + · · ·+ xn = 0, then by the Chinese Remainder Theorem we can find
r ∈

⋂
j 6=i annR(Ij) with r ∈ 1 + annR(Ii), so xi = r(x1 + · · ·+ xn) = r · 0 = 0 for each i.

Hence by finiteness of Morley rank we have that {g · I : g ∈ G} is finite. As G acts
definably and transitively on this finite set, we must actually have gI = I for all g ∈ G.
Thus I annihilates 〈

⋃
g∈G g ·B〉, so I = 0. So R = K is definable and acts definably on A

(as ann(B) = ann(A) so the action of an element of K on A is determined by its action
on B, hence by its action on a single element of B). Also dimK(A) < ω by finiteness of
Morley rank. Finally, the action of G on M by conjugation induces a definable group of
automorphisms of K, which must by trivial by Proposition 5.10. Hence the action of G
on A is K-linear: for g ∈ G, r ∈ K and a ∈ A we have g · r · a = g · r · g−1 · g · a = r · g · a.

�

Exercise 6.4. Prove that if Z(G) is finite and G is connected, then Z(G/Z(G)) = {e}.

Definition 6.5. A definable group is minimal if it has no proper infinite definable
subgroup.

Theorem 6.6. (Reinecke) Let G be a connected, minimal ω-stable group. Then G is
abelian.

Proof. If Z(G) = G we are done, so by minimality we may assume Z(G) is finite. Then
Z(G/Z(G)) is trivial by Exercise 6.4, so replacing G by G/Z(G) we may assume that
Z(G) = {e}.

Claim 3. G has only one nontrivial conjugacy class.

Proof. Take any a ∈ G \ {e}. Then CG(a) is finite, as otherwise by minimality of G it
would be equal to G. Let b ∈ G be a generic over a. Then b belongs to the finite set
b · CG(a) = {x ∈ G : ax = ab}, so b ∈ acl(a, ab), hence RM(b/a) ≤ RM(ab/a), so ab is
a generic in G over a. Hence, as aG is a definable over a and contains ab, we must have
that aG is a generic subset of G. Similarly, a′G is generic in G. Thus, as G is connected
(and so DM(G) = 1), we must have aG ∩ a′G 6= ∅, so aG = a′G. �

By the claim, either ∀x ∈ Gx2 = e or ∀x ∈ G(x2 = e =⇒ x = e). As the former
implies that G is abelian, we may assume the latter. Let a ∈ G\{e}. By the claim there is

c ∈ G with ac = a−1. Then a /∈ CG(c), but ac
2

= a so a ∈ CG(c2) and so CG(c) ) CG(c2).
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Now, as c is conjugate to c2 in G, applying an inner automorphism sending c to c2 we get
that CG(c2) ) CG(c4), and continuing applying this inner automorphisms we get

CG(c) ) CG(c2) ) CG(c4) ) CG(c8) ) . . . ,

contradicting NSOP. �

Corollary 6.7. (1) If RM(G) = 1, then G0 is abelian, so G is virtually abelian (i.e.
it has an abelian subgroup of finite index).

(2) G is ω stable, then G has an infinite abelian subgroup.

Theorem 6.8. Suppose RM(G) < ω and H ≤ G is definable and connected. Then for
any A ⊆ G, the group [H,A] := 〈[h, a] : h ∈ H, a ∈ A〉 is definable and connected, and
equals [H, a1] · · · [H, an] for some a1, . . . , an ∈ A.

Proof. Let a ∈ A.

Claim 4. aH is indecomposable in G.

Proof. Let K ≤ G be definable and such that Kh = K for every h ∈ H. Let

Ha := {x ∈ H : ahK = aK}
Then F is a definable subgroup of H, and for any x, y ∈ H we have that axK = ayK ⇐⇒
xy−1 ∈ Ha. Thus, if |aH/K| < ω then [H : Ha] < ω, so Ha = H by connectedness of H,
and hence |aH/K| = |{aK}| = 1. �

By the claim and ZIT applied to the indecomposable sets aHa−1 = [H, a] 3 e, we get
that [H,A] = 〈

⋃
a∈A[H, a]〉 = [H, a1] · · · [H, an] for some a1, . . . , an ∈ A, and [H,A] is a

definable connected group. �

Applying Theorem 6.8 iteratively, we get:

Corollary 6.9. Let G be a connected group with RM(G) < ω. Then G′ = [G,G], G′′ =
[G′, G′],. . . are connected, and Γn(G) is connected for every n as well, where we define
Γn+1(G) := [Γn(G), G].

Corollary 6.10. If RM(G) < ω and G is connected, then the sequence (Γn(G))n stabilises
after finitely many steps.

Fact 6.11. (Cherlin) If RM(G) ≤ 2 and G is connected, then G is solvable (of step ≤ 3,
that is G′′′ = {e}).

Recall the algebraicity conjecture:

Conjecture 6.12. (Cherlin-Zilber) Every simple group of finite Morley rank is an alge-
braic group over an algebraically closed field.

A natural related question is: when does a finite Morley rank interpret an infinite field?
This can be split into subcases with respect to how algebraically complicated G is.

• If G is virtually abelian, it never happens (roughly, by 1-basedness of G).
• If G is virtually nilpotent but not virtually abelian, there is an example by Baud-

isch where G does not interpret an infinite field; there are partial positive results
here as well. (e.g. when [G,G] is nontorsion).
• If G is virtually solvable but not virtually nilpotent, then yes.
• For G not virtually solvable, this is an open problem, there are partial positive

results.
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We will now focus on (3) and (4) above.

Proposition 6.13. Suppose in a structure of finite Morley rank a definable solvable group
G acts definably and faithfully on a definable connected abelian group A. Then for any
definable B ≤ A which is either G-minimal or G′-minimal, the action of G′ on B is
trivial.

Proof. We proceed by induction on the solvability class of G. If G is abelian then G′ = {e}
acts trivially on B.

Case 1: B is G′ minimal By induction, G′′ acts trivially on B. Let B1 ≤ B be G′

minimal. Then B1 is indecomposable in A (as it is enough to check it with respect to
G′-invariant H ≤ A, but then H∩B1 is finite or equal to A1). Hence 〈gB1 : g ∈ G〉 ≤ A is
definable. Suppose G′ acts non-trivially on B. We apply Nesin Theorem to the action of
the abelian group G/G′′ D G′/G′′ on A1, which is the same as the action of G D G′ on A1

(as G′′ acts trivially on B hence on A1). We obtain that G acts K-linearly on A1 and G′

acts K-scalarly on A1 via Φ : G→ GLn(K). But Φ(G′) ⊆ SLn(L) ∩ {λ · Id : λıK} must
be finite, so G′/ ker(Φ) is finite, hence trivial as G′ is connected. Thus G′ acts trivially
on A1, hence in particular on B1.

Case 2: B is G-minimal Let B1 ≤ B be G′-minimal. By Case 1 G′ acts trivially on
B1, hence on C := 〈gB1 : g ∈ G〉 (as G′ E G). As B1 is indecomposable, C is definable
(and G-invariant), hence by minimality of B, C = B, so G′ acts trivially on B.

�

Corollary 6.14. If G is connected, solvable non-nilpotent group with RM(G) < ω, then
(G, ·) interprets an infinite field.

Proof. Define Z1(G) = Z(G) and Zn+1(G) = π−1Z(G/Zn(G)) where π : G → G/Zn(G)
is the quotient map. By Exercise 6.4, if [Zn : Zn+1] < ω then Z(G/Zn(G)) = {e}. This
must happen for some n as RM(G) < ω. Thus, as Zn(G) is nilpotent, we may assume
Z(G) = {e} (replacing G with G/Zn(G)). As G is connected, so is G(n) for any n, so Gn−1

is an infinite connected abelian normal subgroup of G where n is the solvability class of
G. Let A ≤ Gn−1 be G-minimal with respect to the action Gy G by conjugation. Then
G′ acts trivially on A by Proposition 6.13, so G/G′ is an infinite connected abelian group
acting on A definably. As A is not contained in Z(G) = {e}, the induced automorphism
group is nontrivial (hence infinite, as it is connected). So we conclude by Theorem 6.1. �

Fact 6.15. (Hrushovski) Let G be an infinite definable group of permutations of a strongly
minimal set A definably in a stable thoery. Then RM(G) ∈ {1, 2, 3} and
(1) If RM(G) = 1 then G0 and the action of G0 on A is the action of G0 on G0 by
translations.
(2) If RM(G) = 2 then the action of G on A is the action (K,+)oK∗ on K by x 7→ ax+b
for a definable field K.
(3) If RM(G) = 3, then the action of G on A is the action of PSL2(K) on P1(K) by
x 7→ ax+b

cx+d
.

Definition 6.16. A bad group is a connected non-solvable group of finite Morley rank
whose every proper definable connected subgroup is nilpotent.

Corollary 6.17. If G is a simple group with RM(G) = 3 which is not a bad group, then
G = PSL2(K) for a definable field K.

Proof. As G is not bad, it has a proper connected non-nilpotent subgroup H, so RM(H) =
2. Then G acts transitively and faithfully on the strongly minimal set G/H (faithfullness
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follow as gaH = aH means g ∈ aHa−1, but
⋂
a∈G aHa

−1 E G is trivial by simplicity), so
we can apply Fact 6.15. �

Conjecture 6.18. There does not exist any bad group.

Fact 6.19. (Frécon, 2016) There is no bad group of Morley rank 3, so Cherlin-Zilber
Conjecture holds for groups of Morley rank ≤ 3.

Conjecture 6.20. (Borovik-Cherlin) Let G be a connected group acting in a structure of
finite Morley rank on a set S generically (n + 2)- transitively, with n = RM(S). Then
(G,S) is isomorphic to the natural action of PGLn+1(F ) on Pn(F ) for some algebraically
closed field F .

Note for n = 1 this follows from Fact 6.15 (after checking the actions in (1) and (2)
there are not generically 3-transitive).

Freitag and Moosa prove Borovik-Cherlin conjecture for ACF0, and then apply it to
the connected component of the binding group Aut(p(C)/C(C)), where C is the field
of constants, in the proof of the following result (motivated by studying minimality of
differential equations):

Fact 6.21. (Freitag-Moosa) For every stationary finite rank type p ∈ S(A) in DCF0,
nmdeg(p) ≤ U(p) + 1, where nmdeg(p) is the least k such that p has a nonalgebraic
forking extension over A ∪ {a1, ..., ak}, for some a1, ..., ak realising p.
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