INTRODUCTION TO STABLE GROUPS - PROBLEM LIST 1

(1) Suppose X_1 and X_2 are definable. Show that:

(a) $RM(X_1) = 0$ iff X_1 is finite and nonempty.

(b) $\operatorname{RM}(X_1 \cup X_2) = \max(\operatorname{RM}(X_1), \operatorname{RM}(X_2))$ (you can use that $X_1 \subseteq X_2 \implies$ $\operatorname{RM}(X_1) \leq \operatorname{RM}(X_2)$, which was proved in the lecture).

(c) If there is a definable bijection between X_1 and X_2 , then $\text{RM}(X_1) = \text{RM}(X_2)$. (d) If $X_2 = f(X_1)$ for some $f \in \text{Aut}(\mathfrak{C})$, then $\text{RM}(X_1) = \text{RM}(X_2)$.

- (2) Let \mathfrak{C} be a monster model of the theory DLO_0 of dense linear order without endpoints. Let $a < b \in \mathfrak{C}$ and let $\phi(x) = (a < x < b)$. Prove that $RM(X) = \infty$.
- (3) Let G be a group definable in an ω -stable theory. Prove that the connected component G^0 of G (that is, the smallest definable subgroup of G of finite index) is normal in G and \emptyset -definable (hint: as we know that G^0 is definable, it is enough to show that G is invariant under automorphisms to conclude that it is \emptyset -definable).
- (4) For any stationary $p \in S(A) \cap [x \in G]$, define $g \cdot p := \operatorname{tp}(g \cdot a/A)$ for $a \models p$ such that $a \, {\textstyle igstyle }_A g$. Prove that $\operatorname{Stab}_G(p) := \{g \in G : g \cdot p = p\}$ is definable. Hints: (i) WLOG $p \in S(\mathfrak{C})$, as $\operatorname{Stab}_G(p) = \operatorname{Stab}_G(\tilde{p})$ (recall \tilde{p} is the unique global nonforking extension of p). (ii) As p is stationary, $\operatorname{DM}(p) = 1$, so there is a formula $\phi \in p$ with $\operatorname{RM}(p) = \operatorname{RM}(\phi)$ and $\operatorname{DM}(\phi) = 1$. (iii) Use definability of types in stable theories.