INTRODUCTION TO STABLE GROUPS - PROBLEM LIST 3

- (1) Let G be any group and let $g \in G$. Prove that $|a^G| = [G : C_G(a)]$, where $a^G := \{g^{-1}ag : g \in G\}$ and $C_G(a) := \{g \in G : ga = ag\}.$
- (2) Let G be any group and let H be its definable subgroup. Prove that $\operatorname{RM}(G) \geq \operatorname{RM}(H) + \operatorname{RM}(G/H)$. Hint: induction on $\operatorname{RM}(H)$ for a more general statement about definable surjections.
- (3) Prove that if K is a field of finite Morley rank, then it has no proper infinite definable subring. Hint: Use that a stable semigroup is a group, and the Mactintyre's theorem (i.e. that infinite ω -stable fields are algebraically closed).
- (4) Let K be a field of finite Morley rank with char(K) = 0. Prove that if $X \subseteq K$ is infinite and definable, then, for some $n < \omega$, each element of K is a sum of at most n elements of X. Hint: Use that K has no proper nontrivial definable additive subgroups and ZIT.