Geometric and Asymptotic Group Theory II

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum D1.07 UZA 4

Blatt 7 Residually finite groups

A group G is *residually finite* if for every its element $g \neq 1_G$ there exists a homomorphism $\varphi: G \to F$ into some finite group F, such that $\varphi(g) \neq 1_F$.

- (1) Show that a group G is residually finite iff one of the following conditions hold.
 - (a) For every element $g \neq 1_G$ in G, there exists a finite index subgroup $K \leq G$ with $g \notin K$.
 - (b) For every finite set A of nontrivial elements in G, there exists a homomorphism $\varphi: G \to F$ into some finite group F, such that $\varphi(g) \neq 1_F$, for every $g \in A$.
 - (c) The intersection of all (normal) subgroups of G of finite index is trivial.
 - (d) Let $G = \pi_1(X, x_0)$. For every homotopically non-trivial loop γ in (X, x_0) there is a finite covering $p \colon \widetilde{X} \to X$ such that γ does not lift up to a loop in \widetilde{X} .
- (2) Show that \mathbb{Z} and \mathbb{Z}^2 are residually finite.
- (3) Let T be a labeled tree of valence $k \ge 2$ (at every vertex). Let $G \le \operatorname{Aut}(T)$ be the group generated by reflections wrt. edges. Show that G is residually finite.
- (4) Free groups are residually finite-a probabilistic approach. Let Γ be a finite graph. Consider its double covering p: Γ → Γ. It means in particular the following. For each vertex v ∈ Γ there are two vertices v

 ₁, v

 ₂ ∈ Γ with p(v

 ₁) = p(v

 ₂) = v, and if {v

 v

 w

 is an edge in Γ then {p(v

 v

), p(w

)} is an edge in Γ.
 - (a) Observe that $g := \operatorname{girth}(\Gamma) \leq \operatorname{girth}(\Gamma)$.
 - (b) Let Z be a random variable counting the number of cycles (i.e. polygonal loops) of length g in a double covering of Γ . Show that EZ (the expected value of Z) equals the number of g-cycles in Γ .
 - (c) Conclude that there is a double covering with fewer g-cycles.
 - (d) Show that there exists a (not necessarily double) covering $\widetilde{\Gamma}$ with

$\operatorname{girth}(\Gamma) > \operatorname{girth}(\Gamma).$

(e) Conclude that free groups are residually finite.