Geometric and Asymptotic Group Theory I

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum C2.07 UZA 4

Blatt 2 Cayley graphs

- (1) Draw all the Cayley graphs of the cyclic group C_5 of order 5. Draw a few Cayley graphs of \mathbb{Z} (integers with addition) and a few Cayley graphs of F_2 (the free group of rank 2).
- (2) Show that $\mathcal{G}(G, S)$ is a tree iff G = F(S).
- (3) Draw a Cayley graph \mathcal{G} of \mathbb{Z} and a Cayley graph \mathcal{G}' of \mathbb{Z}^2 having the following property. Combinatorial balls of radius 7 in \mathcal{G} and \mathcal{G}' are isomorphic.
- (4) Does every Cayley graph have to be edge-transitive?
- (5) Prove the Sabidussi Theorem: A graph Γ is a Cayley graph of a group G iff it admits a free transitive action of G by graph automorphisms.
- (6) Examples of groups. Draw Cayley graphs of the following groups. (a) Baumslag-Solitar group $BS(2;1) = \langle a, b \mid ba^2b^{-1}a^{-1} \rangle$.

(b) Heisenberg group
$$H_3(\mathbb{Z}) = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) \mid a, b, c \in \mathbb{Z} \right\}.$$

- (c) The fundamental group of the surface of genus 2.
- (d) Right-angled Coxeter group $\langle a, b, c, d \mid a^2, b^2, c^2, d^2, [a, b], [c, d] \rangle$.
- (e) Right-angled Artin group $\langle a, b, c, d \mid [a, b], [c, d] \rangle$.
- (7) Why is the Petersen graph not a Cayley graph?

Hint: Consider elements of order two in "the group".

(8) How to distinguish Cayley graphs of \mathbb{Z} from the ones of \mathbb{Z}^2 and F_2 ?

Hint: Look at the graphs "from far away", i.e. consider asymptotic (or coarse, or large-scale geometry) properties of the graphs.