Geometric and Asymptotic Group Theory I

Damian Osajda

damian.osajda@univie.ac.at
http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00-12:00, Raum C2.07 UZA 4

Blatt 2

Cayley graphs

(1) Draw all the Cayley graphs of the cyclic group C_{5} of order 5 . Draw a few Cayley graphs of \mathbb{Z} (integers with addition) and a few Cayley graphs of F_{2} (the free group of rank 2).
(2) Show that $\mathcal{G}(G, S)$ is a tree iff $G=F(S)$.
(3) Draw a Cayley graph \mathcal{G} of \mathbb{Z} and a Cayley graph \mathcal{G}^{\prime} of \mathbb{Z}^{2} having the following property. Combinatorial balls of radius 7 in \mathcal{G} and \mathcal{G}^{\prime} are isomorphic.
(4) Does every Cayley graph have to be edge-transitive?
(5) Prove the Sabidussi Theorem: A graph Γ is a Cayley graph of a group G iff it admits a free transitive action of G by graph automorphisms.
(6) Examples of groups. Draw Cayley graphs of the following groups.
(a) Baumslag-Solitar group $B S(2 ; 1)=\left\langle a, b \mid b a^{2} b^{-1} a^{-1}\right\rangle$.
(b) Heisenberg group $H_{3}(\mathbb{Z})=\left\{\left.\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$.
(c) The fundamental group of the surface of genus 2 .
(d) Right-angled Coxeter group $\left\langle a, b, c, d \mid a^{2}, b^{2}, c^{2}, d^{2},[a, b],[c, d]\right\rangle$.
(e) Right-angled Artin group $\langle a, b, c, d \mid[a, b],[c, d]\rangle$.
(7) Why is the Petersen graph not a Cayley graph?

Hint: Consider elements of order two in "the group".
(8) How to distinguish Cayley graphs of \mathbb{Z} from the ones of \mathbb{Z}^{2} and F_{2} ?

Hint: Look at the graphs "from far away", i.e. consider asymptotic (or coarse, or large-scale geometry) properties of the graphs.

