Geometric and Asymptotic Group Theory I

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum C2.07 UZA 4

Blatt 3 Group presentations

- (1) Show that if S is an infinite generating set for a finitely generated group G, then there exists a finite $S' \subset S$ generating G.
- (2) Let $\langle S \mid W \rangle$ and $\langle S \mid W' \rangle$ be two presentations of the same group G. Prove that if W is finite then there exists a finite $\overline{W} \subseteq W'$ such that $\langle S \mid \overline{W} \rangle$ is a presentation of G.
- (3) Show that the following groups have the corresponding presentations.

 - (a) Cyclic group of order 5; ⟨a | a⁵⟩.
 (b) Z³; ⟨a, b, c | aba⁻¹b⁻¹, aca⁻¹c⁻¹, cbc⁻¹b⁻¹⟩.
 (c) Dihedral group D₃ of order 6; ⟨a, b | a³, b², abab⟩.
- (4) What is the order of the group $\langle a, b \mid a^2, b^2 \rangle$?
- (5) Show that the group $\langle a, b, c, d \mid abc^{-1}, bcd^{-1}, cda^{-1}, dab^{-1} \rangle$ is cyclic.
- (6) Show that if $G = \langle S \mid W \rangle$ and $G' = \langle S' \mid W' \rangle$ then $G \times G' = \langle S \cup S' \mid W \cup$ $W' \cup \overline{W}$, where \overline{W} is the set of all words of the form $xyx^{-1}y^{-1}$, for $x \in S$ and $y \in S'$.