Geometric and Asymptotic Group Theory I

Damian Osajda

damian.osajda@univie.ac.at
http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00-12:00, Raum C2.07 UZA 4

Blatt 6
Random groups
(1) Under the assumptions of the Big Face Theorem show that:
(a) $\exists \beta|\partial D| \geq \beta \sum_{i}\left|\partial D_{i}\right|$,
where D_{i} are faces in van Kampen diagram D.
(b) In fact, we can take $\beta=(1-6 \lambda)$, for $\lambda \leq \frac{1}{6}$ from $C^{\prime}(\lambda)$.
(2) Prove that in a set of $2^{d l}$ randomly chosen words of length l in letters $a^{ \pm 1}, b^{ \pm 1}$, there will be probably some word beginning with $d l$ letters a (as $l \rightarrow \infty$ and d is a fixed density parameter $0<d<1$).
(3) In a set of $(2 m-1)^{d l}$ of randomly chosen words of length l in $2 m$ letters $s_{1}^{ \pm 1}, \ldots, s_{m}^{ \pm 1}$ there will be probably words having the same ($2 d l$) letters, but no more.
(4) Prove the Probabilistic Pigeon-hole Principle: Let $\epsilon>0$. Put $N^{\frac{1}{2}+\epsilon}$ pigeons uniformly at random among N pigeon-holes. Then there are two pigeons in the same hole with probability $\rightarrow 1$ as $N \rightarrow \infty$, and this happens arbitrarily many times with growing N.

