Geometric and Asymptotic Group Theory I

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00-12:00, Raum C2.07 UZA 4

Blatt 6 Random groups

- (1) Under the assumptions of the Big Face Theorem show that: (a) $\exists \beta \ |\partial D| \ge \beta \sum_i |\partial D_i|$, where D_i are faces in van Kampen diagram D. (b) In fact, we can take $\beta = (1 - 6\lambda)$, for $\lambda \le \frac{1}{6}$ from $C'(\lambda)$.
- (2) Prove that in a set of 2^{dl} randomly chosen words of length l in letters $a^{\pm 1}, b^{\pm 1}$, there will be probably some word beginning with dl letters a (as $l \to \infty$ and d is a fixed density parameter 0 < d < 1).
- (3) In a set of $(2m-1)^{dl}$ of randomly chosen words of length l in 2m letters $s_1^{\pm 1}, ..., s_m^{\pm 1}$ there will be probably words having the same (2dl) letters, but no more.
- (4) Prove the Probabilistic Pigeon-hole Principle: Let $\epsilon > 0$. Put $N^{\frac{1}{2}+\epsilon}$ pigeons uniformly at random among N pigeon-holes. Then there are two pigeons in the same hole with probability $\rightarrow 1$ as $N \rightarrow \infty$, and this happens arbitrarily many times with growing N.