Geometric and Asymptotic Group Theory II

Damian Osajda

damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum D1.07 UZA 4

Blatt 3

Stalling's foldings and subgroups of free groups

- (1) Show that for an S-graph Γ , the set $\overline{L(\Gamma, v)}$, of reductions of words read on Γ wrt v is a subgroup of F(S). Prove that if Γ is folded, then $L(\Gamma, v)$ (unreduced words) is a subgroup of F(S).
- (2) Show that for an S–graph Γ its core $Core(\Gamma, v)$ wrt v satisfies the following properties:
 - $Core(\Gamma, v)$ is connected and contains the vertex v;
 - $Core(\Gamma, v)$ has no degree one vertices except possibly for v;
 - $L(Core(\Gamma, v), v) = L(\Gamma, v).$
- (3) Show elementarily that for a subgroup H of F(S) the coset S-graph $\Delta(H)$ is such that $\overline{L(\Delta(H), H)} = H$.
- (4) Let Γ be a folded *S*-graph. Pick a spanning tree *T* in Γ and let T^+ be the set of all positive edges outside *T*. Show that $Y_T = \{[e] \mid e \in T^+\}$ is a free basis for $H = L(\Gamma, v) \leq F(S)$.
- (5) Show that for every connected graph and for every its vertex v, there exists a geodesic wrt v spanning tree.
- (6) Let Γ be a folded core *S*-graph, being a core graph wrt *v*. Pick a geodesic wrt *v* spanning tree *T* in Γ . Show that Y_T is a Nielsen-reduced free basis for $H = L(\Gamma, v)$.