

Wstęp do topologii algebraicznej

Ćwiczenia 2

- (1) Let $f: D \rightarrow \mathbb{R}^n$ be a continuous map defined on a closed subset D of a normal space X . Show that there exists a continuous extension $F: X \rightarrow Y$ of f .
- (2) Show that \mathbb{R} is homeomorphic to $(0, 1)$.
- (3) Show that $[0, 1]$ is compact, and $[0, 1)$, $(0, 1)$, \mathbb{R} are not.
- (4) Show that, for $k \geq 1$, $[0, 1]^k$ is compact, and $[0, 1]^k$, $(0, 1)^k$, \mathbb{R}^k are not.
- (5) Show that the Cantor set is compact.
- (6) Show that a subset of the Euclidean space is compact iff it is closed and bounded.
- (7) Give an example of a continuous bijection not being a homeomorphism. Show that any continuous bijection $\mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism.
- (8) Show that a compact subset of a Hausdorff space is closed.