Wstęp do topologii algebraicznej

Ćwiczenia 3

- (1) Show that $[0,1],[0,1),(0,1),\mathbb{R}$ are connected and might be disconnected by removing a point from the interior.
- (2) Show that $\mathbb{R}^k \setminus \{(0,\ldots,0)\}$ is connected, for $k \geq 2$.
- (3) Let (f_n) be a sequence of continuous functions $f_n: X \to Y$ between metric spaces. Show that if (f_n) converges uniformly to a function $f: X \to Y$ then $f \in C(X,Y)$. If f_n are uniformly bounded then f is bounded.
- (4) Show that a closed subset of a complete metric space is itself a complete metric
- (5) Show that a closed, totally bounded subset of a complete metric space is compact. Is completeness essential?
- (6) Let $X = \{a, b\}$ be a two-point space with the discrete topology. Show that the only subalgebras of $C(X,\mathbb{R})$ are: $C(X,\mathbb{R})$, $\{(0,0)\}$, and linear spans of (0,1),(1,0), and (1,1).
- (7) Let $c_n = \left(\frac{-1}{2}\right) \left(\frac{1}{2}\right) \cdots \left(\frac{2n-3}{2}\right) \frac{1}{n!}$, for $n = 1, 2, 3, \ldots$ (a) Show that the series $1 \sum_{n=1}^{\infty} c_n t^n$ converges absolutely and uniformly on compact subsets of (-1,1).
 - (b) Show that the term-wise differentiated series -∑_{n=1}[∞] nc_ntⁿ⁻¹ converges absolutely and uniformly on compact subsets of (-1,1).
 (c) Conclude that if f(t) = 1 ∑_{n=1}[∞] c_ntⁿ then f'(t) = -∑_{n=1}[∞] nc_ntⁿ⁻¹, for
 - -1 < t < 1.
 - (d) Show that f(t) = -2(1-t)f'(t), and that $(1-t)^{-1/2}f(t)$ is constant.

 - (e) Show that $f(t) = (1-t)^{1/2}$, for -1 < t < 1. (f) Show that $\sum_{n=1}^{\infty} c_n = 1$, and conclude that $1 \sum_{n=1}^{\infty} c_n t^n$ converges absolutely and uniformly on [-1,1] to $(1-t)^{1/2}$.
- (8) Let X be a compact Hausdorff space, and let \mathcal{A} be a closed subalgebra of C(X). Show that for any $f,g\in\mathcal{A}$, we have $|f|\in\mathcal{A}$, $\min\{f,g\}\in\mathcal{A}$, and $\max\{f,g\} \in \mathcal{A}$.

Hint: Consider the function $h = \frac{f}{||f||}$ and approximate |h| by $P \circ h$, where P is a polynomial. Use the fact that $\min\{f,g\} = \frac{1}{2}(f+g-|f-g|)$.