Wstęp do topologii algebraicznej

Ćwiczenia 4

- (1) Show that the formula $\sum_{i=1}^{\infty} \frac{1}{2^i} |x_i y_i|$ defines a metric on $[0, 1]^{\aleph_0}$. Show that the metric topology coincides with the Tichonov one.
- (2) Let \mathcal{B} be a countable basis of a regular space X. Let $(f_i)_{i=1}^{\infty}$ be the sequence of Urysohn functions for all admissible pairs of elements of B. Show that the map into the Hilbert cube X → Q: x → (f_i(x))_{i=1}[∞] is an embedding.
 (3) Are the following spaces homogeneous: S¹, Sⁿ, ℝⁿ, {(x,y) ∈ ℝ² | y ≥ 0}?