

Grupy i kompleksy

Damian Osajda

damian.osajda@uwr.edu.pl

<http://www.math.uni.wroc.pl/~dosaj/>

Ćwiczenia 2

- (1) Let S be an infinite set of generators of a finitely generated group G . Show that there exists a finite subset T of S generating G .
- (2) Show that a quotient of a finitely generated group is finitely generated.
- (3) Show that a finite index subgroup of a finitely generated group is finitely generated. What if we drop the finite index assumption?
- (4) Show that for every n the free group F_n is a subgroup of F_2 .
- (5) Let $\{1\} \rightarrow K \rightarrow G \rightarrow Q \rightarrow \{1\}$ be an exact sequence of groups. Show that if both K and Q are finitely generated then so is G .
- (6) Find a finite generating set for the wreath product $\mathbb{Z}_2 \wr \mathbb{Z}$.
- (7) Show that the free group $F(S)$ over a set S satisfies the following *universal property*. For every map $\varphi: S \rightarrow H$ to a group H , there exists its unique extension $\bar{\varphi}: F(S) \rightarrow H$. Using this show that for a given set S all free groups over S are isomorphic.
- (8) Modify the problem above replacing “free group” by “abelian free group” everywhere, and replacing “group H ” by “abelian group H ”. Solve it.
- (9) Show that the fundamental group of a graph is free. Show that a subgroup of a free group is free.
- (10) Show that every group is a quotient of a free group.
- (11) Show that every short exact sequence $1 \rightarrow K \rightarrow G \rightarrow F(S)$ splits.
- (12) Show that the free group F_n is not solvable for $n \geq 2$.
- (13) Prove the following Ping-pong Lemma.

Let G be a group acting on a set X . Suppose there exist disjoint nonempty subsets $A^+, A^-, B^+, B^- \subset X$, and two elements a, b of G with the following properties:

- a) $A^+ \cup A^- \cup B^+ \cup B^- \subsetneq X$;
- b) $a(X - A^-) \subseteq A^+$, $a^{-1}(X - A^+) \subseteq A^-$;
- b) $b(X - B^-) \subseteq B^+$, $b^{-1}(X - B^+) \subseteq B^-$.

Then $\langle a, b \rangle < G$ is a free subgroup generated by a and b .

- (14) Let $\langle S \mid R \rangle$ be a presentation of a group G . Let $\varphi: S \rightarrow H$ be a map to a group H , such that $\varphi(r) = 1_H$, for every $r \in R$. Show that φ extends to a group homomorphism $G \rightarrow H$.

(15) Let $\langle S \mid R \rangle$ be a finite presentation of a group G . Let S' be a finite generating set of G , and let $\langle S' \mid R' \rangle$ be a presentation of G . Show that there exists a finite subset $R'_0 \subset R'$ such that $\langle S' \mid R'_0 \rangle$ is a presentation of G .

(16) Show that $\langle a, b \mid a^4 = b^3 = 1, a^2b = ba^2 \rangle$ is a presentation of $SL(2, \mathbb{Z})$.

(17) Find presentations of the following groups:

- The infinite dihedral group D_∞ .
- The Heisenberg group $H_3(\mathbb{Z})$.
- The group of isometries of the Euclidean plane generated by reflections wrt three lines intersecting pairwise at angles $\frac{\pi}{3}$ without triple intersection.
- The lamplighter group $\mathbb{Z}_2 \wr \mathbb{Z}$.
- The Baumslag-Solitar group $BS(1, n)$.