

Grupy i kompleksy

Damian Osajda

damian.osajda@uwr.edu.pl

<http://www.math.uni.wroc.pl/~dosaj/>

Ćwiczenia 3

- (1) Show that if S, S' are two finite generating set for G , then for the corresponding word metrics $d_S, d_{S'}$, the metric spaces (G, d_S) and $(G, d_{S'})$ are bi-Lipschitz equivalent.
- (2) Show that the map $f: (X, d_X) \rightarrow (Y, d_Y)$ is a coarse embedding if for every two sequences $(x_n) \subset X$, $(y_n) \subset Y$ we have $d_X(x_n, y_n) \rightarrow \infty$ iff $d_Y(f(x_n), f(y_n)) \rightarrow \infty$.
- (3) Show that a coarsely surjective coarse embedding admits a coarse inverse.
- (4) Show that a composition of quasi-isometric embeddings is a quasi-isometric embedding. Show that a composition of quasi-isometries is a quasi-isometry. Show that for a quasi-isometry there exists a quasi-inverse map.
- (5) Find a quasi-isometric embedding of a half-line $\mathbb{R}^+ = [0, +\infty)$ into the Euclidean plane \mathbb{E}^2 , which is not at a finite distance from a geodesic ray in \mathbb{E}^2 . Can one find a similar embedding into a tree of valence at least 3, with the metric in which every edge has length 1?
- (6) Find an example of a coarse embedding that is not a quasi-isometric embedding. Find an example of a coarse equivalence that is not a quasi-isometry.
- (7) Find an example of quasi-isometric spaces that are not bi-Lipschitz equivalent.
- (8) Show that the following spaces are not quasi-isometric one to another (with their natural metrics). The line \mathbb{R} , the Euclidean plane \mathbb{E}^2 and the regular tree of valence 4.
- (9) Show that the regular tree of valence m is quasi-isometric to the regular tree of valence n (with their natural metrics), for every $n, m > 2$.
- (10) Show that two length spaces are quasi-isometric iff they are coarsely equivalent.