

Grupy i kompleksy

Damian Osajda

damian.osajda@uwr.edu.pl

<http://www.math.uni.wroc.pl/~dosaj/>

Ćwiczenia 4

- (1) Find a metric space that is not quasi-isometric to a vertex set of a connected graph with the path metric.
- (2) Show that every geodesic space is quasi-isometric to a vertex set of a connected graph with the path metric.
- (3) Show that vertex sets X, Y of graphs (with the path metric) are quasi-isometric iff there exist functions $\varphi: X \rightarrow Y$, $\psi: Y \rightarrow X$, and constants a, b, c, d , such that for any $x, x' \in X$, $y, y' \in Y$:
 - $d_Y(\varphi(x), \varphi(x')) \leq a \cdot d_X(x, x');$
 - $d_X(\psi(y), \psi(y')) \leq b \cdot d_Y(y, y');$
 - $d_X(\psi(\varphi(x)), x) \leq c$;
 - $d_Y(\varphi(\psi(y)), y) \leq d$.
- (4) Show that $\text{diam } \partial^{\text{ext}} C < \text{diam } \partial^{\text{int}} C + 2$, and $\text{diam } \partial^{\text{int}} C < \text{diam } \partial^{\text{ext}} C + 2$.
- (5) Show that for every vertex o of a graph the structure graph T_o of radial cuts centered at o is a tree.
- (6) For the vertex set X of a graph let $\varphi_o: X \rightarrow T_o$ and $\psi_o: T_o^{(0)} \rightarrow X$ be the canonically defined maps. Show that:
 - φ_o is surjective;
 - ψ_o is injective;
 - $d_{T_o}(\varphi_o(x), \varphi_o(x')) \leq d_X(x, x');$
 - $d_X(\psi_o(y), \psi_o(y')) \leq \lambda \cdot d_{T_o}(y, y')$, where $\lambda = \sup\{\text{diam } \partial^{\text{int}} C \mid C \in \mathcal{C}_o\}$.
- (7) Prove the *Bottleneck Criterion* of Manning:
The vertex set X of a connected graph (with the path metric) is a quasi-tree iff the following holds: There exists $\delta > 0$ such that for every $x, y \in X$ there exists $m = m(x, y) \in X$, with $|d(x, m) - d(y, m)| \leq 1$, such that every path between x and y passes δ -close m .
- (8) Show that a finitely generated group is quasi-isometric to the quotient by its finite normal subgroup.
- (9) Show that a finitely generated group is quasi-isometric to its finite index subgroup. Conclude that virtually free groups are quasi-isometric to trees.
- (10) Let X be a quasi-tree. Show that there is a constant $C > 0$ such that for any finite groups of isometries of X there exists a nonempty invariant set of diameter at most C in X .