

Grupy i kompleksy

Damian Osajda

damian.osajda@uwr.edu.pl

<http://www.math.uni.wroc.pl/~dosaj/>

Ćwiczenia 5

- (1) Show that any cyclic subgroup of \mathbb{Z}^2 is undistorted. Conclude that \mathbb{Z}^2 and $BS(1, 2)$ are not quasi-isometric.
- (2) Show that the plane \mathbb{R}^2 with the river metric is an \mathbb{R} -tree.
- (3) Show that in an \mathbb{R} -tree any two points are connected by a unique topological arc.
- (4) Show that if in a metric space X any two points are connected by a unique topological arc then X is an \mathbb{R} -tree.
- (5) Show that every finite group acting by isometries on a complete \mathbb{R} -tree fixes a point.
- (6) Show the Helly property for an \mathbb{R} -tree: Any family of pairwise intersecting connected sets have an intersection.
- (7) Show that every quasi-tree is δ -hyperbolic. How to compute δ ?
- (8) Show that the Euler characteristic of a triangulated disc is 1.
- (9) Show that a hyperbolic triangulation of the plane is not quasi-isometric to a tree.
- (10) Show that the 1-skeleton of a tessellation of the plane by n -gons, with $n \geq 7$, without degree-2 vertices is hyperbolic.
- (11) Show that the 1-skeleton of a tessellation of the plane by squares such that every vertex belongs to at least 5-squares is hyperbolic.
- (12) Let α, β be two geodesics in a δ -hyperbolic space (X, d) with $\alpha(0) = \beta(0)$ and $d(\alpha(T), \beta(T)) \leq D$. Then, for any $t \in [0, T]$ we have $d(\alpha(t), \beta(t)) \leq 2(D + \delta)$.
- (13) Show that any geodesic n -gon in a δ -hyperbolic space is $\delta(n - 2)$ -thin.
- (14) Show that the discrete Heisenberg group $H_3(\mathbb{Z})$ is not hyperbolic.
- (15) Show that the product of two infinite groups is not hyperbolic.
- (16) Show that the lamplighter group $\mathbb{Z}_2 \wr \mathbb{Z}$ is not hyperbolic.